1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
|
SUBROUTINE TG01AD( JOB, L, N, M, P, THRESH, A, LDA, E, LDE,
$ B, LDB, C, LDC, LSCALE, RSCALE, DWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To balance the matrices of the system pencil
C
C S = ( A B ) - lambda ( E 0 ) := Q - lambda Z,
C ( C 0 ) ( 0 0 )
C
C corresponding to the descriptor triple (A-lambda E,B,C),
C by balancing. This involves diagonal similarity transformations
C (Dl*A*Dr - lambda Dl*E*Dr, Dl*B, C*Dr) applied to the system
C (A-lambda E,B,C) to make the rows and columns of system pencil
C matrices
C
C diag(Dl,I) * S * diag(Dr,I)
C
C as close in norm as possible. Balancing may reduce the 1-norms
C of the matrices of the system pencil S.
C
C The balancing can be performed optionally on the following
C particular system pencils
C
C S = A-lambda E,
C
C S = ( A-lambda E B ), or
C
C S = ( A-lambda E ).
C ( C )
C
C ARGUMENTS
C
C Mode Parameters
C
C JOB CHARACTER*1
C Indicates which matrices are involved in balancing, as
C follows:
C = 'A': All matrices are involved in balancing;
C = 'B': B, A and E matrices are involved in balancing;
C = 'C': C, A and E matrices are involved in balancing;
C = 'N': B and C matrices are not involved in balancing.
C
C Input/Output Parameters
C
C L (input) INTEGER
C The number of rows of matrices A, B, and E. L >= 0.
C
C N (input) INTEGER
C The number of columns of matrices A, E, and C. N >= 0.
C
C M (input) INTEGER
C The number of columns of matrix B. M >= 0.
C
C P (input) INTEGER
C The number of rows of matrix C. P >= 0.
C
C THRESH (input) DOUBLE PRECISION
C Threshold value for magnitude of elements:
C elements with magnitude less than or equal to
C THRESH are ignored for balancing. THRESH >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading L-by-N part of this array must
C contain the state dynamics matrix A.
C On exit, the leading L-by-N part of this array contains
C the balanced matrix Dl*A*Dr.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,L).
C
C E (input/output) DOUBLE PRECISION array, dimension (LDE,N)
C On entry, the leading L-by-N part of this array must
C contain the descriptor matrix E.
C On exit, the leading L-by-N part of this array contains
C the balanced matrix Dl*E*Dr.
C
C LDE INTEGER
C The leading dimension of array E. LDE >= MAX(1,L).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading L-by-M part of this array must
C contain the input/state matrix B.
C On exit, if M > 0, the leading L-by-M part of this array
C contains the balanced matrix Dl*B.
C The array B is not referenced if M = 0.
C
C LDB INTEGER
C The leading dimension of array B.
C LDB >= MAX(1,L) if M > 0 or LDB >= 1 if M = 0.
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the state/output matrix C.
C On exit, if P > 0, the leading P-by-N part of this array
C contains the balanced matrix C*Dr.
C The array C is not referenced if P = 0.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C LSCALE (output) DOUBLE PRECISION array, dimension (L)
C The scaling factors applied to S from left. If Dl(j) is
C the scaling factor applied to row j, then
C SCALE(j) = Dl(j), for j = 1,...,L.
C
C RSCALE (output) DOUBLE PRECISION array, dimension (N)
C The scaling factors applied to S from right. If Dr(j) is
C the scaling factor applied to column j, then
C SCALE(j) = Dr(j), for j = 1,...,N.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (3*(L+N))
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit.
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C Balancing consists of applying a diagonal similarity
C transformation
C -1
C diag(Dl,I) * S * diag(Dr,I)
C
C to make the 1-norms of each row of the first L rows of S and its
C corresponding N columns nearly equal.
C
C Information about the diagonal matrices Dl and Dr are returned in
C the vectors LSCALE and RSCALE, respectively.
C
C REFERENCES
C
C [1] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J.,
C Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A.,
C Ostrouchov, S., and Sorensen, D.
C LAPACK Users' Guide: Second Edition.
C SIAM, Philadelphia, 1995.
C
C [2] R.C. Ward, R. C.
C Balancing the generalized eigenvalue problem.
C SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTOR
C
C A. Varga, German Aerospace Center, DLR Oberpfaffenhofen.
C March 1999. Based on the LAPACK routine DGGBAL.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, July 1999,
C May 2003, March 2004, Jan. 2009.
C
C KEYWORDS
C
C Balancing, eigenvalue, matrix algebra, matrix operations,
C similarity transformation.
C
C *********************************************************************
C
C .. Parameters ..
DOUBLE PRECISION HALF, ONE, ZERO
PARAMETER ( HALF = 0.5D+0, ONE = 1.0D+0, ZERO = 0.0D+0 )
DOUBLE PRECISION SCLFAC, THREE
PARAMETER ( SCLFAC = 1.0D+1, THREE = 3.0D+0 )
C .. Scalar Arguments ..
CHARACTER JOB
INTEGER INFO, L, LDA, LDB, LDC, LDE, M, N, P
DOUBLE PRECISION THRESH
C .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ),
$ DWORK( * ), E( LDE, * ), LSCALE( * ),
$ RSCALE( * )
C .. Local Scalars ..
LOGICAL WITHB, WITHC
INTEGER I, ICAB, IR, IRAB, IT, J, JC, KOUNT, KW1, KW2,
$ KW3, KW4, KW5, LCAB, LRAB, LSFMAX, LSFMIN,
$ NRP2
DOUBLE PRECISION ALPHA, BASL, BETA, CAB, CMAX, COEF, COEF2,
$ COEF5, COR, EW, EWC, GAMMA, PGAMMA, RAB, SFMAX,
$ SFMIN, SUM, T, TA, TB, TC, TE
C .. Local Arrays ..
DOUBLE PRECISION DUM( 1 )
C .. External Functions ..
LOGICAL LSAME
INTEGER IDAMAX
DOUBLE PRECISION DDOT, DLAMCH
EXTERNAL DDOT, DLAMCH, IDAMAX, LSAME
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DSCAL, XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, INT, LOG10, MAX, MIN, SIGN
C
C .. Executable Statements ..
C
C Test the input parameters.
C
INFO = 0
WITHB = LSAME( JOB, 'A' ) .OR. LSAME( JOB, 'B' )
WITHC = LSAME( JOB, 'A' ) .OR. LSAME( JOB, 'C' )
C
IF( .NOT.WITHB .AND. .NOT.WITHC .AND. .NOT.LSAME( JOB, 'N' ) )
$ THEN
INFO = -1
ELSE IF( L.LT.0 ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( M.LT.0 ) THEN
INFO = -4
ELSE IF( P.LT.0 ) THEN
INFO = -5
ELSE IF( THRESH.LT.ZERO ) THEN
INFO = -6
ELSE IF( LDA.LT.MAX( 1, L ) ) THEN
INFO = -8
ELSE IF( LDE.LT.MAX( 1, L ) ) THEN
INFO = -10
ELSE IF( LDB.LT.1 .OR. ( M.GT.0 .AND. LDB.LT.L ) ) THEN
INFO = -12
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -14
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'TG01AD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( L.EQ.0 .OR. N.EQ.0 ) THEN
DUM( 1 ) = ONE
IF( L.GT.0 ) THEN
CALL DCOPY( L, DUM, 0, LSCALE, 1 )
ELSE IF( N.GT.0 ) THEN
CALL DCOPY( N, DUM, 0, RSCALE, 1 )
END IF
RETURN
END IF
C
C Initialize balancing and allocate work storage.
C
KW1 = N
KW2 = KW1 + L
KW3 = KW2 + L
KW4 = KW3 + N
KW5 = KW4 + L
DUM( 1 ) = ZERO
CALL DCOPY( L, DUM, 0, LSCALE, 1 )
CALL DCOPY( N, DUM, 0, RSCALE, 1 )
CALL DCOPY( 3*(L+N), DUM, 0, DWORK, 1 )
C
C Compute right side vector in resulting linear equations.
C
BASL = LOG10( SCLFAC )
DO 20 I = 1, L
DO 10 J = 1, N
TE = ABS( E( I, J ) )
TA = ABS( A( I, J ) )
IF( TA.GT.THRESH ) THEN
TA = LOG10( TA ) / BASL
ELSE
TA = ZERO
END IF
IF( TE.GT.THRESH ) THEN
TE = LOG10( TE ) / BASL
ELSE
TE = ZERO
END IF
DWORK( I+KW4 ) = DWORK( I+KW4 ) - TA - TE
DWORK( J+KW5 ) = DWORK( J+KW5 ) - TA - TE
10 CONTINUE
20 CONTINUE
C
IF( M.EQ.0 ) THEN
WITHB = .FALSE.
TB = ZERO
END IF
IF( P.EQ.0 ) THEN
WITHC = .FALSE.
TC = ZERO
END IF
C
IF( WITHB ) THEN
DO 30 I = 1, L
J = IDAMAX( M, B( I, 1 ), LDB )
TB = ABS( B( I, J ) )
IF( TB.GT.THRESH ) THEN
TB = LOG10( TB ) / BASL
DWORK( I+KW4 ) = DWORK( I+KW4 ) - TB
END IF
30 CONTINUE
END IF
C
IF( WITHC ) THEN
DO 40 J = 1, N
I = IDAMAX( P, C( 1, J ), 1 )
TC = ABS( C( I, J ) )
IF( TC.GT.THRESH ) THEN
TC = LOG10( TC ) / BASL
DWORK( J+KW5 ) = DWORK( J+KW5 ) - TC
END IF
40 CONTINUE
END IF
C
COEF = ONE / DBLE( L+N )
COEF2 = COEF*COEF
COEF5 = HALF*COEF2
NRP2 = MAX( L, N ) + 2
BETA = ZERO
IT = 1
C
C Start generalized conjugate gradient iteration.
C
50 CONTINUE
C
GAMMA = DDOT( L, DWORK( 1+KW4 ), 1, DWORK( 1+KW4 ), 1 ) +
$ DDOT( N, DWORK( 1+KW5 ), 1, DWORK( 1+KW5 ), 1 )
C
EW = ZERO
DO 60 I = 1, L
EW = EW + DWORK( I+KW4 )
60 CONTINUE
C
EWC = ZERO
DO 70 I = 1, N
EWC = EWC + DWORK( I+KW5 )
70 CONTINUE
C
GAMMA = COEF*GAMMA - COEF2*( EW**2 + EWC**2 ) -
$ COEF5*( EW - EWC )**2
IF( GAMMA.EQ.ZERO )
$ GO TO 160
IF( IT.NE.1 )
$ BETA = GAMMA / PGAMMA
T = COEF5*( EWC - THREE*EW )
TC = COEF5*( EW - THREE*EWC )
C
CALL DSCAL( N+L, BETA, DWORK, 1 )
C
CALL DAXPY( L, COEF, DWORK( 1+KW4 ), 1, DWORK( 1+KW1 ), 1 )
CALL DAXPY( N, COEF, DWORK( 1+KW5 ), 1, DWORK, 1 )
C
DO 80 J = 1, N
DWORK( J ) = DWORK( J ) + TC
80 CONTINUE
C
DO 90 I = 1, L
DWORK( I+KW1 ) = DWORK( I+KW1 ) + T
90 CONTINUE
C
C Apply matrix to vector.
C
DO 110 I = 1, L
KOUNT = 0
SUM = ZERO
DO 100 J = 1, N
IF( ABS( A( I, J ) ).GT.THRESH ) THEN
KOUNT = KOUNT + 1
SUM = SUM + DWORK( J )
END IF
IF( ABS( E( I, J ) ).GT.THRESH ) THEN
KOUNT = KOUNT + 1
SUM = SUM + DWORK( J )
END IF
100 CONTINUE
IF( WITHB ) THEN
J = IDAMAX( M, B( I, 1 ), LDB )
IF( ABS( B( I, J ) ).GT.THRESH ) KOUNT = KOUNT + 1
END IF
DWORK( I+KW2 ) = DBLE( KOUNT )*DWORK( I+KW1 ) + SUM
110 CONTINUE
C
DO 130 J = 1, N
KOUNT = 0
SUM = ZERO
DO 120 I = 1, L
IF( ABS( A( I, J ) ).GT.THRESH ) THEN
KOUNT = KOUNT + 1
SUM = SUM + DWORK( I+KW1 )
END IF
IF( ABS( E( I, J ) ).GT.THRESH ) THEN
KOUNT = KOUNT + 1
SUM = SUM + DWORK( I+KW1 )
END IF
120 CONTINUE
IF( WITHC ) THEN
I = IDAMAX( P, C( 1, J ), 1 )
IF( ABS( C( I, J ) ).GT.THRESH ) KOUNT = KOUNT + 1
END IF
DWORK( J+KW3 ) = DBLE( KOUNT )*DWORK( J ) + SUM
130 CONTINUE
C
SUM = DDOT( L, DWORK( 1+KW1 ), 1, DWORK( 1+KW2 ), 1 ) +
$ DDOT( N, DWORK, 1, DWORK( 1+KW3 ), 1 )
ALPHA = GAMMA / SUM
C
C Determine correction to current iteration.
C
CMAX = ZERO
DO 140 I = 1, L
COR = ALPHA*DWORK( I+KW1 )
IF( ABS( COR ).GT.CMAX )
$ CMAX = ABS( COR )
LSCALE( I ) = LSCALE( I ) + COR
140 CONTINUE
C
DO 150 J = 1, N
COR = ALPHA*DWORK( J )
IF( ABS( COR ).GT.CMAX )
$ CMAX = ABS( COR )
RSCALE( J ) = RSCALE( J ) + COR
150 CONTINUE
IF( CMAX.LT.HALF )
$ GO TO 160
C
CALL DAXPY( L, -ALPHA, DWORK( 1+KW2 ), 1, DWORK( 1+KW4 ), 1 )
CALL DAXPY( N, -ALPHA, DWORK( 1+KW3 ), 1, DWORK( 1+KW5 ), 1 )
C
PGAMMA = GAMMA
IT = IT + 1
IF( IT.LE.NRP2 )
$ GO TO 50
C
C End generalized conjugate gradient iteration.
C
160 CONTINUE
SFMIN = DLAMCH( 'Safe minimum' )
SFMAX = ONE / SFMIN
LSFMIN = INT( LOG10( SFMIN ) / BASL + ONE )
LSFMAX = INT( LOG10( SFMAX ) / BASL )
C
C Compute left diagonal scaling matrix.
C
DO 170 I = 1, L
IRAB = IDAMAX( N, A( I, 1 ), LDA )
RAB = ABS( A( I, IRAB ) )
IRAB = IDAMAX( N, E( I, 1 ), LDE )
RAB = MAX( RAB, ABS( E( I, IRAB ) ) )
IF( WITHB ) THEN
IRAB = IDAMAX( M, B( I, 1 ), LDB )
RAB = MAX( RAB, ABS( B( I, IRAB ) ) )
END IF
LRAB = INT( LOG10( RAB+SFMIN ) / BASL + ONE )
IR = LSCALE( I ) + SIGN( HALF, LSCALE( I ) )
IR = MIN( MAX( IR, LSFMIN ), LSFMAX, LSFMAX-LRAB )
LSCALE( I ) = SCLFAC**IR
170 CONTINUE
C
C Compute right diagonal scaling matrix.
C
DO 180 J = 1, N
ICAB = IDAMAX( L, A( 1, J ), 1 )
CAB = ABS( A( ICAB, J ) )
ICAB = IDAMAX( L, E( 1, J ), 1 )
CAB = MAX( CAB, ABS( E( ICAB, J ) ) )
IF( WITHC ) THEN
ICAB = IDAMAX( P, C( 1, J ), 1 )
CAB = MAX( CAB, ABS( C( ICAB, J ) ) )
END IF
LCAB = INT( LOG10( CAB+SFMIN ) / BASL + ONE )
JC = RSCALE( J ) + SIGN( HALF, RSCALE( J ) )
JC = MIN( MAX( JC, LSFMIN ), LSFMAX, LSFMAX-LCAB )
RSCALE( J ) = SCLFAC**JC
180 CONTINUE
C
C Row scaling of matrices A, E and B.
C
DO 190 I = 1, L
CALL DSCAL( N, LSCALE( I ), A( I, 1 ), LDA )
CALL DSCAL( N, LSCALE( I ), E( I, 1 ), LDE )
IF( WITHB )
$ CALL DSCAL( M, LSCALE( I ), B( I, 1 ), LDB )
190 CONTINUE
C
C Column scaling of matrices A, E and C.
C
DO 200 J = 1, N
CALL DSCAL( L, RSCALE( J ), A( 1, J ), 1 )
CALL DSCAL( L, RSCALE( J ), E( 1, J ), 1 )
IF( WITHC )
$ CALL DSCAL( P, RSCALE( J ), C( 1, J ), 1 )
200 CONTINUE
C
RETURN
C *** Last line of TG01AD ***
END
|