File: PCL_Part_info_moments.m

package info (click to toggle)
dynare 4.4.3-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 41,312 kB
  • ctags: 15,840
  • sloc: cpp: 77,029; ansic: 29,056; pascal: 13,241; sh: 4,811; objc: 3,061; yacc: 3,013; makefile: 1,476; lex: 1,258; python: 162; lisp: 54; xml: 8
file content (188 lines) | stat: -rw-r--r-- 5,549 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
function  AutoCOR_YRk=PCL_Part_info_moments( H, varobs, dr,ivar)
% sets up parameters and calls part-info kalman filter
% developed by G Perendia, July 2006 for implementation from notes by Prof. Joe Pearlman to 
% suit partial information RE solution in accordance with, and based on, the 
% Pearlman, Currie and Levine 1986 solution.
% 22/10/06 - Version 2 for new Riccati with 4 params instead 5 

% Copyright (C) 2006-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

% Recall that the state space is given by the 
% predetermined variables s(t-1), x(t-1) 
% and the jump variables x(t).
% The jump variables have dimension NETA

global M_ options_ oo_
warning_old_state = warning;
warning off

OBS = [];
for i=1:rows(varobs)
    OBS = [OBS find(strcmp(deblank(varobs(i,:)), cellstr(M_.endo_names))) ];
end
NOBS = length(OBS);

G1=dr.PI_ghx;
impact=dr.PI_ghu;
nmat=dr.PI_nmat;
CC=dr.PI_CC;
NX=M_.exo_nbr; % no of exogenous varexo shock variables.
FL_RANK=dr.PI_FL_RANK;
NY=M_.endo_nbr;
LL = sparse(1:NOBS,OBS,ones(NOBS,1),NY,NY);

if exist( 'irfpers')==1
    if ~isempty(irfpers)
        if irfpers<=0, irfpers=20, end;
    else
        irfpers=20;
    end
else
    irfpers=20;
end      

ss=size(G1,1);

pd=ss-size(nmat,1);
SDX=M_.Sigma_e^0.5; % =SD,not V-COV, of Exog shocks or M_.Sigma_e^0.5 num_exog x num_exog matrix
if isempty(H)
    H=M_.H;
end
VV=H; % V-COV of observation errors.
MM=impact*SDX; % R*(Q^0.5) in standard KF notation
               % observation vector indices
               % mapping to endogenous variables.

L1=LL*dr.PI_TT1;
L2=LL*dr.PI_TT2;

MM1=MM(1:ss-FL_RANK,:);
U11=MM1*MM1';
% SDX
U22=0;
% determine K1 and K2 observation mapping matrices
% This uses the fact that measurements are given by L1*s(t)+L2*x(t)
% and s(t) is expressed in the dynamics as
% H1*eps(t)+G11*s(t-1)+G12*x(t-1)+G13*x(t).  
% Thus the observations o(t) can be written in the form
% o(t)=K1*[eps(t)' s(t-1)' x(t-1)']' + K2*x(t) where
% K1=[L1*H1 L1*G11 L1*G12] K2=L1*G13+L2

G12=G1(NX+1:ss-2*FL_RANK,:);
KK1=L1*G12;
K1=KK1(:,1:ss-FL_RANK);
K2=KK1(:,ss-FL_RANK+1:ss)+L2;

%pre calculate time-invariant factors
A11=G1(1:pd,1:pd);
A22=G1(pd+1:end, pd+1:end);
A12=G1(1:pd, pd+1:end);
A21=G1(pd+1:end,1:pd);
Lambda= nmat*A12+A22;
I_L=inv(Lambda);
BB=A12*inv(A22);
FF=K2*inv(A22);       
QQ=BB*U22*BB' + U11;        
UFT=U22*FF';
% kf_param structure:
AA=A11-BB*A21;
CCCC=A11-A12*nmat; % F in new notation
DD=K1-FF*A21; % H in new notation
EE=K1-K2*nmat;
RR=FF*UFT+VV;
if ~any(RR) 
    % if zero add some dummy measurement err. variance-covariances 
    % with diagonals 0.000001. This would not be needed if we used
    % the slow solver, or the generalised eigenvalue approach, 
    % but these are both slower.
    RR=eye(size(RR,1))*1.0e-6;
end
SS=BB*UFT;
VKLUFT=VV+K2*I_L*UFT;
ALUFT=A12*I_L*UFT;
FULKV=FF*U22*I_L'*K2'+VV;
FUBT=FF*U22*BB';
nmat=nmat;
% initialise pshat
AQDS=AA*QQ*DD'+SS;
DQDR=DD*QQ*DD'+RR;
I_DQDR=inv(DQDR);
AQDQ=AQDS*I_DQDR;
ff=AA-AQDQ*DD;
hh=AA*QQ*AA'-AQDQ*AQDS';%*(DD*QQ*AA'+SS');
rr=DD*QQ*DD'+RR;
ZSIG0=disc_riccati_fast(ff,DD,rr,hh);
PP=ZSIG0 +QQ;

exo_names=M_.exo_names(M_.exo_names_orig_ord,:);

DPDR=DD*PP*DD'+RR;
I_DPDR=inv(DPDR);
PDIDPDRD=PP*DD'*I_DPDR*DD;
MSIG=disclyap_fast(CCCC, CCCC*PDIDPDRD*PP*CCCC', options_.lyapunov_doubling_tol);

COV_P=[ PP, PP; PP, PP+MSIG]; % P0

dr.PI_GG=[CCCC (AA-CCCC)*(eye(ss-FL_RANK)-PDIDPDRD); zeros(ss-FL_RANK) AA*(eye(ss-FL_RANK)-PDIDPDRD)];

GAM= [ AA*(eye(ss-FL_RANK)-PDIDPDRD) zeros(ss-FL_RANK); (AA-CCCC)*(eye(ss-FL_RANK)-PDIDPDRD),  CCCC];

VV = [  dr.PI_TT1 dr.PI_TT2];
nn=size(VV,1);
COV_OMEGA= COV_P( end-nn+1:end, end-nn+1:end);
COV_YR0= VV*COV_OMEGA*VV';
diagCovYR0=diag(COV_YR0);
labels = deblank(M_.endo_names(ivar,:));

if options_.nomoments == 0
    z = [ sqrt(diagCovYR0(ivar)) diagCovYR0(ivar) ]; 
    title='THEORETICAL MOMENTS';
    headers=char('VARIABLE','STD. DEV.','VARIANCE');
    dyntable(title,headers,labels,z,size(labels,2)+2,16,10);
end
if options_.nocorr == 0
    diagSqrtCovYR0=sqrt(diagCovYR0);
    DELTA=inv(diag(diagSqrtCovYR0));
    COR_Y= DELTA*COV_YR0*DELTA;
    title = 'MATRIX OF CORRELATION';
    headers = char('VARIABLE',M_.endo_names(ivar,:));
    dyntable(title,headers,labels,COR_Y(ivar,ivar),size(labels,2)+2,8,4);
else
    COR_Y=[];
end

ar = options_.ar;
if ar > 0
    COV_YRk= zeros(nn,ar); 
    AutoCOR_YRk= zeros(nn,ar); 
    for k=1:ar;
        COV_P=GAM*COV_P;
        COV_OMEGA= COV_P( end-nn+1:end, end-nn+1:end);
        COV_YRk = VV*COV_OMEGA*VV';
        AutoCOR_YRkMAT=DELTA*COV_YRk*DELTA;
        oo_.autocorr{k}=AutoCOR_YRkMAT(ivar,ivar);
        AutoCOR_YRk(:,k)= diag(COV_YRk)./diagCovYR0;
    end
    title = 'COEFFICIENTS OF AUTOCORRELATION';
    headers = char('VARIABLE',int2str([1:ar]'));
    dyntable(title,headers,labels,AutoCOR_YRk(ivar,:),size(labels,2)+2,8,4);
else
    AutoCOR_YRk=[];
end
save ([M_.fname '_PCL_moments'], 'COV_YR0','AutoCOR_YRk', 'COR_Y');
warning(warning_old_state);