File: TG01BD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (434 lines) | stat: -rw-r--r-- 16,438 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
      SUBROUTINE TG01BD( JOBE, COMPQ, COMPZ, N, M, P, ILO, IHI, A, LDA,
     $                   E, LDE, B, LDB, C, LDC, Q, LDQ, Z, LDZ, DWORK,
     $                   LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To reduce the matrices A and E of the system pencil
C
C             S =  ( A  B ) - lambda ( E  0 ) ,
C                  ( C  0 )          ( 0  0 )
C
C     corresponding to the descriptor triple (A-lambda E,B,C),
C     to generalized upper Hessenberg form using orthogonal
C     transformations,
C
C          Q' * A * Z = H,   Q' * E * Z = T,
C
C     where H is upper Hessenberg, T is upper triangular, Q and Z
C     are orthogonal, and ' means transpose. The corresponding
C     transformations, written compactly as diag(Q',I) * S * diag(Z,I),
C     are also applied to B and C, getting Q' * B and C * Z.
C
C     The orthogonal matrices Q and Z are determined as products of
C     Givens rotations. They may either be formed explicitly, or they
C     may be postmultiplied into input matrices Q1 and Z1, so that
C
C          Q1 * A * Z1' = (Q1*Q) * H * (Z1*Z)'
C          Q1 * E * Z1' = (Q1*Q) * T * (Z1*Z)'.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOBE    CHARACTER*1
C             Specifies whether E is a general square or an upper
C             triangular matrix, as follows:
C             = 'G':  E is a general square matrix;
C             = 'U':  E is an upper triangular matrix.
C
C     COMPQ   CHARACTER*1
C             Indicates what should be done with matrix Q, as follows:
C             = 'N':  do not compute Q;
C             = 'I':  Q is initialized to the unit matrix, and the
C                     orthogonal matrix Q is returned;
C             = 'V':  Q must contain an orthogonal matrix Q1 on entry,
C                     and the product Q1*Q is returned.
C
C     COMPZ   CHARACTER*1
C             Indicates what should be done with matrix Z, as follows:
C             = 'N':  do not compute Z;
C             = 'I':  Z is initialized to the unit matrix, and the
C                     orthogonal matrix Z is returned;
C             = 'V':  Z must contain an orthogonal matrix Z1 on entry,
C                     and the product Z1*Z is returned.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrices A, E, and the number of rows of
C             the matrix B.  N >= 0.
C
C     M       (input) INTEGER
C             The number of columns of the matrix B.  M >= 0.
C
C     P       (input) INTEGER
C             The number of rows of the matrix C.  P >= 0.
C
C     ILO     (input) INTEGER
C     IHI     (input) INTEGER
C             It is assumed that A and E are already upper triangular in
C             rows and columns 1:ILO-1 and IHI+1:N.  ILO and IHI could
C             normally be set by a previous call to LAPACK Library
C             routine DGGBAL; otherwise they should be set to 1 and N,
C             respectively.
C             1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
C             If JOBE = 'U', the matrix E is assumed upper triangular.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the state dynamics matrix A.
C             On exit, the leading N-by-N part of this array contains
C             the upper Hessenberg matrix H = Q' * A * Z. The elements
C             below the first subdiagonal are set to zero.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     E       (input/output) DOUBLE PRECISION array, dimension (LDE,N)
C             On entry, the leading N-by-N part of this array must
C             contain the descriptor matrix E. If JOBE = 'U', this
C             matrix is assumed upper triangular.
C             On exit, the leading N-by-N part of this array contains
C             the upper triangular matrix T = Q' * E * Z. The elements
C             below the diagonal are set to zero.
C
C     LDE     INTEGER
C             The leading dimension of array E.  LDE >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the input/state matrix B.
C             On exit, if M > 0, the leading N-by-M part of this array
C             contains the transformed matrix Q' * B.
C             The array B is not referenced if M = 0.
C
C     LDB     INTEGER
C             The leading dimension of array B.
C             LDB >= MAX(1,N) if M > 0;  LDB >= 1 if M = 0.
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the state/output matrix C.
C             On exit, if P > 0, the leading P-by-N part of this array
C             contains the transformed matrix C * Z.
C             The array C is not referenced if P = 0.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,P).
C
C     Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
C             If COMPQ = 'N':  Q is not referenced;
C             If COMPQ = 'I':  on entry, Q need not be set, and on exit
C                              it contains the orthogonal matrix Q,
C                              where Q' is the product of the Givens
C                              transformations which are applied to A,
C                              E, and B on the left;
C             If COMPQ = 'V':  on entry, Q must contain an orthogonal
C                              matrix Q1, and on exit this is
C                              overwritten by Q1*Q.
C
C     LDQ     INTEGER
C             The leading dimension of array Q.
C             LDQ >= 1,        if COMPQ = 'N';
C             LDQ >= MAX(1,N), if COMPQ = 'I' or 'V'.
C
C     Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
C             If COMPZ = 'N':  Z is not referenced;
C             If COMPZ = 'I':  on entry, Z need not be set, and on exit
C                              it contains the orthogonal matrix Z,
C                              which is the product of the Givens
C                              transformations applied to A, E, and C
C                              on the right;
C             If COMPZ = 'V':  on entry, Z must contain an orthogonal
C                              matrix Z1, and on exit this is
C                              overwritten by Z1*Z.
C
C     LDZ     INTEGER
C             The leading dimension of array Z.
C             LDZ >= 1,        if COMPZ = 'N';
C             LDZ >= MAX(1,N), if COMPZ = 'I' or 'V'.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) contains the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The dimension of the array DWORK.
C             LDWORK >= 1,                          if JOBE = 'U';
C             LDWORK >= MAX(1,IHI+1-ILO+MAX(NI,M)), if JOBE = 'G', where
C             NI = N+1-ILO, if COMPQ = 'N', and NI = N, otherwise.
C             For good performance, if JOBE = 'G', LDWORK must generally
C             be larger, LDWORK >= MAX(1,IHI+1-ILO+MAX(NI,M)*NB), where
C             NB is the optimal block size.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit.
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     First, this routine computes the QR factorization of E and applies
C     the transformations to A, B, and possibly Q. Then, the routine
C     reduces A to upper Hessenberg form, preserving E triangular, by
C     an unblocked reduction [1], using two sequences of plane rotations
C     applied alternately from the left and from the right. The
C     corresponding transformations may be accumulated and/or applied
C     to the matrices B and C. If JOBE = 'U', the initial reduction of E
C     to upper triangular form is skipped.
C
C     This routine is a modification and extension of the LAPACK Library
C     routine DGGHRD [2].
C
C     REFERENCES
C
C     [1] Golub, G.H. and van Loan, C.F.
C         Matrix Computations. Third Edition.
C         M. D. Johns Hopkins University Press, Baltimore, 1996.
C
C     [2] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J.,
C         Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A.,
C         Ostrouchov, S., and Sorensen, D.
C         LAPACK Users' Guide: Second Edition.
C         SIAM, Philadelphia, 1995.
C
C     CONTRIBUTOR
C
C     D. Sima, University of Bucharest, May 2001.
C     V. Sima, Research Institute for Informatics, Bucharest, May 2001.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Eigenvalue, matrix algebra, matrix operations, similarity
C     transformation.
C
C  *********************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
C     .. Scalar Arguments ..
      CHARACTER          COMPQ, COMPZ, JOBE
      INTEGER            IHI, ILO, INFO, LDA, LDB, LDC, LDE, LDQ,
     $                   LDWORK, LDZ, M, N, P
C     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * ),
     $                   DWORK(  * ), E( LDE, * ), Q( LDQ, * ),
     $                   Z( LDZ, * )
C     .. Local Scalars ..
      LOGICAL            ILQ, ILZ, INQ, INZ, UPPER, WITHB, WITHC
      INTEGER            IERR, ITAU, IWRK, JCOL, JROW, MAXWRK, MINWRK
      DOUBLE PRECISION   CS, S, TEMP
C     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
C     .. External Subroutines ..
      EXTERNAL           DGEQRF, DLARTG, DLASET, DORMQR, DROT, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC          INT, MAX
C
C     .. Executable Statements ..
C
C     Test the input scalar parameters.
C
      UPPER = LSAME( JOBE,  'U' )
      INQ   = LSAME( COMPQ, 'I' )
      ILQ   = LSAME( COMPQ, 'V' ) .OR. INQ
      INZ   = LSAME( COMPZ, 'I' )
      ILZ   = LSAME( COMPZ, 'V' ) .OR. INZ
      WITHB = M.GT.0
      WITHC = P.GT.0
C
      INFO = 0
      IF( .NOT.( UPPER .OR. LSAME( JOBE, 'G' ) ) ) THEN
         INFO = -1
      ELSE IF( .NOT.( ILQ .OR. LSAME( COMPQ, 'N' ) ) ) THEN
         INFO = -2
      ELSE IF( .NOT.( ILZ .OR. LSAME( COMPZ, 'N' ) ) ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( M.LT.0 ) THEN
         INFO = -5
      ELSE IF( P.LT.0 ) THEN
         INFO = -6
      ELSE IF( ILO.LT.1 ) THEN
         INFO = -7
      ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
         INFO = -8
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -10
      ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
         INFO = -12
      ELSE IF( ( WITHB .AND. LDB.LT.N ) .OR. LDB.LT.1 ) THEN
         INFO = -14
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -16
      ELSE IF( ( ILQ .AND. LDQ.LT.N ) .OR. LDQ.LT.1 ) THEN
         INFO = -18
      ELSE IF( ( ILZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN
         INFO = -20
      ELSE
         JROW = IHI + 1 - ILO
         JCOL = N + 1 - ILO
         IF( UPPER ) THEN
            MINWRK = 1
            MAXWRK = 1
         ELSE
            IF( ILQ ) THEN
               MINWRK = N
            ELSE
               MINWRK = JCOL
            END IF
            MINWRK = MAX( 1, JROW + MAX( MINWRK, M ) )
         END IF
         IF( LDWORK.LT.MINWRK )
     $      INFO = -22
      END IF
C
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'TG01BD', -INFO )
         RETURN
      END IF
C
C     Initialize Q and Z if desired.
C
      IF( INQ )
     $   CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
      IF( INZ )
     $   CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
C
C     Quick return if possible.
C
      IF( N.LE.1 ) THEN
         DWORK( 1 ) = ONE
         RETURN
      END IF
C
      IF( .NOT.UPPER ) THEN
C
C        Reduce E to triangular form (QR decomposition of E).
C
C        (Note: Comments in the code beginning "Workspace:" describe the
C        minimal amount of real workspace needed at that point in the
C        code, as well as the preferred amount for good performance.
C        NB refers to the optimal block size for the immediately
C        following subroutine, as returned by ILAENV.)
C
C        Workspace: need   IHI+1-ILO+N+1-ILO;
C                   prefer IHI+1-ILO+(N+1-ILO)*NB.
C
         ITAU = 1
         IWRK = ITAU + JROW
         CALL DGEQRF( JROW, JCOL, E( ILO, ILO ), LDE, DWORK( ITAU ),
     $                DWORK( IWRK ), LDWORK-IWRK+1, IERR )
         MAXWRK = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, MINWRK )
C
C        Apply the orthogonal transformation to matrices A, B, and Q.
C        Workspace: need   IHI+1-ILO+N+1-ILO;
C                   prefer IHI+1-ILO+(N+1-ILO)*NB.
C
         CALL DORMQR( 'Left', 'Transpose', JROW, JCOL, JROW,
     $                E( ILO, ILO ), LDE, DWORK( ITAU ), A( ILO, ILO ),
     $                LDA, DWORK( IWRK ), LDWORK-IWRK+1, IERR )
         MAXWRK = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, MAXWRK )
C
         IF ( WITHB ) THEN
C
C           Workspace: need   IHI+1-ILO+M;
C                      prefer IHI+1-ILO+M*NB.
C
            CALL DORMQR( 'Left', 'Transpose', JROW, M, JROW,
     $                   E( ILO, ILO ), LDE, DWORK( ITAU ), B( ILO, 1 ),
     $                   LDB, DWORK( IWRK ), LDWORK-IWRK+1, IERR )
            MAXWRK = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, MAXWRK )
         END IF
C
         IF( ILQ ) THEN
C
C           Workspace: need   IHI+1-ILO+N;
C                      prefer IHI+1-ILO+N*NB.
C
            CALL DORMQR( 'Right', 'No Transpose', N, JROW, JROW,
     $                   E( ILO, ILO ), LDE, DWORK( ITAU ), Q( 1, ILO ),
     $                   LDQ, DWORK( IWRK ), LDWORK-IWRK+1, IERR )
            MAXWRK = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, MAXWRK )
         END IF
      END IF
C
C     Zero out lower triangle of E.
C
      IF( JROW.GT.1 )
     $   CALL DLASET( 'Lower', JROW-1, JROW-1, ZERO, ZERO,
     $                E( ILO+1, ILO ), LDE )
C
C     Reduce A and E and apply the transformations to B, C, Q and Z.
C
      DO 20 JCOL = ILO, IHI - 2
C
         DO 10 JROW = IHI, JCOL + 2, -1
C
C           Step 1: rotate rows JROW-1, JROW to kill A(JROW,JCOL).
C
            TEMP = A( JROW-1, JCOL )
            CALL DLARTG( TEMP, A( JROW, JCOL ), CS, S,
     $                   A( JROW-1, JCOL ) )
            A( JROW, JCOL ) = ZERO
            CALL DROT( N-JCOL, A( JROW-1, JCOL+1 ), LDA,
     $                 A( JROW, JCOL+1 ), LDA, CS, S )
            CALL DROT( N+2-JROW, E( JROW-1, JROW-1 ), LDE,
     $                 E( JROW, JROW-1 ), LDE, CS, S )
            IF( WITHB )
     $         CALL DROT( M, B( JROW-1, 1 ), LDB, B( JROW, 1 ), LDB,
     $                    CS, S )
            IF( ILQ )
     $         CALL DROT( N, Q( 1, JROW-1 ), 1, Q( 1, JROW ), 1, CS, S )
C
C           Step 2: rotate columns JROW, JROW-1 to kill E(JROW,JROW-1).
C
            TEMP = E( JROW, JROW )
            CALL DLARTG( TEMP, E( JROW, JROW-1 ), CS, S,
     $                   E( JROW, JROW ) )
            E( JROW, JROW-1 ) = ZERO
            CALL DROT( IHI, A( 1, JROW ), 1, A( 1, JROW-1 ), 1, CS, S )
            CALL DROT( JROW-1, E( 1, JROW ), 1, E( 1, JROW-1 ), 1, CS,
     $                 S )
            IF( WITHC )
     $         CALL DROT( P, C( 1, JROW ), 1, C( 1, JROW-1 ), 1, CS, S )
            IF( ILZ )
     $         CALL DROT( N, Z( 1, JROW ), 1, Z( 1, JROW-1 ), 1, CS, S )
   10    CONTINUE
C
   20 CONTINUE
C
      DWORK( 1 ) = MAXWRK
      RETURN
C *** Last line of TG01BD ***
      END