File: DsgeSmoother.m

package info (click to toggle)
dynare 4.4.3-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 41,312 kB
  • ctags: 15,840
  • sloc: cpp: 77,029; ansic: 29,056; pascal: 13,241; sh: 4,811; objc: 3,061; yacc: 3,013; makefile: 1,476; lex: 1,258; python: 162; lisp: 54; xml: 8
file content (267 lines) | stat: -rw-r--r-- 10,005 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
function [alphahat,etahat,epsilonhat,ahat,SteadyState,trend_coeff,aK,T,R,P,PK,decomp] = DsgeSmoother(xparam1,gend,Y,data_index,missing_value)
% Estimation of the smoothed variables and innovations. 
% 
% INPUTS 
%   o xparam1       [double]   (p*1) vector of (estimated) parameters. 
%   o gend          [integer]  scalar specifying the number of observations ==> varargin{1}.
%   o data          [double]   (T*n) matrix of data.
%   o data_index    [cell]      1*smpl cell of column vectors of indices.
%   o missing_value 1 if missing values, 0 otherwise
%  
% OUTPUTS 
%   o alphahat      [double]  (m*T) matrix, smoothed endogenous variables.
%   o etahat        [double]  (r*T) matrix, smoothed structural shocks (r>n is the umber of shocks).
%   o epsilonhat    [double]  (n*T) matrix, smoothed measurement errors.
%   o ahat          [double]  (m*T) matrix, one step ahead filtered (endogenous) variables.
%   o SteadyState   [double]  (m*1) vector specifying the steady state level of each endogenous variable.
%   o trend_coeff   [double]  (n*1) vector, parameters specifying the slope of the trend associated to each observed variable.
%   o aK            [double]  (K,n,T+K) array, k (k=1,...,K) steps ahead filtered (endogenous) variables.
%   o T and R       [double]  Matrices defining the state equation (T is the (m*m) transition matrix).
%    P:             3D array of one-step ahead forecast error variance
%                   matrices
%    PK:            4D array of k-step ahead forecast error variance
%                   matrices (meaningless for periods 1:d)
%    
% ALGORITHM 
%   Diffuse Kalman filter (Durbin and Koopman)       
%
% SPECIAL REQUIREMENTS
%   None

% Copyright (C) 2006-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global bayestopt_ M_ oo_ estim_params_ options_

alphahat        = [];
etahat  = [];
epsilonhat      = [];
ahat          = [];
SteadyState   = [];
trend_coeff   = [];
aK            = [];
T             = [];
R             = [];
P             = [];
PK            = [];
decomp        = [];
nobs            = size(options_.varobs,1);
smpl          = size(Y,2);

M_ = set_all_parameters(xparam1,estim_params_,M_);

%------------------------------------------------------------------------------
% 2. call model setup & reduction program
%------------------------------------------------------------------------------
oo_.dr.restrict_var_list = bayestopt_.smoother_var_list;
oo_.dr.restrict_columns = bayestopt_.smoother_restrict_columns;
[T,R,SteadyState,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_);
bayestopt_.mf = bayestopt_.smoother_mf;
if options_.noconstant
    constant = zeros(nobs,1);
else
    if options_.loglinear == 1
        constant = log(SteadyState(bayestopt_.mfys));
    else
        constant = SteadyState(bayestopt_.mfys);
    end
end
trend_coeff = zeros(nobs,1);
if bayestopt_.with_trend == 1
    trend_coeff = zeros(nobs,1);
    t = options_.trend_coeffs;
    for i=1:length(t)
        if ~isempty(t{i})
            trend_coeff(i) = evalin('base',t{i});
        end
    end
    trend = constant*ones(1,gend)+trend_coeff*(1:gend);
else
    trend = constant*ones(1,gend);
end
start = options_.presample+1;
np    = size(T,1);
mf    = bayestopt_.smoother_mf;
% ------------------------------------------------------------------------------
%  3. Initial condition of the Kalman filter
% ------------------------------------------------------------------------------
% 
%  C'est ici qu'il faut dterminer Pinf et Pstar. Si le modle est stationnaire,
%  alors il suffit de poser Pstar comme la solution de l'uation de Lyapounov et
%  Pinf=[].
%
Q = M_.Sigma_e;
H = M_.H;

if isequal(H,0)
    H = zeros(nobs,nobs);
end

kalman_algo = options_.kalman_algo;
if options_.lik_init == 1               % Kalman filter
    if kalman_algo ~= 2
        kalman_algo = 1;
    end
	if options_.lyapunov_fp == 1
        Pstar = lyapunov_symm(T,Q,options_.lyapunov_fixed_point_tol,options_.lyapunov_complex_threshold, 3, R);
    elseif options_.lyapunov_db == 1
        Pstar = disclyap_fast(T,R*Q*R',options_.lyapunov_doubling_tol);
    elseif options_.lyapunov_srs == 1
        Pstar = lyapunov_symm(T,Q,options_.lyapunov_fixed_point_tol,options_.lyapunov_complex_threshold, 4, R);
    else
        Pstar = lyapunov_symm(T,R*Q*R',options_.qz_criterium,options_.lyapunov_complex_threshold);
    end;
    Pinf        = [];
elseif options_.lik_init == 2           % Old Diffuse Kalman filter
    if kalman_algo ~= 2
        kalman_algo = 1;
    end
    Pstar = options_.Harvey_scale_factor*eye(np);
    Pinf        = [];
elseif options_.lik_init == 3           % Diffuse Kalman filter
    if kalman_algo ~= 4
        kalman_algo = 3;
    end
    [Z,ST,R1,QT,Pstar,Pinf] = schur_statespace_transformation(mf,T,R,Q,options_.qz_criterium);
elseif options_.lik_init == 4           % Start from the solution of the Riccati equation.
    [err, Pstar] = kalman_steady_state(transpose(T),R*Q*transpose(R),transpose(build_selection_matrix(mf,np,nobs)),H);
    mexErrCheck('kalman_steady_state',err);
    Pinf  = [];
    if kalman_algo~=2
        kalman_algo = 1;
    end
elseif options_.lik_init == 5            % Old diffuse Kalman filter only for the non stationary variables
    [eigenvect, eigenv] = eig(T);
    eigenv = diag(eigenv);
    nstable = length(find(abs(abs(eigenv)-1) > 1e-7));
    unstable = find(abs(abs(eigenv)-1) < 1e-7);
    V = eigenvect(:,unstable);
    indx_unstable = find(sum(abs(V),2)>1e-5);
    stable = find(sum(abs(V),2)<1e-5);
    nunit = length(eigenv) - nstable;
    Pstar = options_.Harvey_scale_factor*eye(np);
    if kalman_algo ~= 2
        kalman_algo = 1;
    end
    R_tmp = R(stable, :);
    T_tmp = T(stable,stable);
    if options_.lyapunov_fp == 1
        Pstar_tmp = lyapunov_symm(T_tmp,Q,options_.lyapunov_fixed_point_tol,options_.lyapunov_complex_threshold, 3, R_tmp);
    elseif options_.lyapunov_db == 1
        Pstar_tmp = disclyap_fast(T_tmp,R_tmp*Q*R_tmp',options_.lyapunov_doubling_tol);
    elseif options_.lyapunov_srs == 1
        Pstar_tmp = lyapunov_symm(T_tmp,Q,options_.lyapunov_fixed_point_tol,options_.lyapunov_complex_threshold, 4, R_tmp);
    else
        Pstar_tmp = lyapunov_symm(T_tmp,R_tmp*Q*R_tmp',options_.qz_criterium,options_.lyapunov_complex_threshold);
    end
    Pstar(stable, stable) = Pstar_tmp;
    Pinf  = [];
end
kalman_tol = options_.kalman_tol;
riccati_tol = options_.riccati_tol;
data1 = Y-trend;
% -----------------------------------------------------------------------------
%  4. Kalman smoother
% -----------------------------------------------------------------------------

if ~missing_value
    for i=1:smpl
        data_index{i}=(1:nobs)';
    end
end

if kalman_algo == 1 || kalman_algo == 2
    ST = T;
    R1 = R;
    Z = zeros(nobs,size(T,2));
    for i=1:nobs
        Z(i,mf(i)) = 1;
    end
end

if kalman_algo == 1 || kalman_algo == 3
    [alphahat,epsilonhat,etahat,ahat,P,aK,PK,decomp] = missing_DiffuseKalmanSmootherH1_Z(ST, ...
                                                      Z,R1,Q,H,Pinf,Pstar, ...
                                                      data1,nobs,np,smpl,data_index, ...
                                                      options_.nk,kalman_tol,options_.filter_decomposition);
    if isinf(alphahat)
        if kalman_algo == 1
            kalman_algo = 2;
        elseif kalman_algo == 3
            kalman_algo = 4;
        else
            error('This case shouldn''t happen')
        end
    end
end

if kalman_algo == 2 || kalman_algo == 4
    if estim_params_.ncn
        ST = [ zeros(nobs,nobs) Z; zeros(np,nobs) T];
        ns = size(Q,1);
        R1 = [ eye(nobs) zeros(nobs, ns); zeros(np,nobs) R];
        Q = [H zeros(nobs,ns); zeros(ns,nobs) Q]; 
        Z = [eye(nobs) zeros(nobs, np)];
        if kalman_algo == 4
            [Z,ST,R1,QT,Pstar,Pinf] = schur_statespace_transformation((1:nobs)',ST,R1,Q,options_.qz_criterium);
        end
        
    end
    [alphahat,epsilonhat,etahat,ahat,P,aK,PK,decomp] = missing_DiffuseKalmanSmootherH3_Z(ST, ...
                                                      Z,R1,Q,diag(H), ...
                                                      Pinf,Pstar,data1,nobs,np,smpl,data_index, ...
                                                      options_.nk,kalman_tol,...
                                                      options_.filter_decomposition);
end

if kalman_algo == 3 || kalman_algo == 4
    alphahat = QT*alphahat;
    ahat = QT*ahat;
    nk = options_.nk;
    for jnk=1:nk
        aK(jnk,:,:) = QT*dynare_squeeze(aK(jnk,:,:));
        for i=1:size(PK,4)
            PK(jnk,:,:,i) = QT*dynare_squeeze(PK(jnk,:,:,i))*QT';
        end
        if options_.filter_decomposition
            for i=1:size(decomp,4)
                decomp(jnk,:,:,i) = QT*dynare_squeeze(decomp(jnk,:,:,i));
            end
        end
    end
    for i=1:size(P,4)
        P(:,:,i) = QT*dynare_squeeze(P(:,:,i))*QT';
    end
end

if estim_params_.ncn && (kalman_algo == 2 || kalman_algo == 4)
    % extracting measurement errors
    % removing observed variables from the state vector
    k = nobs+(1:np);
    alphahat = alphahat(k,:);
    ahat = ahat(k,:);
    aK = aK(:,k,:,:);
    if ~isempty(PK)
        PK = PK(:,k,k,:);
    end
    if ~isempty(decomp)
        decomp = decomp(:,k,:,:);
    end
    if ~isempty(P)
        P = P(k,k,:);
    end
end