File: TG01HD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (545 lines) | stat: -rw-r--r-- 20,524 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
      SUBROUTINE TG01HD( JOBCON, COMPQ, COMPZ, N, M, P, A, LDA, E, LDE,
     $                   B, LDB, C, LDC, Q, LDQ, Z, LDZ, NCONT, NIUCON,
     $                   NRBLCK, RTAU, TOL, IWORK, DWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute orthogonal transformation matrices Q and Z which
C     reduce the N-th order descriptor system (A-lambda*E,B,C)
C     to the form
C
C                ( Ac  *  )             ( Ec  *  )           ( Bc )
C       Q'*A*Z = (        ) ,  Q'*E*Z = (        ) ,  Q'*B = (    ) ,
C                ( 0  Anc )             ( 0  Enc )           ( 0  )
C
C          C*Z = ( Cc Cnc ) ,
C
C     where the NCONT-th order descriptor system (Ac-lambda*Ec,Bc,Cc)
C     is a finite and/or infinite controllable. The pencil
C     Anc - lambda*Enc is regular of order N-NCONT and contains the
C     uncontrollable finite and/or infinite eigenvalues of the pencil
C     A-lambda*E.
C
C     For JOBCON = 'C' or 'I', the pencil ( Bc Ec-lambda*Ac ) has full
C     row rank NCONT for all finite lambda and is in a staircase form
C     with
C                     _      _          _        _
C                   ( E1,0   E1,1  ...  E1,k-1   E1,k  )
C                   (        _          _        _     )
C       ( Bc Ec ) = (  0     E2,1  ...  E2,k-1   E2,k  ) ,  (1)
C                   (              ...  _        _     )
C                   (  0       0   ...  Ek,k-1   Ek,k  )
C
C                     _          _        _
C                   ( A1,1  ...  A1,k-1   A1,k  )
C                   (            _        _     )
C         Ac      = (   0   ...  A2,k-1   A2,k  ) ,         (2)
C                   (       ...           _     )
C                   (   0   ...    0      Ak,k  )
C           _
C     where Ei,i-1 is an rtau(i)-by-rtau(i-1) full row rank matrix
C                            _
C     (with rtau(0) = M) and Ai,i is an rtau(i)-by-rtau(i)
C     upper triangular matrix.
C
C     For JOBCON = 'F', the pencil ( Bc Ac-lambda*Ec ) has full
C     row rank NCONT for all finite lambda and is in a staircase form
C     with
C                     _     _          _        _
C                   ( A1,0  A1,1  ...  A1,k-1   A1,k  )
C                   (       _          _        _     )
C       ( Bc Ac ) = (  0    A2,1  ...  A2,k-1   A2,k  ) ,   (3)
C                   (             ...  _        _     )
C                   (  0      0   ...  Ak,k-1   Ak,k  )
C
C                     _          _        _
C                   ( E1,1  ...  E1,k-1   E1,k  )
C                   (            _        _     )
C         Ec      = (   0   ...  E2,k-1   E2,k  ) ,         (4)
C                   (       ...           _     )
C                   (   0   ...    0      Ek,k  )
C           _
C     where Ai,i-1 is an rtau(i)-by-rtau(i-1) full row rank matrix
C                            _
C     (with rtau(0) = M) and Ei,i is an rtau(i)-by-rtau(i)
C     upper triangular matrix.
C
C     For JOBCON = 'C', the (N-NCONT)-by-(N-NCONT) regular pencil
C     Anc - lambda*Enc has the form
C
C                         ( Ainc - lambda*Einc         *          )
C      Anc - lambda*Enc = (                                       ) ,
C                         (        0           Afnc - lambda*Efnc )
C
C     where:
C       1) the NIUCON-by-NIUCON regular pencil Ainc - lambda*Einc,
C          with Ainc upper triangular and nonsingular, contains the
C          uncontrollable infinite eigenvalues of A - lambda*E;
C       2) the (N-NCONT-NIUCON)-by-(N-NCONT-NIUCON) regular pencil
C          Afnc - lambda*Efnc, with Efnc upper triangular and
C          nonsingular, contains the uncontrollable finite
C          eigenvalues of A - lambda*E.
C
C     Note: The significance of the two diagonal blocks can be
C           interchanged by calling the routine with the
C           arguments A and E interchanged. In this case,
C           Ainc - lambda*Einc contains the uncontrollable zero
C           eigenvalues of A - lambda*E, while Afnc - lambda*Efnc
C           contains the uncontrollable nonzero finite and infinite
C           eigenvalues of A - lambda*E.
C
C     For JOBCON = 'F', the pencil Anc - lambda*Enc has the form
C
C        Anc - lambda*Enc = Afnc - lambda*Efnc ,
C
C     where the regular pencil Afnc - lambda*Efnc, with Efnc
C     upper triangular and nonsingular, contains the uncontrollable
C     finite eigenvalues of A - lambda*E.
C
C     For JOBCON = 'I', the pencil Anc - lambda*Enc has the form
C
C        Anc - lambda*Enc = Ainc - lambda*Einc ,
C
C     where the regular pencil Ainc - lambda*Einc, with Ainc
C     upper triangular and nonsingular, contains the uncontrollable
C     nonzero finite and infinite eigenvalues of A - lambda*E.
C
C     The left and/or right orthogonal transformations Q and Z
C     performed to reduce the system matrices can be optionally
C     accumulated.
C
C     The reduced order descriptor system (Ac-lambda*Ec,Bc,Cc) has
C     the same transfer-function matrix as the original system
C     (A-lambda*E,B,C).
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOBCON  CHARACTER*1
C             = 'C':  separate both finite and infinite uncontrollable
C                     eigenvalues;
C             = 'F':  separate only finite uncontrollable eigenvalues:
C             = 'I':  separate only nonzero finite and infinite
C                     uncontrollable eigenvalues.
C
C     COMPQ   CHARACTER*1
C             = 'N':  do not compute Q;
C             = 'I':  Q is initialized to the unit matrix, and the
C                     orthogonal matrix Q is returned;
C             = 'U':  Q must contain an orthogonal matrix Q1 on entry,
C                     and the product Q1*Q is returned.
C
C     COMPZ   CHARACTER*1
C             = 'N':  do not compute Z;
C             = 'I':  Z is initialized to the unit matrix, and the
C                     orthogonal matrix Z is returned;
C             = 'U':  Z must contain an orthogonal matrix Z1 on entry,
C                     and the product Z1*Z is returned.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The dimension of the descriptor state vector; also the
C             order of square matrices A and E, the number of rows of
C             matrix B, and the number of columns of matrix C.  N >= 0.
C
C     M       (input) INTEGER
C             The dimension of descriptor system input vector; also the
C             number of columns of matrix B.  M >= 0.
C
C     P       (input) INTEGER
C             The dimension of descriptor system output vector; also the
C             number of rows of matrix C.  P >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the N-by-N state matrix A.
C             On exit, the leading N-by-N part of this array contains
C             the transformed state matrix Q'*A*Z,
C
C                                ( Ac   *  )
C                       Q'*A*Z = (         ) ,
C                                ( 0   Anc )
C
C             where Ac is NCONT-by-NCONT and Anc is
C             (N-NCONT)-by-(N-NCONT).
C             If JOBCON = 'F', the matrix ( Bc Ac ) is in the
C             controllability staircase form (3).
C             If JOBCON = 'C' or 'I', the submatrix Ac is upper
C             triangular.
C             If JOBCON = 'C', the Anc matrix has the form
C
C                             ( Ainc   *  )
C                       Anc = (           ) ,
C                             (  0   Afnc )
C
C             where the NIUCON-by-NIUCON matrix Ainc is nonsingular and
C             upper triangular.
C             If JOBCON = 'I', Anc is nonsingular and upper triangular.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     E       (input/output) DOUBLE PRECISION array, dimension (LDE,N)
C             On entry, the leading N-by-N part of this array must
C             contain the N-by-N descriptor matrix E.
C             On exit, the leading N-by-N part of this array contains
C             the transformed descriptor matrix Q'*E*Z,
C
C                                ( Ec   *  )
C                       Q'*E*Z = (         ) ,
C                                ( 0   Enc )
C
C             where Ec is NCONT-by-NCONT and Enc is
C             (N-NCONT)-by-(N-NCONT).
C             If JOBCON = 'C' or 'I', the matrix ( Bc Ec ) is in the
C             controllability staircase form (1).
C             If JOBCON = 'F', the submatrix Ec is upper triangular.
C             If JOBCON = 'C', the Enc matrix has the form
C
C                             ( Einc   *  )
C                       Enc = (           ) ,
C                             (  0   Efnc )
C
C             where the NIUCON-by-NIUCON matrix Einc is nilpotent
C             and the (N-NCONT-NIUCON)-by-(N-NCONT-NIUCON) matrix Efnc
C             is nonsingular and upper triangular.
C             If JOBCON = 'F', Enc is nonsingular and upper triangular.
C
C     LDE     INTEGER
C             The leading dimension of array E.  LDE >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the N-by-M input matrix B.
C             On exit, the leading N-by-M part of this array contains
C             the transformed input matrix
C
C                              ( Bc )
C                       Q'*B = (    ) ,
C                              ( 0  )
C
C              where Bc is NCONT-by-M.
C              For JOBCON = 'C' or 'I', the matrix ( Bc Ec ) is in the
C              controllability staircase form (1).
C              For JOBCON = 'F', the matrix ( Bc Ac ) is in the
C              controllability staircase form (3).
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the state/output matrix C.
C             On exit, the leading P-by-N part of this array contains
C             the transformed matrix C*Z.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,P).
C
C     Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
C             If COMPQ = 'N': Q is not referenced.
C             If COMPQ = 'I': on entry, Q need not be set;
C                             on exit, the leading N-by-N part of this
C                             array contains the orthogonal matrix Q,
C                             where Q' is the product of transformations
C                             which are applied to A, E, and B on
C                             the left.
C             If COMPQ = 'U': on entry, the leading N-by-N part of this
C                             array must contain an orthogonal matrix
C                             Qc;
C                             on exit, the leading N-by-N part of this
C                             array contains the orthogonal matrix
C                             Qc*Q.
C
C     LDQ     INTEGER
C             The leading dimension of array Q.
C             LDQ >= 1,        if COMPQ = 'N';
C             LDQ >= MAX(1,N), if COMPQ = 'U' or 'I'.
C
C     Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
C             If COMPZ = 'N': Z is not referenced.
C             If COMPZ = 'I': on entry, Z need not be set;
C                             on exit, the leading N-by-N part of this
C                             array contains the orthogonal matrix Z,
C                             which is the product of transformations
C                             applied to A, E, and C on the right.
C             If COMPZ = 'U': on entry, the leading N-by-N part of this
C                             array must contain an orthogonal matrix
C                             Zc;
C                             on exit, the leading N-by-N part of this
C                             array contains the orthogonal matrix
C                             Zc*Z.
C
C     LDZ     INTEGER
C             The leading dimension of array Z.
C             LDZ >= 1,        if COMPZ = 'N';
C             LDZ >= MAX(1,N), if COMPZ = 'U' or 'I'.
C
C     NCONT   (output) INTEGER
C             The order of the reduced matrices Ac and Ec, and the
C             number of rows of reduced matrix Bc; also the order of
C             the controllable part of the pair (A-lambda*E,B).
C
C     NIUCON  (output) INTEGER
C             For JOBCON = 'C', the order of the reduced matrices
C             Ainc and Einc; also the number of uncontrollable
C             infinite eigenvalues of the pencil A - lambda*E.
C             For JOBCON = 'F' or 'I', NIUCON has no significance
C             and is set to zero.
C
C     NRBLCK  (output) INTEGER
C             For JOBCON = 'C' or 'I', the number k, of full row rank
C                    _
C             blocks Ei,i in the staircase form of the pencil
C             (Bc Ec-lambda*Ac) (see (1) and (2)).
C             For JOBCON = 'F', the number k, of full row rank blocks
C             _
C             Ai,i in the staircase form of the pencil (Bc Ac-lambda*Ec)
C             (see (3) and (4)).
C
C     RTAU    (output) INTEGER array, dimension (N)
C             RTAU(i), for i = 1, ..., NRBLCK, is the row dimension of
C                                     _         _
C             the full row rank block Ei,i-1 or Ai,i-1 in the staircase
C             form (1) or (3) for JOBCON = 'C' or 'I', or
C             for JOBCON = 'F', respectively.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             The tolerance to be used in rank determinations when
C             transforming (A-lambda*E, B). If the user sets TOL > 0,
C             then the given value of TOL is used as a lower bound for
C             reciprocal condition numbers in rank determinations; a
C             (sub)matrix whose estimated condition number is less than
C             1/TOL is considered to be of full rank.  If the user sets
C             TOL <= 0, then an implicitly computed, default tolerance,
C             defined by  TOLDEF = N*N*EPS,  is used instead, where EPS
C             is the machine precision (see LAPACK Library routine
C             DLAMCH).  TOL < 1.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (M)
C
C     DWORK   DOUBLE PRECISION array, dimension MAX(N,2*M)
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The subroutine is based on the reduction algorithms of [1].
C
C     REFERENCES
C
C     [1] A. Varga
C         Computation of Irreducible Generalized State-Space
C         Realizations.
C         Kybernetika, vol. 26, pp. 89-106, 1990.
C
C     NUMERICAL ASPECTS
C
C     The algorithm is numerically backward stable and requires
C     0( N**3 )  floating point operations.
C
C     FURTHER COMMENTS
C
C     If the system matrices A, E and B are badly scaled, it is
C     generally recommendable to scale them with the SLICOT routine
C     TG01AD, before calling TG01HD.
C
C     CONTRIBUTOR
C
C     C. Oara, University "Politehnica" Bucharest.
C     A. Varga, German Aerospace Center, DLR Oberpfaffenhofen.
C     March 1999. Based on the RASP routine RPDSCF.
C
C     REVISIONS
C
C     July 1999, V. Sima, Research Institute for Informatics, Bucharest.
C
C     KEYWORDS
C
C     Controllability, minimal realization, orthogonal canonical form,
C     orthogonal transformation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER          COMPQ, COMPZ, JOBCON
      INTEGER            INFO, LDA, LDB, LDC, LDE, LDQ, LDZ,
     $                   M, N, NCONT, NIUCON, NRBLCK, P
      DOUBLE PRECISION   TOL
C     .. Array Arguments ..
      INTEGER            IWORK( * ), RTAU( * )
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, *  ),
     $                   DWORK( * ),  E( LDE, * ), Q( LDQ, * ),
     $                   Z( LDZ, * )
C     .. Local Scalars ..
      CHARACTER          JOBQ, JOBZ
      LOGICAL            FINCON, ILQ, ILZ, INFCON
      INTEGER            ICOMPQ, ICOMPZ, LBA, NR
C     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
C     .. External Subroutines ..
      EXTERNAL           TG01HX, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC          MAX
C
C     .. Executable Statements ..
C
C     Decode JOBCON.
C
      IF( LSAME( JOBCON, 'C' ) ) THEN
         FINCON = .TRUE.
         INFCON = .TRUE.
      ELSE IF( LSAME( JOBCON, 'F' ) ) THEN
         FINCON = .TRUE.
         INFCON = .FALSE.
      ELSE IF( LSAME( JOBCON, 'I' ) ) THEN
         FINCON = .FALSE.
         INFCON = .TRUE.
      ELSE
         FINCON = .FALSE.
         INFCON = .FALSE.
      END IF
C
C     Decode COMPQ.
C
      IF( LSAME( COMPQ, 'N' ) ) THEN
         ILQ = .FALSE.
         ICOMPQ = 1
      ELSE IF( LSAME( COMPQ, 'U' ) ) THEN
         ILQ = .TRUE.
         ICOMPQ = 2
      ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
         ILQ = .TRUE.
         ICOMPQ = 3
      ELSE
         ICOMPQ = 0
      END IF
C
C     Decode COMPZ.
C
      IF( LSAME( COMPZ, 'N' ) ) THEN
         ILZ = .FALSE.
         ICOMPZ = 1
      ELSE IF( LSAME( COMPZ, 'U' ) ) THEN
         ILZ = .TRUE.
         ICOMPZ = 2
      ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
         ILZ = .TRUE.
         ICOMPZ = 3
      ELSE
         ICOMPZ = 0
      END IF
C
C     Test the input scalar parameters.
C
      INFO = 0
      IF( .NOT.FINCON .AND. .NOT.INFCON ) THEN
         INFO = -1
      ELSE IF( ICOMPQ.LE.0 ) THEN
         INFO = -2
      ELSE IF( ICOMPZ.LE.0 ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( M.LT.0 ) THEN
         INFO = -5
      ELSE IF( P.LT.0 ) THEN
         INFO = -6
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
         INFO = -10
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -12
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -14
      ELSE IF( ( ILQ .AND. LDQ.LT.N ) .OR. LDQ.LT.1 ) THEN
         INFO = -16
      ELSE IF( ( ILZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN
         INFO = -18
      ELSE IF( TOL.GE.ONE ) THEN
         INFO = -23
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'TG01HD', -INFO )
         RETURN
      END IF
C
      JOBQ = COMPQ
      JOBZ = COMPZ
C
      IF( FINCON ) THEN
C
C        Perform finite controllability form reduction.
C
         CALL TG01HX( JOBQ, JOBZ, N, N, M, P, N, MAX( 0, N-1 ), A, LDA,
     $                E, LDE, B, LDB, C, LDC, Q, LDQ, Z, LDZ, NR,
     $                NRBLCK, RTAU, TOL, IWORK, DWORK, INFO )
         IF( NRBLCK.GT.1 ) THEN
            LBA = RTAU(1) + RTAU(2) - 1
         ELSE IF( NRBLCK.EQ.1 ) THEN
            LBA = RTAU(1) - 1
         ELSE
            LBA = 0
         END IF
         IF( ILQ ) JOBQ = 'U'
         IF( ILZ ) JOBZ = 'U'
      ELSE
         NR = N
         LBA = MAX( 0, N-1 )
      END IF
C
      IF( INFCON ) THEN
C
C        Perform infinite controllability form reduction.
C
         CALL TG01HX( JOBQ, JOBZ, N, N, M, P, NR, LBA, E, LDE,
     $                A, LDA, B, LDB, C, LDC, Q, LDQ, Z, LDZ, NCONT,
     $                NRBLCK, RTAU, TOL, IWORK, DWORK, INFO )
         IF( FINCON ) THEN
            NIUCON = NR - NCONT
         ELSE
            NIUCON = 0
         END IF
      ELSE
         NCONT  = NR
         NIUCON = 0
      END IF
C
      RETURN
C
C *** Last line of TG01HD ***
      END