1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
|
SUBROUTINE TG01BD( JOBE, COMPQ, COMPZ, N, M, P, ILO, IHI, A, LDA,
$ E, LDE, B, LDB, C, LDC, Q, LDQ, Z, LDZ, DWORK,
$ LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To reduce the matrices A and E of the system pencil
C
C S = ( A B ) - lambda ( E 0 ) ,
C ( C 0 ) ( 0 0 )
C
C corresponding to the descriptor triple (A-lambda E,B,C),
C to generalized upper Hessenberg form using orthogonal
C transformations,
C
C Q' * A * Z = H, Q' * E * Z = T,
C
C where H is upper Hessenberg, T is upper triangular, Q and Z
C are orthogonal, and ' means transpose. The corresponding
C transformations, written compactly as diag(Q',I) * S * diag(Z,I),
C are also applied to B and C, getting Q' * B and C * Z.
C
C The orthogonal matrices Q and Z are determined as products of
C Givens rotations. They may either be formed explicitly, or they
C may be postmultiplied into input matrices Q1 and Z1, so that
C
C Q1 * A * Z1' = (Q1*Q) * H * (Z1*Z)'
C Q1 * E * Z1' = (Q1*Q) * T * (Z1*Z)'.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOBE CHARACTER*1
C Specifies whether E is a general square or an upper
C triangular matrix, as follows:
C = 'G': E is a general square matrix;
C = 'U': E is an upper triangular matrix.
C
C COMPQ CHARACTER*1
C Indicates what should be done with matrix Q, as follows:
C = 'N': do not compute Q;
C = 'I': Q is initialized to the unit matrix, and the
C orthogonal matrix Q is returned;
C = 'V': Q must contain an orthogonal matrix Q1 on entry,
C and the product Q1*Q is returned.
C
C COMPZ CHARACTER*1
C Indicates what should be done with matrix Z, as follows:
C = 'N': do not compute Z;
C = 'I': Z is initialized to the unit matrix, and the
C orthogonal matrix Z is returned;
C = 'V': Z must contain an orthogonal matrix Z1 on entry,
C and the product Z1*Z is returned.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrices A, E, and the number of rows of
C the matrix B. N >= 0.
C
C M (input) INTEGER
C The number of columns of the matrix B. M >= 0.
C
C P (input) INTEGER
C The number of rows of the matrix C. P >= 0.
C
C ILO (input) INTEGER
C IHI (input) INTEGER
C It is assumed that A and E are already upper triangular in
C rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI could
C normally be set by a previous call to LAPACK Library
C routine DGGBAL; otherwise they should be set to 1 and N,
C respectively.
C 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
C If JOBE = 'U', the matrix E is assumed upper triangular.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the state dynamics matrix A.
C On exit, the leading N-by-N part of this array contains
C the upper Hessenberg matrix H = Q' * A * Z. The elements
C below the first subdiagonal are set to zero.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C E (input/output) DOUBLE PRECISION array, dimension (LDE,N)
C On entry, the leading N-by-N part of this array must
C contain the descriptor matrix E. If JOBE = 'U', this
C matrix is assumed upper triangular.
C On exit, the leading N-by-N part of this array contains
C the upper triangular matrix T = Q' * E * Z. The elements
C below the diagonal are set to zero.
C
C LDE INTEGER
C The leading dimension of array E. LDE >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the input/state matrix B.
C On exit, if M > 0, the leading N-by-M part of this array
C contains the transformed matrix Q' * B.
C The array B is not referenced if M = 0.
C
C LDB INTEGER
C The leading dimension of array B.
C LDB >= MAX(1,N) if M > 0; LDB >= 1 if M = 0.
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the state/output matrix C.
C On exit, if P > 0, the leading P-by-N part of this array
C contains the transformed matrix C * Z.
C The array C is not referenced if P = 0.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
C If COMPQ = 'N': Q is not referenced;
C If COMPQ = 'I': on entry, Q need not be set, and on exit
C it contains the orthogonal matrix Q,
C where Q' is the product of the Givens
C transformations which are applied to A,
C E, and B on the left;
C If COMPQ = 'V': on entry, Q must contain an orthogonal
C matrix Q1, and on exit this is
C overwritten by Q1*Q.
C
C LDQ INTEGER
C The leading dimension of array Q.
C LDQ >= 1, if COMPQ = 'N';
C LDQ >= MAX(1,N), if COMPQ = 'I' or 'V'.
C
C Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
C If COMPZ = 'N': Z is not referenced;
C If COMPZ = 'I': on entry, Z need not be set, and on exit
C it contains the orthogonal matrix Z,
C which is the product of the Givens
C transformations applied to A, E, and C
C on the right;
C If COMPZ = 'V': on entry, Z must contain an orthogonal
C matrix Z1, and on exit this is
C overwritten by Z1*Z.
C
C LDZ INTEGER
C The leading dimension of array Z.
C LDZ >= 1, if COMPZ = 'N';
C LDZ >= MAX(1,N), if COMPZ = 'I' or 'V'.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) contains the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The dimension of the array DWORK.
C LDWORK >= 1, if JOBE = 'U';
C LDWORK >= MAX(1,IHI+1-ILO+MAX(NI,M)), if JOBE = 'G', where
C NI = N+1-ILO, if COMPQ = 'N', and NI = N, otherwise.
C For good performance, if JOBE = 'G', LDWORK must generally
C be larger, LDWORK >= MAX(1,IHI+1-ILO+MAX(NI,M)*NB), where
C NB is the optimal block size.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit.
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C First, this routine computes the QR factorization of E and applies
C the transformations to A, B, and possibly Q. Then, the routine
C reduces A to upper Hessenberg form, preserving E triangular, by
C an unblocked reduction [1], using two sequences of plane rotations
C applied alternately from the left and from the right. The
C corresponding transformations may be accumulated and/or applied
C to the matrices B and C. If JOBE = 'U', the initial reduction of E
C to upper triangular form is skipped.
C
C This routine is a modification and extension of the LAPACK Library
C routine DGGHRD [2].
C
C REFERENCES
C
C [1] Golub, G.H. and van Loan, C.F.
C Matrix Computations. Third Edition.
C M. D. Johns Hopkins University Press, Baltimore, 1996.
C
C [2] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J.,
C Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A.,
C Ostrouchov, S., and Sorensen, D.
C LAPACK Users' Guide: Second Edition.
C SIAM, Philadelphia, 1995.
C
C CONTRIBUTOR
C
C D. Sima, University of Bucharest, May 2001.
C V. Sima, Research Institute for Informatics, Bucharest, May 2001.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Eigenvalue, matrix algebra, matrix operations, similarity
C transformation.
C
C *********************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
C .. Scalar Arguments ..
CHARACTER COMPQ, COMPZ, JOBE
INTEGER IHI, ILO, INFO, LDA, LDB, LDC, LDE, LDQ,
$ LDWORK, LDZ, M, N, P
C .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ),
$ DWORK( * ), E( LDE, * ), Q( LDQ, * ),
$ Z( LDZ, * )
C .. Local Scalars ..
LOGICAL ILQ, ILZ, INQ, INZ, UPPER, WITHB, WITHC
INTEGER IERR, ITAU, IWRK, JCOL, JROW, MAXWRK, MINWRK
DOUBLE PRECISION CS, S, TEMP
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DGEQRF, DLARTG, DLASET, DORMQR, DROT, XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX
C
C .. Executable Statements ..
C
C Test the input scalar parameters.
C
UPPER = LSAME( JOBE, 'U' )
INQ = LSAME( COMPQ, 'I' )
ILQ = LSAME( COMPQ, 'V' ) .OR. INQ
INZ = LSAME( COMPZ, 'I' )
ILZ = LSAME( COMPZ, 'V' ) .OR. INZ
WITHB = M.GT.0
WITHC = P.GT.0
C
INFO = 0
IF( .NOT.( UPPER .OR. LSAME( JOBE, 'G' ) ) ) THEN
INFO = -1
ELSE IF( .NOT.( ILQ .OR. LSAME( COMPQ, 'N' ) ) ) THEN
INFO = -2
ELSE IF( .NOT.( ILZ .OR. LSAME( COMPZ, 'N' ) ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( M.LT.0 ) THEN
INFO = -5
ELSE IF( P.LT.0 ) THEN
INFO = -6
ELSE IF( ILO.LT.1 ) THEN
INFO = -7
ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
INFO = -8
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -10
ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
INFO = -12
ELSE IF( ( WITHB .AND. LDB.LT.N ) .OR. LDB.LT.1 ) THEN
INFO = -14
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -16
ELSE IF( ( ILQ .AND. LDQ.LT.N ) .OR. LDQ.LT.1 ) THEN
INFO = -18
ELSE IF( ( ILZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN
INFO = -20
ELSE
JROW = IHI + 1 - ILO
JCOL = N + 1 - ILO
IF( UPPER ) THEN
MINWRK = 1
MAXWRK = 1
ELSE
IF( ILQ ) THEN
MINWRK = N
ELSE
MINWRK = JCOL
END IF
MINWRK = MAX( 1, JROW + MAX( MINWRK, M ) )
END IF
IF( LDWORK.LT.MINWRK )
$ INFO = -22
END IF
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'TG01BD', -INFO )
RETURN
END IF
C
C Initialize Q and Z if desired.
C
IF( INQ )
$ CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
IF( INZ )
$ CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
C
C Quick return if possible.
C
IF( N.LE.1 ) THEN
DWORK( 1 ) = ONE
RETURN
END IF
C
IF( .NOT.UPPER ) THEN
C
C Reduce E to triangular form (QR decomposition of E).
C
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
C Workspace: need IHI+1-ILO+N+1-ILO;
C prefer IHI+1-ILO+(N+1-ILO)*NB.
C
ITAU = 1
IWRK = ITAU + JROW
CALL DGEQRF( JROW, JCOL, E( ILO, ILO ), LDE, DWORK( ITAU ),
$ DWORK( IWRK ), LDWORK-IWRK+1, IERR )
MAXWRK = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, MINWRK )
C
C Apply the orthogonal transformation to matrices A, B, and Q.
C Workspace: need IHI+1-ILO+N+1-ILO;
C prefer IHI+1-ILO+(N+1-ILO)*NB.
C
CALL DORMQR( 'Left', 'Transpose', JROW, JCOL, JROW,
$ E( ILO, ILO ), LDE, DWORK( ITAU ), A( ILO, ILO ),
$ LDA, DWORK( IWRK ), LDWORK-IWRK+1, IERR )
MAXWRK = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, MAXWRK )
C
IF ( WITHB ) THEN
C
C Workspace: need IHI+1-ILO+M;
C prefer IHI+1-ILO+M*NB.
C
CALL DORMQR( 'Left', 'Transpose', JROW, M, JROW,
$ E( ILO, ILO ), LDE, DWORK( ITAU ), B( ILO, 1 ),
$ LDB, DWORK( IWRK ), LDWORK-IWRK+1, IERR )
MAXWRK = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, MAXWRK )
END IF
C
IF( ILQ ) THEN
C
C Workspace: need IHI+1-ILO+N;
C prefer IHI+1-ILO+N*NB.
C
CALL DORMQR( 'Right', 'No Transpose', N, JROW, JROW,
$ E( ILO, ILO ), LDE, DWORK( ITAU ), Q( 1, ILO ),
$ LDQ, DWORK( IWRK ), LDWORK-IWRK+1, IERR )
MAXWRK = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, MAXWRK )
END IF
END IF
C
C Zero out lower triangle of E.
C
IF( JROW.GT.1 )
$ CALL DLASET( 'Lower', JROW-1, JROW-1, ZERO, ZERO,
$ E( ILO+1, ILO ), LDE )
C
C Reduce A and E and apply the transformations to B, C, Q and Z.
C
DO 20 JCOL = ILO, IHI - 2
C
DO 10 JROW = IHI, JCOL + 2, -1
C
C Step 1: rotate rows JROW-1, JROW to kill A(JROW,JCOL).
C
TEMP = A( JROW-1, JCOL )
CALL DLARTG( TEMP, A( JROW, JCOL ), CS, S,
$ A( JROW-1, JCOL ) )
A( JROW, JCOL ) = ZERO
CALL DROT( N-JCOL, A( JROW-1, JCOL+1 ), LDA,
$ A( JROW, JCOL+1 ), LDA, CS, S )
CALL DROT( N+2-JROW, E( JROW-1, JROW-1 ), LDE,
$ E( JROW, JROW-1 ), LDE, CS, S )
IF( WITHB )
$ CALL DROT( M, B( JROW-1, 1 ), LDB, B( JROW, 1 ), LDB,
$ CS, S )
IF( ILQ )
$ CALL DROT( N, Q( 1, JROW-1 ), 1, Q( 1, JROW ), 1, CS, S )
C
C Step 2: rotate columns JROW, JROW-1 to kill E(JROW,JROW-1).
C
TEMP = E( JROW, JROW )
CALL DLARTG( TEMP, E( JROW, JROW-1 ), CS, S,
$ E( JROW, JROW ) )
E( JROW, JROW-1 ) = ZERO
CALL DROT( IHI, A( 1, JROW ), 1, A( 1, JROW-1 ), 1, CS, S )
CALL DROT( JROW-1, E( 1, JROW ), 1, E( 1, JROW-1 ), 1, CS,
$ S )
IF( WITHC )
$ CALL DROT( P, C( 1, JROW ), 1, C( 1, JROW-1 ), 1, CS, S )
IF( ILZ )
$ CALL DROT( N, Z( 1, JROW ), 1, Z( 1, JROW-1 ), 1, CS, S )
10 CONTINUE
C
20 CONTINUE
C
DWORK( 1 ) = MAXWRK
RETURN
C *** Last line of TG01BD ***
END
|