1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
function AutoCOR_YRk=PCL_Part_info_moments( H, varobs, dr,ivar)
% sets up parameters and calls part-info kalman filter
% developed by G Perendia, July 2006 for implementation from notes by Prof. Joe Pearlman to
% suit partial information RE solution in accordance with, and based on, the
% Pearlman, Currie and Levine 1986 solution.
% 22/10/06 - Version 2 for new Riccati with 4 params instead 5
% Copyright (C) 2006-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% Recall that the state space is given by the
% predetermined variables s(t-1), x(t-1)
% and the jump variables x(t).
% The jump variables have dimension NETA
global M_ options_ oo_
warning_old_state = warning;
warning off
OBS = [];
for i=1:rows(varobs)
OBS = [OBS find(strcmp(deblank(varobs(i,:)), cellstr(M_.endo_names))) ];
end
NOBS = length(OBS);
G1=dr.PI_ghx;
impact=dr.PI_ghu;
nmat=dr.PI_nmat;
CC=dr.PI_CC;
NX=M_.exo_nbr; % no of exogenous varexo shock variables.
FL_RANK=dr.PI_FL_RANK;
NY=M_.endo_nbr;
LL = sparse(1:NOBS,OBS,ones(NOBS,1),NY,NY);
if exist( 'irfpers')==1
if ~isempty(irfpers)
if irfpers<=0, irfpers=20, end;
else
irfpers=20;
end
else
irfpers=20;
end
ss=size(G1,1);
pd=ss-size(nmat,1);
SDX=M_.Sigma_e^0.5; % =SD,not V-COV, of Exog shocks or M_.Sigma_e^0.5 num_exog x num_exog matrix
if isempty(H)
H=M_.H;
end
VV=H; % V-COV of observation errors.
MM=impact*SDX; % R*(Q^0.5) in standard KF notation
% observation vector indices
% mapping to endogenous variables.
L1=LL*dr.PI_TT1;
L2=LL*dr.PI_TT2;
MM1=MM(1:ss-FL_RANK,:);
U11=MM1*MM1';
% SDX
U22=0;
% determine K1 and K2 observation mapping matrices
% This uses the fact that measurements are given by L1*s(t)+L2*x(t)
% and s(t) is expressed in the dynamics as
% H1*eps(t)+G11*s(t-1)+G12*x(t-1)+G13*x(t).
% Thus the observations o(t) can be written in the form
% o(t)=K1*[eps(t)' s(t-1)' x(t-1)']' + K2*x(t) where
% K1=[L1*H1 L1*G11 L1*G12] K2=L1*G13+L2
G12=G1(NX+1:ss-2*FL_RANK,:);
KK1=L1*G12;
K1=KK1(:,1:ss-FL_RANK);
K2=KK1(:,ss-FL_RANK+1:ss)+L2;
%pre calculate time-invariant factors
A11=G1(1:pd,1:pd);
A22=G1(pd+1:end, pd+1:end);
A12=G1(1:pd, pd+1:end);
A21=G1(pd+1:end,1:pd);
Lambda= nmat*A12+A22;
I_L=inv(Lambda);
BB=A12*inv(A22);
FF=K2*inv(A22);
QQ=BB*U22*BB' + U11;
UFT=U22*FF';
% kf_param structure:
AA=A11-BB*A21;
CCCC=A11-A12*nmat; % F in new notation
DD=K1-FF*A21; % H in new notation
EE=K1-K2*nmat;
RR=FF*UFT+VV;
if ~any(RR)
% if zero add some dummy measurement err. variance-covariances
% with diagonals 0.000001. This would not be needed if we used
% the slow solver, or the generalised eigenvalue approach,
% but these are both slower.
RR=eye(size(RR,1))*1.0e-6;
end
SS=BB*UFT;
VKLUFT=VV+K2*I_L*UFT;
ALUFT=A12*I_L*UFT;
FULKV=FF*U22*I_L'*K2'+VV;
FUBT=FF*U22*BB';
nmat=nmat;
% initialise pshat
AQDS=AA*QQ*DD'+SS;
DQDR=DD*QQ*DD'+RR;
I_DQDR=inv(DQDR);
AQDQ=AQDS*I_DQDR;
ff=AA-AQDQ*DD;
hh=AA*QQ*AA'-AQDQ*AQDS';%*(DD*QQ*AA'+SS');
rr=DD*QQ*DD'+RR;
ZSIG0=disc_riccati_fast(ff,DD,rr,hh);
PP=ZSIG0 +QQ;
exo_names=M_.exo_names(M_.exo_names_orig_ord,:);
DPDR=DD*PP*DD'+RR;
I_DPDR=inv(DPDR);
PDIDPDRD=PP*DD'*I_DPDR*DD;
MSIG=disclyap_fast(CCCC, CCCC*PDIDPDRD*PP*CCCC', options_.lyapunov_doubling_tol);
COV_P=[ PP, PP; PP, PP+MSIG]; % P0
dr.PI_GG=[CCCC (AA-CCCC)*(eye(ss-FL_RANK)-PDIDPDRD); zeros(ss-FL_RANK) AA*(eye(ss-FL_RANK)-PDIDPDRD)];
GAM= [ AA*(eye(ss-FL_RANK)-PDIDPDRD) zeros(ss-FL_RANK); (AA-CCCC)*(eye(ss-FL_RANK)-PDIDPDRD), CCCC];
VV = [ dr.PI_TT1 dr.PI_TT2];
nn=size(VV,1);
COV_OMEGA= COV_P( end-nn+1:end, end-nn+1:end);
COV_YR0= VV*COV_OMEGA*VV';
diagCovYR0=diag(COV_YR0);
labels = deblank(M_.endo_names(ivar,:));
if options_.nomoments == 0
z = [ sqrt(diagCovYR0(ivar)) diagCovYR0(ivar) ];
title='THEORETICAL MOMENTS';
headers=char('VARIABLE','STD. DEV.','VARIANCE');
dyntable(title,headers,labels,z,size(labels,2)+2,16,10);
end
if options_.nocorr == 0
diagSqrtCovYR0=sqrt(diagCovYR0);
DELTA=inv(diag(diagSqrtCovYR0));
COR_Y= DELTA*COV_YR0*DELTA;
title = 'MATRIX OF CORRELATION';
headers = char('VARIABLE',M_.endo_names(ivar,:));
dyntable(title,headers,labels,COR_Y(ivar,ivar),size(labels,2)+2,8,4);
else
COR_Y=[];
end
ar = options_.ar;
if ar > 0
COV_YRk= zeros(nn,ar);
AutoCOR_YRk= zeros(nn,ar);
for k=1:ar;
COV_P=GAM*COV_P;
COV_OMEGA= COV_P( end-nn+1:end, end-nn+1:end);
COV_YRk = VV*COV_OMEGA*VV';
AutoCOR_YRkMAT=DELTA*COV_YRk*DELTA;
oo_.autocorr{k}=AutoCOR_YRkMAT(ivar,ivar);
AutoCOR_YRk(:,k)= diag(COV_YRk)./diagCovYR0;
end
title = 'COEFFICIENTS OF AUTOCORRELATION';
headers = char('VARIABLE',int2str([1:ar]'));
dyntable(title,headers,labels,AutoCOR_YRk(ivar,:),size(labels,2)+2,8,4);
else
AutoCOR_YRk=[];
end
save ([M_.fname '_PCL_moments'], 'COV_YR0','AutoCOR_YRk', 'COR_Y');
warning(warning_old_state);
|