1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
function det_cond_forecast(constrained_paths, constrained_vars, options_cond_fcst, constrained_perfect_foresight)
% Computes forecasts using the schocks retrieved from a condition forecast for a deterministic model.
%
% INPUTS
% o constrained_paths [double] m*p array, where m is the number of constrained endogenous variables and p is the number of constrained periods.
% o constrained_vars [char] m*x array holding the names of the controlled endogenous variables.
% o options_cond_fcst [structure] containing the options. The fields are:
% + replic [integer] scalar, number of monte carlo simulations.
% + parameter_set [char] values of the estimated parameters:
% "posterior_mode",
% "posterior_mean",
% "posterior_median",
% "prior_mode" or
% "prior mean".
% [double] np*1 array, values of the estimated parameters.
% + controlled_varexo [char] m*x array, list of controlled exogenous variables.
% + conf_sig [double] scalar in [0,1], probability mass covered by the confidence bands.
% o constrained_perfect_foresight [double] m*1 array indicating if the endogenous variables path is perfectly foresight (1) or is a surprise (0)
%
%
% OUTPUTS
% None.
%
% SPECIAL REQUIREMENTS
% This routine has to be called after an estimation statement or an estimated_params block.
%
% REMARKS
% [1] Results are stored in a structure which is saved in a mat file called conditional_forecasts.mat.
% [2] Use the function plot_icforecast to plot the results.
% Copyright (C) 2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global options_ oo_ M_
if ~isfield(options_cond_fcst,'periods') || isempty(options_cond_fcst.periods)
options_cond_fcst.periods = 60;
end
maximum_lag = M_.maximum_lag;
maximum_lead = M_.maximum_lead;
ys = oo_.steady_state;
ny = size(ys,1);
xs = [oo_.exo_steady_state ; oo_.exo_det_steady_state];
nx = size(xs,1);
constrained_periods = size(constrained_paths,2);
n_endo_constrained = size(constrained_vars,1);
if isfield(options_cond_fcst,'controlled_varexo')
n_control_exo = size(options_cond_fcst.controlled_varexo, 1);
if n_control_exo ~= n_endo_constrained
error(['det_cond_forecast:: the number of exogenous controlled variables (' int2str(n_control_exo) ') has to be equal to the number of constrained endogenous variabes (' int2str(n_endo_constrained) ')'])
end;
else
error('det_cond_forecast:: to run a deterministic conditional forecast you have to specified the exogenous variables controlled using the option controlled_varex in forecast command');
end;
exo_names = M_.exo_names;
controlled_varexo = zeros(1,n_control_exo);
for i = 1:nx
for j=1:n_control_exo
if strcmp(exo_names(i,:), options_cond_fcst.controlled_varexo(j,:))
controlled_varexo(j) = i;
end
end
end
save_options_initval_file = options_.initval_file;
options_.initval_file = '__';
[pos_constrained_pf, junk] = find(constrained_perfect_foresight);
indx_endo_solve_pf = constrained_vars(pos_constrained_pf);
if isempty(indx_endo_solve_pf)
pf = 0;
else
pf = length(indx_endo_solve_pf);
end;
indx_endo_solve_surprise = setdiff(constrained_vars, indx_endo_solve_pf);
if isempty(indx_endo_solve_surprise)
surprise = 0;
else
surprise = length(indx_endo_solve_surprise);
end;
eps = options_.solve_tolf;
maxit = options_.simul.maxit;
% Check the solution using a unconditional forecast (soft tune)
initial_conditions = oo_.steady_state;
terminal_conditions = oo_.steady_state;
exo = oo_.exo_simul;
T = options_.periods + 2;
endo_simul = zeros(ny, T);
endo_simul(:,1) = initial_conditions;
endo_simul(:,T) = initial_conditions;
exo_simul = zeros(T, nx);
exo_simul(1,:) = [oo_.exo_steady_state' oo_.exo_det_steady_state'];
exo_simul(T,:) = [oo_.exo_steady_state' oo_.exo_det_steady_state'];
past_val = 0;
if pf && ~surprise
make_ex_;
make_y_;
oo_.endo_simul(:,1) = initial_conditions;
oo_.endo_simul(:,options_.periods + 2) = terminal_conditions;
%oo_.exo_simul = repmat(oo_.exo_steady_state, options_.periods + 2, 1);
oo_.exo_simul = exo;
simul();
endo_simul = oo_.endo_simul;
exo_simul = oo_.exo_simul;
else
for t=1:constrained_periods
make_ex_;
make_y_;
disp(['t=' int2str(t) ' constrained_periods=' int2str(constrained_periods)]);
oo_.endo_simul(:,1) = initial_conditions;
oo_.endo_simul(:,options_.periods + 2) = terminal_conditions;
time_index_constraint = maximum_lag + 1:maximum_lag + constrained_periods - t + 1;
if t <= constrained_periods
for j = controlled_varexo
if constrained_perfect_foresight(j)
for time = time_index_constraint;
oo_.exo_simul(time,j) = exo(past_val + time,j);
end;
oo_.exo_simul(time+1, j)= oo_.exo_steady_state(j);
else
oo_.exo_simul(maximum_lag + 1,j) = exo(maximum_lag + t,j);
end;
end;
else
tmp = size(oo_.exo_simul,1);
oo_.exo_simul = repmat(oo_.exo_steady_state',tmp,1);
end;
past_val = past_val + length(time_index_constraint);
simul();
initial_conditions = oo_.endo_simul(:,2);
if t < constrained_periods
endo_simul(:,t+1) = initial_conditions;
exo_simul(t+1,:) = oo_.exo_simul(2,:);
else
endo_simul(:,t + 1:t + options_cond_fcst.periods + maximum_lead) = oo_.endo_simul(:,maximum_lag + 1:maximum_lag + options_cond_fcst.periods + maximum_lead);
exo_simul(t+1,:) = oo_.exo_simul(2,:);
end;
end;
end;
oo_.endo_simul = endo_simul;
oo_.exo_simul = exo_simul;
|