File: TG01WD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (319 lines) | stat: -rw-r--r-- 11,215 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
      SUBROUTINE TG01WD( N, M, P, A, LDA, E, LDE, B, LDB, C, LDC,
     $                   Q, LDQ, Z, LDZ, ALPHAR, ALPHAI, BETA, DWORK,
     $                   LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To reduce the pair (A,E) to a real generalized Schur form
C     by using an orthogonal equivalence transformation
C     (A,E) <-- (Q'*A*Z,Q'*E*Z) and to apply the transformation
C     to the matrices B and C: B <-- Q'*B and C <-- C*Z.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the original state-space representation,
C             i.e., the order of the matrices A and E.  N >= 0.
C
C     M       (input) INTEGER
C             The number of system inputs, or of columns of B.  M >= 0.
C
C     P       (input) INTEGER
C             The number of system outputs, or of rows of C.  P >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the original state dynamics matrix A.
C             On exit, the leading N-by-N part of this array contains
C             the matrix Q' * A * Z in an upper quasi-triangular form.
C             The elements below the first subdiagonal are set to zero.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     E       (input/output) DOUBLE PRECISION array, dimension (LDE,N)
C             On entry, the leading N-by-N part of this array must
C             contain the original descriptor matrix E.
C             On exit, the leading N-by-N part of this array contains
C             the matrix Q' * E * Z in an upper triangular form.
C             The elements below the diagonal are set to zero.
C
C     LDE     INTEGER
C             The leading dimension of array E.  LDE >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the input matrix B.
C             On exit, the leading N-by-M part of this array contains
C             the transformed input matrix Q' * B.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the output matrix C.
C             On exit, the leading P-by-N part of this array contains
C             the transformed output matrix C * Z.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,P).
C
C     Q       (output) DOUBLE PRECISION array, dimension (LDQ,N)
C             The leading N-by-N part of this array contains the left
C             orthogonal transformation matrix used to reduce (A,E) to
C             the real generalized Schur form.
C             The columns of Q are the left generalized Schur vectors
C             of the pair (A,E).
C
C     LDQ     INTEGER
C             The leading dimension of array Q.  LDQ >= max(1,N).
C
C     Z       (output) DOUBLE PRECISION array, dimension (LDZ,N)
C             The leading N-by-N part of this array contains the right
C             orthogonal transformation matrix used to reduce (A,E) to
C             the real generalized Schur form.
C             The columns of Z are the right generalized Schur vectors
C             of the pair (A,E).
C
C     LDZ     INTEGER
C             The leading dimension of array Z.  LDZ >= max(1,N).
C
C     ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
C     ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
C     BETA    (output) DOUBLE PRECISION array, dimension (N)
C             On exit, if INFO = 0, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j),
C             j=1,...,N, will be the generalized eigenvalues.
C             ALPHAR(j) + ALPHAI(j)*i, and BETA(j), j=1,...,N, are the
C             diagonals of the complex Schur form that would result if
C             the 2-by-2 diagonal blocks of the real Schur form of
C             (A,E) were further reduced to triangular form using
C             2-by-2 complex unitary transformations.
C             If ALPHAI(j) is zero, then the j-th eigenvalue is real;
C             if positive, then the j-th and (j+1)-st eigenvalues are a
C             complex conjugate pair, with ALPHAI(j+1) negative.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The dimension of working array DWORK.  LDWORK >= 8*N+16.
C             For optimum performance LDWORK should be larger.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             > 0:  if INFO = i, the QZ algorithm failed to compute
C                   the generalized real Schur form; elements i+1:N of
C                   ALPHAR, ALPHAI, and BETA should be correct.
C
C     METHOD
C
C     The pair (A,E) is reduced to a real generalized Schur form using
C     an orthogonal equivalence transformation (A,E) <-- (Q'*A*Z,Q'*E*Z)
C     and the transformation is applied to the matrices B and C:
C     B <-- Q'*B and C <-- C*Z.
C
C     NUMERICAL ASPECTS
C                                     3
C     The algorithm requires about 25N  floating point operations.
C
C     CONTRIBUTOR
C
C     A. Varga, German Aerospace Center,
C     DLR Oberpfaffenhofen, July 2000.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Mar. 2001.
C
C     KEYWORDS
C
C     Orthogonal transformation, generalized real Schur form, similarity
C     transformation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      INTEGER           INFO, LDA, LDB, LDC, LDE, LDQ, LDWORK, LDZ,
     $                  M, N, P
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), ALPHAI(*), ALPHAR(*), B(LDB,*),
     $                  BETA(*),  C(LDC,*),  DWORK(*),  E(LDE,*),
     $                  Q(LDQ,*), Z(LDZ,*)
C     .. Local Scalars ..
      LOGICAL           BLAS3, BLOCK
      INTEGER           BL, CHUNK, I, J, MAXWRK, SDIM
C     .. Local Arrays ..
      LOGICAL           BWORK(1)
C     .. External Functions ..
      LOGICAL           LSAME, DELCTG
      EXTERNAL          LSAME, DELCTG
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DGEMM, DGEMV, DGGES, DLACPY, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, INT, MAX, MIN
C
C     .. Executable Statements ..
C
      INFO = 0
C
C     Check the scalar input parameters.
C
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( P.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -11
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
         INFO = -13
      ELSE IF( LDZ.LT.MAX( 1, N ) ) THEN
         INFO = -15
      ELSE IF( LDWORK.LT.8*N+16 ) THEN
         INFO = -20
      END IF
C
      IF( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'TG01WD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( N.EQ.0 ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
C     Reduce (A,E) to real generalized Schur form using an orthogonal
C     equivalence transformation (A,E) <-- (Q'*A*Z,Q'*E*Z), accumulate
C     the transformations in Q and Z, and compute the generalized
C     eigenvalues of the pair (A,E) in (ALPHAR, ALPHAI, BETA).
C
C     Workspace:  need   8*N+16;
C                 prefer larger.
C
      CALL DGGES( 'Vectors', 'Vectors', 'Not ordered', DELCTG, N,
     $            A, LDA, E, LDE, SDIM, ALPHAR, ALPHAI, BETA, Q, LDQ,
     $            Z, LDZ, DWORK, LDWORK, BWORK, INFO )
      IF( INFO.NE.0 )
     $   RETURN
      MAXWRK = INT( DWORK(1) )
C
C     Apply the transformation: B <-- Q'*B. Use BLAS 3, if enough space.
C
      CHUNK = LDWORK / N
      BLOCK = M.GT.1
      BLAS3 = CHUNK.GE.M .AND. BLOCK
C
      IF( BLAS3 ) THEN
C
C        Enough workspace for a fast BLAS 3 algorithm.
C
         CALL DLACPY( 'Full', N, M, B, LDB, DWORK, N )
         CALL DGEMM( 'Transpose', 'No transpose', N, M, N, ONE, Q, LDQ,
     $               DWORK, N, ZERO, B, LDB )
C
      ELSE IF ( BLOCK ) THEN
C
C        Use as many columns of B as possible.
C
         DO 10 J = 1, M, CHUNK
            BL = MIN( M-J+1, CHUNK )
            CALL DLACPY( 'Full', N, BL, B(1,J), LDB, DWORK, N )
            CALL DGEMM( 'Transpose', 'NoTranspose', N, BL, N, ONE, Q,
     $                  LDQ, DWORK, N, ZERO, B(1,J), LDB )
   10    CONTINUE
C
      ELSE
C
C        Use a BLAS 2 algorithm. Here, M <= 1.
C
         IF ( M.GT.0 ) THEN
            CALL DCOPY( N, B, 1, DWORK, 1 )
            CALL DGEMV( 'Transpose', N, N, ONE, Q, LDQ, DWORK, 1, ZERO,
     $                  B, 1 )
         END IF
      END IF
      MAXWRK = MAX( MAXWRK, N*M )
C
C     Apply the transformation: C <-- C*Z.  Use BLAS 3, if enough space.
C
      BLOCK = P.GT.1
      BLAS3 = CHUNK.GE.P .AND. BLOCK
C
      IF ( BLAS3 ) THEN
         CALL DLACPY( 'Full', P, N, C, LDC, DWORK, P )
         CALL DGEMM( 'No transpose', 'No transpose', P, N, N, ONE,
     $               DWORK, P, Z, LDZ, ZERO, C, LDC )
C
      ELSE IF ( BLOCK ) THEN
C
C        Use as many rows of C as possible.
C
         DO 20 I = 1, P, CHUNK
            BL = MIN( P-I+1, CHUNK )
            CALL DLACPY( 'Full', BL, N, C(I,1), LDC, DWORK, BL )
            CALL DGEMM( 'NoTranspose', 'NoTranspose', BL, N, N, ONE,
     $                  DWORK, BL, Z, LDZ, ZERO, C(I,1), LDC )
   20    CONTINUE
C
      ELSE
C
C        Use a BLAS 2 algorithm. Here, P <= 1.
C
         IF ( P.GT.0 ) THEN
            CALL DCOPY( N, C, LDC, DWORK, 1 )
            CALL DGEMV( 'Transpose', N, N, ONE, Z, LDZ, DWORK, 1, ZERO,
     $                  C, LDC )
         END IF
C
      END IF
      MAXWRK = MAX( MAXWRK, P*N )
C
      DWORK(1) = DBLE( MAXWRK )
C
      RETURN
C *** Last line of TG01WD ***
      END