File: TG01CD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (292 lines) | stat: -rw-r--r-- 9,603 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
      SUBROUTINE TG01CD( COMPQ, L, N, M, A, LDA, E, LDE, B, LDB, Q, LDQ,
     $                   DWORK, LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To reduce the descriptor system pair (A-lambda E,B) to the
C     QR-coordinate form by computing an orthogonal transformation
C     matrix Q such that the transformed descriptor system pair
C     (Q'*A-lambda Q'*E, Q'*B) has the descriptor matrix Q'*E
C     in an upper trapezoidal form.
C     The left orthogonal transformations performed to reduce E
C     can be optionally accumulated.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     COMPQ   CHARACTER*1
C             = 'N':  do not compute Q;
C             = 'I':  Q is initialized to the unit matrix, and the
C                     orthogonal matrix Q is returned;
C             = 'U':  Q must contain an orthogonal matrix Q1 on entry,
C                     and the product Q1*Q is returned.
C
C     Input/Output Parameters
C
C     L       (input) INTEGER
C             The number of rows of matrices A, B, and E.  L >= 0.
C
C     N       (input) INTEGER
C             The number of columns of matrices A and E.  N >= 0.
C
C     M       (input) INTEGER
C             The number of columns of matrix B.  M >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading L-by-N part of this array must
C             contain the state dynamics matrix A.
C             On exit, the leading L-by-N part of this array contains
C             the transformed matrix Q'*A.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,L).
C
C     E       (input/output) DOUBLE PRECISION array, dimension (LDE,N)
C             On entry, the leading L-by-N part of this array must
C             contain the descriptor matrix E.
C             On exit, the leading L-by-N part of this array contains
C             the transformed matrix Q'*E in upper trapezoidal form,
C             i.e.
C
C                      ( E11 )
C               Q'*E = (     ) ,     if L >= N ,
C                      (  0  )
C             or
C
C               Q'*E = ( E11 E12 ),  if L < N ,
C
C             where E11 is an MIN(L,N)-by-MIN(L,N) upper triangular
C             matrix.
C
C     LDE     INTEGER
C             The leading dimension of array E.  LDE >= MAX(1,L).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading L-by-M part of this array must
C             contain the input/state matrix B.
C             On exit, the leading L-by-M part of this array contains
C             the transformed matrix Q'*B.
C
C     LDB     INTEGER
C             The leading dimension of array B.
C             LDB >= MAX(1,L) if M > 0 or LDB >= 1 if M = 0.
C
C     Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,L)
C             If COMPQ = 'N':  Q is not referenced.
C             If COMPQ = 'I':  on entry, Q need not be set;
C                              on exit, the leading L-by-L part of this
C                              array contains the orthogonal matrix Q,
C                              where Q' is the product of Householder
C                              transformations which are applied to A,
C                              E, and B on the left.
C             If COMPQ = 'U':  on entry, the leading L-by-L part of this
C                              array must contain an orthogonal matrix
C                              Q1;
C                              on exit, the leading L-by-L part of this
C                              array contains the orthogonal matrix
C                              Q1*Q.
C
C     LDQ     INTEGER
C             The leading dimension of array Q.
C             LDQ >= 1,        if COMPQ = 'N';
C             LDQ >= MAX(1,L), if COMPQ = 'U' or 'I'.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= MAX(1, MIN(L,N) + MAX(L,N,M)).
C             For optimum performance
C             LWORK >= MAX(1, MIN(L,N) + MAX(L,N,M)*NB),
C             where NB is the optimal blocksize.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The routine computes the QR factorization of E to reduce it
C     to the upper trapezoidal form.
C
C     The transformations are also applied to the rest of system
C     matrices
C
C         A <- Q' * A ,  B <- Q' * B.
C
C     NUMERICAL ASPECTS
C
C     The algorithm is numerically backward stable and requires
C     0( L*L*N )  floating point operations.
C
C     CONTRIBUTOR
C
C     C. Oara, University "Politehnica" Bucharest.
C     A. Varga, German Aerospace Center, DLR Oberpfaffenhofen.
C     March 1999. Based on the RASP routine RPDSQR.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, July 1999,
C     May 2003.
C
C     KEYWORDS
C
C     Descriptor system, matrix algebra, matrix operations,
C     orthogonal transformation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      CHARACTER          COMPQ
      INTEGER            INFO, L, LDA, LDB, LDE, LDQ, LDWORK, M, N
C     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), DWORK( * ),
     $                   E( LDE, * ), Q( LDQ, * )
C     .. Local Scalars ..
      LOGICAL            ILQ
      INTEGER            ICOMPQ, LN, WRKOPT
C     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
C     .. External Subroutines ..
      EXTERNAL           DGEQRF, DLASET, DORMQR, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC          INT, MAX, MIN
C
C     .. Executable Statements ..
C
C     Decode COMPQ.
C
      IF( LSAME( COMPQ, 'N' ) ) THEN
         ILQ = .FALSE.
         ICOMPQ = 1
      ELSE IF( LSAME( COMPQ, 'U' ) ) THEN
         ILQ = .TRUE.
         ICOMPQ = 2
      ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
         ILQ = .TRUE.
         ICOMPQ = 3
      ELSE
         ICOMPQ = 0
      END IF
C
C     Test the input parameters.
C
      INFO = 0
      WRKOPT = MAX( 1, MIN( L, N ) + MAX( L, N, M ) )
      IF( ICOMPQ.EQ.0 ) THEN
         INFO = -1
      ELSE IF( L.LT.0 ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, L ) ) THEN
         INFO = -6
      ELSE IF( LDE.LT.MAX( 1, L ) ) THEN
         INFO = -8
      ELSE IF( LDB.LT.1 .OR. ( M.GT.0 .AND. LDB.LT.L ) ) THEN
         INFO = -10
      ELSE IF( ( ILQ .AND. LDQ.LT.L ) .OR. LDQ.LT.1 ) THEN
         INFO = -12
      ELSE IF( LDWORK.LT.WRKOPT ) THEN
         INFO = -14
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'TG01CD', -INFO )
         RETURN
      END IF
C
C     Initialize Q if necessary.
C
      IF( ICOMPQ.EQ.3 )
     $   CALL DLASET( 'Full', L, L, ZERO, ONE, Q, LDQ )
C
C     Quick return if possible.
C
      IF( L.EQ.0 .OR. N.EQ.0 ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
      LN = MIN( L, N )
C
C     Compute the QR decomposition of E.
C
C     Workspace: need   MIN(L,N) + N;
C                prefer MIN(L,N) + N*NB.
C
      CALL DGEQRF( L, N, E, LDE, DWORK, DWORK( LN+1 ), LDWORK-LN, INFO )
      WRKOPT = MAX( WRKOPT, INT( DWORK( LN+1 ) ) + LN )
C
C     Apply transformation on the rest of matrices.
C
C     A <-- Q' * A.
C     Workspace: need   MIN(L,N) + N;
C                prefer MIN(L,N) + N*NB.
C
      CALL DORMQR( 'Left', 'Transpose', L, N, LN, E, LDE, DWORK,
     $             A, LDA, DWORK( LN+1 ), LDWORK-LN, INFO )
      WRKOPT = MAX( WRKOPT, INT( DWORK( LN+1 ) ) + LN )
C
C     B <-- Q' * B.
C     Workspace: need   MIN(L,N) + M;
C                prefer MIN(L,N) + M*NB.
C
      IF ( M.GT.0 ) THEN
         CALL DORMQR( 'Left', 'Transpose', L, M, LN, E, LDE, DWORK,
     $                B, LDB, DWORK( LN+1 ), LDWORK-LN, INFO )
         WRKOPT = MAX( WRKOPT, INT( DWORK( LN+1 ) ) + LN )
      END IF
C
C     Q <-- Q1 * Q.
C     Workspace: need   MIN(L,N) + L;
C                prefer MIN(L,N) + L*NB.
C
      IF( ILQ ) THEN
         CALL DORMQR( 'Right', 'No Transpose', L, L, LN, E, LDE, DWORK,
     $                Q, LDQ, DWORK( LN+1 ), LDWORK-LN, INFO )
         WRKOPT = MAX( WRKOPT, INT( DWORK( LN+1 ) ) + LN )
      END IF
C
C     Set lower triangle of E to zero.
C
      IF( L.GE.2 )
     $   CALL DLASET( 'Lower', L-1, LN, ZERO, ZERO, E( 2, 1 ), LDE )
C
      DWORK(1) = WRKOPT
C
      RETURN
C *** Last line of TG01CD ***
      END