1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
SUBROUTINE UD01CD( MP, NP, DP, NIN, P, LDP1, LDP2, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To read the elements of a sparse matrix polynomial
C dp-1 dp
C P(s) = P(0) + P(1) * s + . . . + P(dp-1) * s + P(dp) * s .
C
C ARGUMENTS
C
C Input/Output Parameters
C
C MP (input) INTEGER
C The number of rows of the matrix polynomial P(s).
C MP >= 1.
C
C NP (input) INTEGER
C The number of columns of the matrix polynomial P(s).
C NP >= 1.
C
C DP (input) INTEGER
C The degree of the matrix polynomial P(s). DP >= 0.
C
C NIN (input) INTEGER
C The input channel from which the elements of P(s) are
C read. NIN >= 0.
C
C P (output) DOUBLE PRECISION array, dimension
C (LDP1,LDP2,DP+1)
C The leading MP-by-NP-by-(DP+1) part of this array contains
C the coefficients of the matrix polynomial P(s).
C Specifically, P(i,j,k) contains the coefficient of
C s**(k-1) of the polynomial which is the (i,j)-th element
C of P(s), where i = 1,2,...,MP, j = 1,2,...,NP and
C k = 1,2,...,DP+1.
C The not assigned elements are set to zero.
C
C LDP1 INTEGER
C The leading dimension of array P. LDP1 >= MP.
C
C LDP2 INTEGER
C The second dimension of array P. LDP2 >= NP.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1 : if a row index i is read with i < 1 or i > MP or
C a column index j is read with j < 1 or j > NP or
C a coefficient degree d is read with d < 0 or
C d > DP + 1. This is a warning.
C
C METHOD
C
C First, the elements P(i,j,k) with 1 <= i <= MP, 1 <= j <= NP and
C 1 <= k <= DP + 1 are set to zero. Next the nonzero (polynomial)
C elements are read from the input file NIN. Each nonzero element is
C given by the values i, j, d, P(i,j,k), k = 1, ..., d+1, where d is
C the degree and P(i,j,k) is the coefficient of s**(k-1) in the
C (i,j)-th element of P(s), i.e., let
C d
C P (s) = P (0) + P (1) * s + . . . + P (d) * s
C i,j i,j i,j i,j
C
C be the nonzero (i,j)-th element of the matrix polynomial P(s).
C
C Then P(i,j,k) corresponds to coefficient P (k-1), k = 1,...,d+1.
C i,j
C For each nonzero element, the values i, j, and d are read as one
C record of the file NIN, and the values P(i,j,k), k = 1,...,d+1,
C are read as the following record.
C The routine terminates after the last line has been read.
C
C REFERENCES
C
C None.
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, June 1998.
C Based on routine RDSPOM by A.J. Geurts, Eindhoven University of
C Technology, Holland.
C
C REVISIONS
C
C -
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
C .. Scalar Arguments ..
INTEGER DP, INFO, LDP1, LDP2, MP, NP, NIN
C .. Array Arguments ..
DOUBLE PRECISION P(LDP1,LDP2,*)
C .. Local Scalars ..
INTEGER D, I, J, K
C .. External Subroutines ..
EXTERNAL DLASET, XERBLA
C
C .. Executable Statements ..
C
INFO = 0
C
C Check the input scalar arguments.
C
IF( MP.LT.1 ) THEN
INFO = -1
ELSE IF( NP.LT.1 ) THEN
INFO = -2
ELSE IF( DP.LT.0 ) THEN
INFO = -3
ELSE IF( NIN.LT.0 ) THEN
INFO = -4
ELSE IF( LDP1.LT.MP ) THEN
INFO = -6
ELSE IF( LDP2.LT.NP ) THEN
INFO = -7
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'UD01CD', -INFO )
RETURN
END IF
C
DO 10 K = 1, DP+1
CALL DLASET( 'Full', MP, NP, ZERO, ZERO, P(1,1,K), LDP1 )
10 CONTINUE
C
C Read (i, j, d, P(i,j,k), k=1,...,d+1) of the nonzero elements one
C by one.
C
20 READ( NIN, FMT = *, END = 30 ) I, J, D
IF ( I.LT.1 .OR. I.GT.MP .OR. J.LT.1 .OR. J.GT.NP .OR.
$ D.LT.0 .OR. D.GT.(DP+1) ) THEN
INFO = 1
READ ( NIN, FMT = * )
ELSE
READ ( NIN, FMT = * ) ( P(I,J,K), K = 1, D+1 )
END IF
GO TO 20
C
30 CONTINUE
RETURN
C *** Last line of UD01CD ***
END
|