File: dsge_likelihood.m

package info (click to toggle)
dynare 4.4.3-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 41,312 kB
  • ctags: 15,840
  • sloc: cpp: 77,029; ansic: 29,056; pascal: 13,241; sh: 4,811; objc: 3,061; yacc: 3,013; makefile: 1,476; lex: 1,258; python: 162; lisp: 54; xml: 8
file content (841 lines) | stat: -rw-r--r-- 32,164 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
function [fval,DLIK,Hess,exit_flag,ys,trend_coeff,info,Model,DynareOptions,BayesInfo,DynareResults] = dsge_likelihood(xparam1,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults,derivatives_info)
% Evaluates the posterior kernel of a dsge model.

%@info:
%! @deftypefn {Function File} {[@var{fval},@var{exit_flag},@var{ys},@var{trend_coeff},@var{info},@var{Model},@var{DynareOptions},@var{BayesInfo},@var{DynareResults},@var{DLIK},@var{AHess}] =} dsge_likelihood (@var{xparam1},@var{DynareDataset},@var{DynareOptions},@var{Model},@var{EstimatedParameters},@var{BayesInfo},@var{DynareResults},@var{derivatives_flag})
%! @anchor{dsge_likelihood}
%! @sp 1
%! Evaluates the posterior kernel of a dsge model.
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item xparam1
%! Vector of doubles, current values for the estimated parameters.
%! @item DynareDataset
%! Matlab's structure describing the dataset (initialized by dynare, see @ref{dataset_}).
%! @item DynareOptions
%! Matlab's structure describing the options (initialized by dynare, see @ref{options_}).
%! @item Model
%! Matlab's structure describing the Model (initialized by dynare, see @ref{M_}).
%! @item EstimatedParamemeters
%! Matlab's structure describing the estimated_parameters (initialized by dynare, see @ref{estim_params_}).
%! @item BayesInfo
%! Matlab's structure describing the priors (initialized by dynare, see @ref{bayesopt_}).
%! @item DynareResults
%! Matlab's structure gathering the results (initialized by dynare, see @ref{oo_}).
%! @item derivates_flag
%! Integer scalar, flag for analytical derivatives of the likelihood.
%! @end table
%! @sp 2
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item fval
%! Double scalar, value of (minus) the likelihood.
%! @item exit_flag
%! Integer scalar, equal to zero if the routine return with a penalty (one otherwise).
%! @item ys
%! Vector of doubles, steady state level for the endogenous variables.
%! @item trend_coeffs
%! Matrix of doubles, coefficients of the deterministic trend in the measurement equation.
%! @item info
%! Integer scalar, error code.
%! @table @ @code
%! @item info==0
%! No error.
%! @item info==1
%! The model doesn't determine the current variables uniquely.
%! @item info==2
%! MJDGGES returned an error code.
%! @item info==3
%! Blanchard & Kahn conditions are not satisfied: no stable equilibrium.
%! @item info==4
%! Blanchard & Kahn conditions are not satisfied: indeterminacy.
%! @item info==5
%! Blanchard & Kahn conditions are not satisfied: indeterminacy due to rank failure.
%! @item info==6
%! The jacobian evaluated at the deterministic steady state is complex.
%! @item info==19
%! The steadystate routine thrown an exception (inconsistent deep parameters).
%! @item info==20
%! Cannot find the steady state, info(2) contains the sum of square residuals (of the static equations).
%! @item info==21
%! The steady state is complex, info(2) contains the sum of square of imaginary parts of the steady state.
%! @item info==22
%! The steady has NaNs.
%! @item info==23
%! M_.params has been updated in the steadystate routine and has complex valued scalars.
%! @item info==24
%! M_.params has been updated in the steadystate routine and has some NaNs.
%! @item info==30
%! Ergodic variance can't be computed.
%! @item info==41
%! At least one parameter is violating a lower bound condition.
%! @item info==42
%! At least one parameter is violating an upper bound condition.
%! @item info==43
%! The covariance matrix of the structural innovations is not positive definite.
%! @item info==44
%! The covariance matrix of the measurement errors is not positive definite.
%! @item info==45
%! Likelihood is not a number (NaN).
%! @item info==46
%! Likelihood is a complex valued number.
%! @item info==47
%! Posterior kernel is not a number (logged prior density is NaN)
%! @item info==48
%! Posterior kernel is a complex valued number (logged prior density is complex).
%! @end table
%! @item Model
%! Matlab's structure describing the model (initialized by dynare, see @ref{M_}).
%! @item DynareOptions
%! Matlab's structure describing the options (initialized by dynare, see @ref{options_}).
%! @item BayesInfo
%! Matlab's structure describing the priors (initialized by dynare, see @ref{bayesopt_}).
%! @item DynareResults
%! Matlab's structure gathering the results (initialized by dynare, see @ref{oo_}).
%! @item DLIK
%! Vector of doubles, score of the likelihood.
%! @item AHess
%! Matrix of doubles, asymptotic hessian matrix.
%! @end table
%! @sp 2
%! @strong{This function is called by:}
%! @sp 1
%! @ref{dynare_estimation_1}, @ref{mode_check}
%! @sp 2
%! @strong{This function calls:}
%! @sp 1
%! @ref{dynare_resolve}, @ref{lyapunov_symm}, @ref{schur_statespace_transformation}, @ref{kalman_filter_d}, @ref{missing_observations_kalman_filter_d}, @ref{univariate_kalman_filter_d}, @ref{kalman_steady_state}, @ref{getH}, @ref{kalman_filter}, @ref{score}, @ref{AHessian}, @ref{missing_observations_kalman_filter}, @ref{univariate_kalman_filter}, @ref{priordens}
%! @end deftypefn
%@eod:

% Copyright (C) 2004-2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

% AUTHOR(S) stephane DOT adjemian AT univ DASH lemans DOT FR

global objective_function_penalty_base

% Initialization of the returned variables and others...
fval        = [];
ys          = [];
trend_coeff = [];
exit_flag   = 1;
info        = 0;
singularity_flag = 0;
DLIK        = [];
Hess       = [];

if DynareOptions.estimation_dll
    [fval,exit_flag,ys,trend_coeff,info,params,H,Q] ...
        = logposterior(xparam1,DynareDataset, DynareOptions,Model, ...
                          EstimatedParameters,BayesInfo,DynareResults);
    mexErrCheck('logposterior', exit_flag);
    Model.params = params;
    if ~isequal(Model.H,0)
        Model.H = H;
    end
    Model.Sigma_e = Q;
    DynareResults.dr.ys = ys;
    return
end

% Set flag related to analytical derivatives.
analytic_derivation = DynareOptions.analytic_derivation;

if analytic_derivation && DynareOptions.loglinear
    error('The analytic_derivation and loglinear options are not compatible')
end

if nargout==1,
    analytic_derivation=0;
end

if analytic_derivation,
    kron_flag=DynareOptions.analytic_derivation_mode;
end

%------------------------------------------------------------------------------
% 1. Get the structural parameters & define penalties
%------------------------------------------------------------------------------

% Return, with endogenous penalty, if some parameters are smaller than the lower bound of the prior domain.
if ~isequal(DynareOptions.mode_compute,1) && any(xparam1<BayesInfo.lb)
    k = find(xparam1<BayesInfo.lb);
    fval = objective_function_penalty_base+sum((BayesInfo.lb(k)-xparam1(k)).^2);
    exit_flag = 0;
    info = 41;
    if analytic_derivation,
        DLIK=ones(length(xparam1),1);
    end
    return
end

% Return, with endogenous penalty, if some parameters are greater than the upper bound of the prior domain.
if ~isequal(DynareOptions.mode_compute,1) && any(xparam1>BayesInfo.ub)
    k = find(xparam1>BayesInfo.ub);
    fval = objective_function_penalty_base+sum((xparam1(k)-BayesInfo.ub(k)).^2);
    exit_flag = 0;
    info = 42;
    if analytic_derivation,
        DLIK=ones(length(xparam1),1);
    end
    return
end

% Get the diagonal elements of the covariance matrices for the structural innovations (Q) and the measurement error (H).
Model = set_all_parameters(xparam1,EstimatedParameters,Model);

Q = Model.Sigma_e;
H = Model.H;

% Test if Q is positive definite.
if ~issquare(Q) || EstimatedParameters.ncx || isfield(EstimatedParameters,'calibrated_covariances')
    [Q_is_positive_definite, penalty] = ispd(Q);
    if ~Q_is_positive_definite
        fval = objective_function_penalty_base+penalty;
        exit_flag = 0;
        info = 43;
        return
    end
    if isfield(EstimatedParameters,'calibrated_covariances')
        correct_flag=check_consistency_covariances(Q);
        if ~correct_flag
            penalty = sum(Q(EstimatedParameters.calibrated_covariances.position).^2);
            fval = objective_function_penalty_base+penalty;
            exit_flag = 0;
            info = 71;
            return
        end
    end
end

% Test if H is positive definite.
if ~issquare(H) || EstimatedParameters.ncn || isfield(EstimatedParameters,'calibrated_covariances_ME')
    [H_is_positive_definite, penalty] = ispd(H);
    if ~H_is_positive_definite
        fval = objective_function_penalty_base+penalty;
        exit_flag = 0;
        info = 44;
        return
    end
    if isfield(EstimatedParameters,'calibrated_covariances_ME')
        correct_flag=check_consistency_covariances(H);
        if ~correct_flag
            penalty = sum(H(EstimatedParameters.calibrated_covariances_ME.position).^2);
            fval = objective_function_penalty_base+penalty;
            exit_flag = 0;
            info = 72;
            return
        end
    end
end


%------------------------------------------------------------------------------
% 2. call model setup & reduction program
%------------------------------------------------------------------------------

% Linearize the model around the deterministic sdteadystate and extract the matrices of the state equation (T and R).
[T,R,SteadyState,info,Model,DynareOptions,DynareResults] = dynare_resolve(Model,DynareOptions,DynareResults,'restrict');

% Return, with endogenous penalty when possible, if dynare_resolve issues an error code (defined in resol).
if info(1) == 1 || info(1) == 2 || info(1) == 5 || info(1) == 7 || info(1) ...
            == 8 || info(1) == 22 || info(1) == 24 || info(1) == 19 || info(1) == 25
    fval = objective_function_penalty_base+1;
    info = info(1);
    exit_flag = 0;
    if analytic_derivation,
        DLIK=ones(length(xparam1),1);
    end
    return
elseif info(1) == 3 || info(1) == 4 || info(1)==6 || info(1) == 20 || info(1) == 21  || info(1) == 23
    fval = objective_function_penalty_base+info(2);
    info = info(1);
    exit_flag = 0;
    if analytic_derivation,
        DLIK=ones(length(xparam1),1);
    end
    return
end

% check endogenous prior restrictions
info=endogenous_prior_restrictions(T,R,Model,DynareOptions,DynareResults);
if info(1),
    fval = objective_function_penalty_base+info(2);
    info = info(1);
    exit_flag = 0;
    if analytic_derivation,
        DLIK=ones(length(xparam1),1);
    end
    return
end
%

% Define a vector of indices for the observed variables. Is this really usefull?...
BayesInfo.mf = BayesInfo.mf1;

% Define the constant vector of the measurement equation.
if DynareOptions.noconstant
    constant = zeros(DynareDataset.info.nvobs,1);
else
    if DynareOptions.loglinear
        constant = log(SteadyState(BayesInfo.mfys));
    else
        constant = SteadyState(BayesInfo.mfys);
    end
end

% Define the deterministic linear trend of the measurement equation.
if BayesInfo.with_trend
    trend_coeff = zeros(DynareDataset.info.nvobs,1);
    t = DynareOptions.trend_coeffs;
    for i=1:length(t)
        if ~isempty(t{i})
            trend_coeff(i) = evalin('base',t{i});
        end
    end
    trend = repmat(constant,1,DynareDataset.info.ntobs)+trend_coeff*[1:DynareDataset.info.ntobs];
else
    trend = repmat(constant,1,DynareDataset.info.ntobs);
end

% Get needed informations for kalman filter routines.
start = DynareOptions.presample+1;
Z = BayesInfo.mf; % old mf
no_missing_data_flag = ~DynareDataset.missing.state;
mm = length(T); % old np
pp = DynareDataset.info.nvobs;
rr = length(Q);
kalman_tol = DynareOptions.kalman_tol;
riccati_tol = DynareOptions.riccati_tol;
Y   = DynareDataset.data-trend;

%------------------------------------------------------------------------------
% 3. Initial condition of the Kalman filter
%------------------------------------------------------------------------------
kalman_algo = DynareOptions.kalman_algo;

% resetting measurement errors covariance matrix for univariate filters
if (kalman_algo == 2) || (kalman_algo == 4)
    if isequal(H,0)
        H = zeros(pp,1);
        mmm = mm;
    else
        if all(all(abs(H-diag(diag(H)))<1e-14))% ie, the covariance matrix is diagonal...
            H = diag(H);
            mmm = mm;
        else
            Z = [Z, eye(pp)];
            T = blkdiag(T,zeros(pp));
            Q = blkdiag(Q,H);
            R = blkdiag(R,eye(pp));
            Pstar = blkdiag(Pstar,H);
            Pinf  = blckdiag(Pinf,zeros(pp));
            H = zeros(pp,1);
            mmm   = mm+pp;
        end
    end
end


diffuse_periods = 0;
correlated_errors_have_been_checked = 0;
singular_diffuse_filter = 0;
switch DynareOptions.lik_init
  case 1% Standard initialization with the steady state of the state equation.
    if kalman_algo~=2
        % Use standard kalman filter except if the univariate filter is explicitely choosen.
        kalman_algo = 1;
    end
    if DynareOptions.lyapunov_fp == 1
        Pstar = lyapunov_symm(T,Q,DynareOptions.lyapunov_fixed_point_tol,DynareOptions.lyapunov_complex_threshold, 3, R);
    elseif DynareOptions.lyapunov_db == 1
        Pstar = disclyap_fast(T,R*Q*R',DynareOptions.lyapunov_doubling_tol);
    elseif DynareOptions.lyapunov_srs == 1
        Pstar = lyapunov_symm(T,Q,DynareOptions.lyapunov_fixed_point_tol,DynareOptions.lyapunov_complex_threshold, 4, R);
    else
        Pstar = lyapunov_symm(T,R*Q*R',DynareOptions.qz_criterium,DynareOptions.lyapunov_complex_threshold);
    end;
    Pinf  = [];
    a     = zeros(mm,1);
    Zflag = 0;
  case 2% Initialization with large numbers on the diagonal of the covariance matrix if the states (for non stationary models).
    if kalman_algo ~= 2
        % Use standard kalman filter except if the univariate filter is explicitely choosen.
        kalman_algo = 1;
    end
    Pstar = DynareOptions.Harvey_scale_factor*eye(mm);
    Pinf  = [];
    a     = zeros(mm,1);
    Zflag = 0;
  case 3% Diffuse Kalman filter (Durbin and Koopman)
        % Use standard kalman filter except if the univariate filter is explicitely choosen.
    if kalman_algo == 0
        kalman_algo = 3;
    elseif ~((kalman_algo == 3) || (kalman_algo == 4))
            error(['diffuse filter: options_.kalman_algo can only be equal ' ...
                   'to 0 (default), 3 or 4'])
    end
    [Z,T,R,QT,Pstar,Pinf] = schur_statespace_transformation(Z,T,R,Q,DynareOptions.qz_criterium);
    Zflag = 1;
    % Run diffuse kalman filter on first periods.
    if (kalman_algo==3)
        % Multivariate Diffuse Kalman Filter
        if no_missing_data_flag
            [dLIK,dlik,a,Pstar] = kalman_filter_d(Y, 1, size(Y,2), ...
                                                       zeros(mm,1), Pinf, Pstar, ...
                                                       kalman_tol, riccati_tol, DynareOptions.presample, ...
                                                       T,R,Q,H,Z,mm,pp,rr);
        else
            [dLIK,dlik,a,Pstar] = missing_observations_kalman_filter_d(DynareDataset.missing.aindex,DynareDataset.missing.number_of_observations,DynareDataset.missing.no_more_missing_observations, ...
                                                              Y, 1, size(Y,2), ...
                                                              zeros(mm,1), Pinf, Pstar, ...
                                                              kalman_tol, riccati_tol, DynareOptions.presample, ...
                                                              T,R,Q,H,Z,mm,pp,rr);
        end
        diffuse_periods = length(dlik);
        if isinf(dLIK)
            % Go to univariate diffuse filter if singularity problem.
            singular_diffuse_filter = 1;
        end
    end
    if singular_diffuse_filter || (kalman_algo==4)
        % Univariate Diffuse Kalman Filter
        if isequal(H,0)
            H1 = zeros(pp,1);
            mmm = mm;
        else
            if all(all(abs(H-diag(diag(H)))<1e-14))% ie, the covariance matrix is diagonal...
                H1 = diag(H);
                mmm = mm;
            else
                Z = [Z, eye(pp)];
                T = blkdiag(T,zeros(pp));
                Q = blkdiag(Q,H);
                R = blkdiag(R,eye(pp));
                Pstar = blkdiag(Pstar,H);
                Pinf  = blckdiag(Pinf,zeros(pp));
                H1 = zeros(pp,1);
                mmm   = mm+pp;
            end
        end
        % no need to test again for correlation elements
        correlated_errors_have_been_checked = 1;

        [dLIK,dlik,a,Pstar] = univariate_kalman_filter_d(DynareDataset.missing.aindex,...
                                                        DynareDataset.missing.number_of_observations,...
                                                        DynareDataset.missing.no_more_missing_observations, ...
                                                        Y, 1, size(Y,2), ...
                                                        zeros(mmm,1), Pinf, Pstar, ...
                                                        kalman_tol, riccati_tol, DynareOptions.presample, ...
                                                        T,R,Q,H1,Z,mmm,pp,rr);
        diffuse_periods = length(dlik);
    end
    if isnan(dLIK),
        info = 45;
        fval = objective_function_penalty_base + 100;
        exit_flag = 0;
        return
    end
    
  case 4% Start from the solution of the Riccati equation.
    if kalman_algo ~= 2
        kalman_algo = 1;
    end
    if isequal(H,0)
        [err,Pstar] = kalman_steady_state(transpose(T),R*Q*transpose(R),transpose(build_selection_matrix(Z,mm,length(Z))));
    else
        [err,Pstar] = kalman_steady_state(transpose(T),R*Q*transpose(R),transpose(build_selection_matrix(Z,mm,length(Z))),H);
    end
    if err
        disp(['dsge_likelihood:: I am not able to solve the Riccati equation, so I switch to lik_init=1!']);
        DynareOptions.lik_init = 1;
        Pstar = lyapunov_symm(T,R*Q*R',DynareOptions.qz_criterium,DynareOptions.lyapunov_complex_threshold);
    end
    Pinf  = [];
    a = zeros(mm,1);
    Zflag = 0;
  case options_.lik_init == 5            % Old diffuse Kalman filter only for the non stationary variables
    [eigenvect, eigenv] = eig(T);
    eigenv = diag(eigenv);
    nstable = length(find(abs(abs(eigenv)-1) > 1e-7));
    unstable = find(abs(abs(eigenv)-1) < 1e-7);
    V = eigenvect(:,unstable);
    indx_unstable = find(sum(abs(V),2)>1e-5);
    stable = find(sum(abs(V),2)<1e-5);
    nunit = length(eigenv) - nstable;
    Pstar = options_.Harvey_scale_factor*eye(np);
    if kalman_algo ~= 2
        kalman_algo = 1;
    end
    R_tmp = R(stable, :);
    T_tmp = T(stable,stable);
    if DynareOptions.lyapunov_fp == 1
        Pstar_tmp = lyapunov_symm(T_tmp,Q,DynareOptions.lyapunov_fixed_point_tol,DynareOptions.lyapunov_complex_threshold, 3, R_tmp);
    elseif DynareOptions.lyapunov_db == 1
        Pstar_tmp = disclyap_fast(T_tmp,R_tmp*Q*R_tmp',DynareOptions.lyapunov_doubling_tol);
    elseif DynareOptions.lyapunov_srs == 1
        Pstar_tmp = lyapunov_symm(T_tmp,Q,DynareOptions.lyapunov_fixed_point_tol,DynareOptions.lyapunov_complex_threshold, 4, R_tmp);
    else
        Pstar_tmp = lyapunov_symm(T_tmp,R_tmp*Q*R_tmp',DynareOptions.qz_criterium,DynareOptions.lyapunov_complex_threshold);
    end    
    Pstar(stable, stable) = Pstar_tmp;
    Pinf  = [];
  otherwise
    error('dsge_likelihood:: Unknown initialization approach for the Kalman filter!')
end

if analytic_derivation,
    offset = EstimatedParameters.nvx;
    offset = offset+EstimatedParameters.nvn;
    offset = offset+EstimatedParameters.ncx;
    offset = offset+EstimatedParameters.ncn;

    no_DLIK = 0;
    full_Hess = analytic_derivation==2;
    asy_Hess = analytic_derivation==-2;
    outer_product_gradient = analytic_derivation==-1;
    if asy_Hess,
        analytic_derivation=1;
    end
    if outer_product_gradient,
        analytic_derivation=1;
    end
    DLIK = [];
    AHess = [];
    iv = DynareResults.dr.restrict_var_list;
    if nargin<8 || isempty(derivatives_info)
        [A,B,nou,nou,Model,DynareOptions,DynareResults] = dynare_resolve(Model,DynareOptions,DynareResults);
        if ~isempty(EstimatedParameters.var_exo)
            indexo=EstimatedParameters.var_exo(:,1);
        else
            indexo=[];
        end
        if ~isempty(EstimatedParameters.param_vals)
            indparam=EstimatedParameters.param_vals(:,1);
        else
            indparam=[];
        end

        if full_Hess,
            [dum, DT, DOm, DYss, dum2, D2T, D2Om, D2Yss] = getH(A, B, Model,DynareResults,DynareOptions,kron_flag,indparam,indexo,iv);
            clear dum dum2;
        else
            [dum, DT, DOm, DYss] = getH(A, B, Model,DynareResults,DynareOptions,kron_flag,indparam,indexo,iv);
        end
    else
        DT = derivatives_info.DT(iv,iv,:);
        DOm = derivatives_info.DOm(iv,iv,:);
        DYss = derivatives_info.DYss(iv,:);
        if isfield(derivatives_info,'full_Hess'),
            full_Hess = derivatives_info.full_Hess;
        end
        if full_Hess,
        D2T = derivatives_info.D2T;
        D2Om = derivatives_info.D2Om;
        D2Yss = derivatives_info.D2Yss;
        end
        if isfield(derivatives_info,'no_DLIK'),
            no_DLIK = derivatives_info.no_DLIK;
        end
        clear('derivatives_info');
    end
    DYss = [zeros(size(DYss,1),offset) DYss];
    DH=zeros([length(H),length(H),length(xparam1)]);
    DQ=zeros([size(Q),length(xparam1)]);
    DP=zeros([size(T),length(xparam1)]);
    if full_Hess,
        for j=1:size(D2Yss,1),
        tmp(j,:,:) = blkdiag(zeros(offset,offset), squeeze(D2Yss(j,:,:)));
        end
        D2Yss = tmp;
        D2H=sparse(size(D2Om,1),size(D2Om,2)); %zeros([size(H),length(xparam1),length(xparam1)]);
        D2P=sparse(size(D2Om,1),size(D2Om,2)); %zeros([size(T),length(xparam1),length(xparam1)]);
        jcount=0;
    end
    if DynareOptions.lik_init==1,
    for i=1:EstimatedParameters.nvx
        k =EstimatedParameters.var_exo(i,1);
        DQ(k,k,i) = 2*sqrt(Q(k,k));
        dum =  lyapunov_symm(T,DOm(:,:,i),DynareOptions.qz_criterium,DynareOptions.lyapunov_complex_threshold);
%         kk = find(abs(dum) < 1e-12);
%         dum(kk) = 0;
        DP(:,:,i)=dum;
        if full_Hess
        for j=1:i,
            jcount=jcount+1;
            dum =  lyapunov_symm(T,dyn_unvech(D2Om(:,jcount)),DynareOptions.qz_criterium,DynareOptions.lyapunov_complex_threshold);
%             kk = (abs(dum) < 1e-12);
%             dum(kk) = 0;
            D2P(:,jcount)=dyn_vech(dum);
%             D2P(:,:,j,i)=dum;
        end
        end
    end
    end
    offset = EstimatedParameters.nvx;
    for i=1:EstimatedParameters.nvn
        k = EstimatedParameters.var_endo(i,1);
        DH(k,k,i+offset) = 2*sqrt(H(k,k));
        if full_Hess
        D2H(k,k,i+offset,i+offset) = 2;
        end
    end
    offset = offset + EstimatedParameters.nvn;
    if DynareOptions.lik_init==1,
    for j=1:EstimatedParameters.np
        dum =  lyapunov_symm(T,DT(:,:,j+offset)*Pstar*T'+T*Pstar*DT(:,:,j+offset)'+DOm(:,:,j+offset),DynareOptions.qz_criterium,DynareOptions.lyapunov_complex_threshold);
%         kk = find(abs(dum) < 1e-12);
%         dum(kk) = 0;
        DP(:,:,j+offset)=dum;
        if full_Hess
        DTj = DT(:,:,j+offset);
        DPj = dum;
        for i=1:j+offset,
            jcount=jcount+1;
            DTi = DT(:,:,i);
            DPi = DP(:,:,i);
            D2Tij = reshape(D2T(:,jcount),size(T));
            D2Omij = dyn_unvech(D2Om(:,jcount));
            tmp = D2Tij*Pstar*T' + T*Pstar*D2Tij' + DTi*DPj*T' + DTj*DPi*T' + T*DPj*DTi' + T*DPi*DTj' + DTi*Pstar*DTj' + DTj*Pstar*DTi' + D2Omij;
            dum = lyapunov_symm(T,tmp,DynareOptions.qz_criterium,DynareOptions.lyapunov_complex_threshold);
%             dum(abs(dum)<1.e-12) = 0;
            D2P(:,jcount) = dyn_vech(dum);
%             D2P(:,:,j+offset,i) = dum;
        end
        end
    end
    end
    if analytic_derivation==1,
        analytic_deriv_info={analytic_derivation,DT,DYss,DOm,DH,DP,asy_Hess};
    else
        analytic_deriv_info={analytic_derivation,DT,DYss,DOm,DH,DP,D2T,D2Yss,D2Om,D2H,D2P};
        clear DT DYss DOm DH DP D2T D2Yss D2Om D2H D2P,
    end
else
    analytic_deriv_info={0};
end

%------------------------------------------------------------------------------
% 4. Likelihood evaluation
%------------------------------------------------------------------------------

if ((kalman_algo==1) || (kalman_algo==3))% Multivariate Kalman Filter
    if no_missing_data_flag
        if DynareOptions.block
            [err, LIK] = block_kalman_filter(T,R,Q,H,Pstar,Y,start,Z,kalman_tol,riccati_tol, Model.nz_state_var, Model.n_diag, Model.nobs_non_statevar);
            mexErrCheck('block_kalman_filter', err);
        else
            [LIK,lik] = kalman_filter(Y,diffuse_periods+1,size(Y,2), ...
                                a,Pstar, ...
                                kalman_tol, riccati_tol, ...
                                DynareOptions.presample, ...
                                T,Q,R,H,Z,mm,pp,rr,Zflag,diffuse_periods, ...
                                analytic_deriv_info{:});

        end
    else
        if 0 %DynareOptions.block
            [err, LIK,lik] = block_kalman_filter(DynareDataset.missing.aindex,DynareDataset.missing.number_of_observations,DynareDataset.missing.no_more_missing_observations,...
                                                                 T,R,Q,H,Pstar,Y,start,Z,kalman_tol,riccati_tol, Model.nz_state_var, Model.n_diag, Model.nobs_non_statevar);
        else
            [LIK,lik] = missing_observations_kalman_filter(DynareDataset.missing.aindex,DynareDataset.missing.number_of_observations,DynareDataset.missing.no_more_missing_observations,Y,diffuse_periods+1,size(Y,2), ...
                                               a, Pstar, ...
                                               kalman_tol, DynareOptions.riccati_tol, ...
                                               DynareOptions.presample, ...
                                               T,Q,R,H,Z,mm,pp,rr,Zflag,diffuse_periods);
        end
    end
    if analytic_derivation,
        LIK1=LIK;
        LIK=LIK1{1};
        lik1=lik;
        lik=lik1{1};
    end
    if isinf(LIK)
        if DynareOptions.use_univariate_filters_if_singularity_is_detected
            if kalman_algo == 1
                kalman_algo = 2;
            else
                kalman_algo = 4;
            end
        else
            if isinf(LIK)
                info = 66;
                fval = objective_function_penalty_base+1;
                exit_flag = 0;
                return
            end
        end
    else
        if DynareOptions.lik_init==3
            LIK = LIK + dLIK;
            if analytic_derivation==0 && nargout==2,
                lik = [dlik; lik];
            end
        end
    end
end

if (kalman_algo==2) || (kalman_algo==4)
    % Univariate Kalman Filter
    % resetting measurement error covariance matrix when necessary                                                           %
    if ~correlated_errors_have_been_checked
        if isequal(H,0)
            H1 = zeros(pp,1);
            mmm = mm;
            if analytic_derivation,
                DH = zeros(pp,length(xparam1));
            end
        else
            if all(all(abs(H-diag(diag(H)))<1e-14))% ie, the covariance matrix is diagonal...
                H1 = diag(H);
                mmm = mm;
                clear tmp
                if analytic_derivation,
                    for j=1:pp,
                        tmp(j,:)=DH(j,j,:);
                    end
                    DH=tmp;
                end
            else
                Z = [Z, eye(pp)];
                T = blkdiag(T,zeros(pp));
                Q = blkdiag(Q,H);
                R = blkdiag(R,eye(pp));
                Pstar = blkdiag(Pstar,H);
                Pinf  = blckdiag(Pinf,zeros(pp));
                H1 = zeros(pp,1);
                mmm   = mm+pp;
            end
        end
        if analytic_derivation,
            analytic_deriv_info{5}=DH;
        end
    end

    [LIK, lik] = univariate_kalman_filter(DynareDataset.missing.aindex,DynareDataset.missing.number_of_observations,DynareDataset.missing.no_more_missing_observations,Y,diffuse_periods+1,size(Y,2), ...
                                       a,Pstar, ...
                                       DynareOptions.kalman_tol, ...
                                       DynareOptions.riccati_tol, ...
                                       DynareOptions.presample, ...
                                       T,Q,R,H1,Z,mmm,pp,rr,Zflag,diffuse_periods,analytic_deriv_info{:});
    if analytic_derivation,
        LIK1=LIK;
        LIK=LIK1{1};
        lik1=lik;
        lik=lik1{1};
    end
    if DynareOptions.lik_init==3
        LIK = LIK+dLIK;
        if analytic_derivation==0 && nargout==2,
            lik = [dlik; lik];
        end
    end
end

if analytic_derivation
    if no_DLIK==0
        DLIK = LIK1{2};
        %                 [DLIK] = score(T,R,Q,H,Pstar,Y,DT,DYss,DOm,DH,DP,start,Z,kalman_tol,riccati_tol);
    end
    if full_Hess ,
        Hess = -LIK1{3};
        %                     [Hess, DLL] = get_Hessian(T,R,Q,H,Pstar,Y,DT,DYss,DOm,DH,DP,D2T,D2Yss,D2Om,D2H,D2P,start,Z,kalman_tol,riccati_tol);
        %                     Hess0 = getHessian(Y,T,DT,D2T, R*Q*transpose(R),DOm,D2Om,Z,DYss,D2Yss);
    end
    if asy_Hess,
%         if ~((kalman_algo==2) || (kalman_algo==4)),
%             [Hess] = AHessian(T,R,Q,H,Pstar,Y,DT,DYss,DOm,DH,DP,start,Z,kalman_tol,riccati_tol);
%         else
        Hess = LIK1{3};
%         end
    end
end

if isnan(LIK)
    info = 45;
    fval = objective_function_penalty_base + 100;
    exit_flag = 0;
    return
end

if imag(LIK)~=0
    info = 46;
    fval = objective_function_penalty_base + 100;
    exit_flag = 0;
    return
end

likelihood = LIK;

% ------------------------------------------------------------------------------
% 5. Adds prior if necessary
% ------------------------------------------------------------------------------
if analytic_derivation
    if full_Hess,
        [lnprior, dlnprior, d2lnprior] = priordens(xparam1,BayesInfo.pshape,BayesInfo.p6,BayesInfo.p7,BayesInfo.p3,BayesInfo.p4);
        Hess = Hess - d2lnprior;
    else
        [lnprior, dlnprior] = priordens(xparam1,BayesInfo.pshape,BayesInfo.p6,BayesInfo.p7,BayesInfo.p3,BayesInfo.p4);
    end
    if no_DLIK==0
        DLIK = DLIK - dlnprior';
    end
    if outer_product_gradient,
        dlik = lik1{2};
        dlik=[- dlnprior; dlik(start:end,:)];
        Hess = dlik'*dlik;
    end
else
    lnprior = priordens(xparam1,BayesInfo.pshape,BayesInfo.p6,BayesInfo.p7,BayesInfo.p3,BayesInfo.p4);
end
if DynareOptions.endogenous_prior==1
  if DynareOptions.lik_init==2 || DynareOptions.lik_init==3
    error('Endogenous prior not supported with non-stationary models')
  else
    [lnpriormom]  = endogenous_prior(Y,Pstar,BayesInfo,H);
    fval    = (likelihood-lnprior-lnpriormom);
  end
else
  fval    = (likelihood-lnprior);
end

if isnan(fval)
    info = 47;
    fval = objective_function_penalty_base + 100;
    exit_flag = 0;
    return
end

if imag(fval)~=0
    info = 48;
    fval = objective_function_penalty_base + 100;
    exit_flag = 0;
    return
end

% Update DynareOptions.kalman_algo.
DynareOptions.kalman_algo = kalman_algo;

if analytic_derivation==0 && nargout==2,
    lik=lik(start:end,:);
    DLIK=[-lnprior; lik(:)];
end