1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
function [LIK,lik] = auxiliary_particle_filter(ReducedForm,Y,start,DynareOptions)
% Evaluates the likelihood of a nonlinear model with a particle filter allowing eventually resampling.
%
% INPUTS
% ReducedForm [structure] Matlab's structure describing the reduced form model.
% ReducedForm.measurement.H [double] (pp x pp) variance matrix of measurement errors.
% ReducedForm.state.Q [double] (qq x qq) variance matrix of state errors.
% ReducedForm.state.dr [structure] output of resol.m.
% Y [double] pp*smpl matrix of (detrended) data, where pp is the maximum number of observed variables.
% start [integer] scalar, likelihood evaluation starts at 'start'.
% mf [integer] pp*1 vector of indices.
% number_of_particles [integer] scalar.
%
% OUTPUTS
% LIK [double] scalar, likelihood
% lik [double] vector, density of observations in each period.
%
% REFERENCES
%
% NOTES
% The vector "lik" is used to evaluate the jacobian of the likelihood.
% Copyright (C) 2011-2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
persistent init_flag mf0 mf1 number_of_particles
persistent sample_size number_of_state_variables number_of_observed_variables number_of_structural_innovations
% Set default
if isempty(start)
start = 1;
end
% Set flag for prunning
pruning = DynareOptions.particle.pruning;
% Get steady state and mean.
steadystate = ReducedForm.steadystate;
constant = ReducedForm.constant;
state_variables_steady_state = ReducedForm.state_variables_steady_state;
% Set persistent variables.
if isempty(init_flag)
mf0 = ReducedForm.mf0;
mf1 = ReducedForm.mf1;
sample_size = size(Y,2);
number_of_state_variables = length(mf0);
number_of_observed_variables = length(mf1);
number_of_structural_innovations = length(ReducedForm.Q);
number_of_particles = DynareOptions.particle.number_of_particles;
init_flag = 1;
end
% Set local state space model (first order approximation).
ghx = ReducedForm.ghx;
ghu = ReducedForm.ghu;
% Set local state space model (second order approximation).
ghxx = ReducedForm.ghxx;
ghuu = ReducedForm.ghuu;
ghxu = ReducedForm.ghxu;
% Get covariance matrices
Q = ReducedForm.Q;
H = ReducedForm.H;
if isempty(H)
H = 0;
end
% Get initial condition for the state vector.
StateVectorMean = ReducedForm.StateVectorMean;
StateVectorVarianceSquareRoot = reduced_rank_cholesky(ReducedForm.StateVectorVariance)';
state_variance_rank = size(StateVectorVarianceSquareRoot,2);
Q_lower_triangular_cholesky = chol(Q)';
if pruning
StateVectorMean_ = StateVectorMean;
StateVectorVarianceSquareRoot_ = StateVectorVarianceSquareRoot;
end
% Set seed for randn().
set_dynare_seed('default');
% Initialization of the likelihood.
const_lik = log(2*pi)*number_of_observed_variables;
lik = NaN(sample_size,1);
LIK = NaN;
% Initialization of the weights across particles.
weights = ones(1,number_of_particles)/number_of_particles ;
StateVectors = bsxfun(@plus,StateVectorVarianceSquareRoot*randn(state_variance_rank,number_of_particles),StateVectorMean);
if pruning
StateVectors_ = StateVectors;
end
for t=1:sample_size
yhat = bsxfun(@minus,StateVectors,state_variables_steady_state);
if pruning
yhat_ = bsxfun(@minus,StateVectors_,state_variables_steady_state);
[tmp, tmp_] = local_state_space_iteration_2(yhat,zeros(number_of_structural_innovations,number_of_particles),ghx,ghu,constant,ghxx,ghuu,ghxu,yhat_,steadystate,DynareOptions.threads.local_state_space_iteration_2);
else
tmp = local_state_space_iteration_2(yhat,zeros(number_of_structural_innovations,number_of_particles),ghx,ghu,constant,ghxx,ghuu,ghxu,DynareOptions.threads.local_state_space_iteration_2);
end
PredictedObservedMean = weights*(tmp(mf1,:)');
PredictionError = bsxfun(@minus,Y(:,t),tmp(mf1,:));
dPredictedObservedMean = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean');
PredictedObservedVariance = bsxfun(@times,weights,dPredictedObservedMean)*dPredictedObservedMean' +H;
wtilde = exp(-.5*(const_lik+log(det(PredictedObservedVariance))+sum(PredictionError.*(PredictedObservedVariance\PredictionError),1))) ;
tau_tilde = weights.*wtilde ;
sum_tau_tilde = sum(tau_tilde) ;
%var_wtilde = wtilde-sum_tau_tilde ;
%var_wtilde = var_wtilde'*var_wtilde/(number_of_particles-1) ;
lik(t) = log(sum_tau_tilde) ; %+ .5*var_wtilde/(number_of_particles*(sum_tau_tilde*sum_tau_tilde)) ;
tau_tilde = tau_tilde/sum_tau_tilde;
if pruning
temp = resample([yhat' yhat_'],tau_tilde',DynareOptions);
yhat = temp(:,1:number_of_state_variables)' ;
yhat_ = temp(:,number_of_state_variables+1:2*number_of_state_variables)' ;
else
yhat = resample(yhat',tau_tilde',DynareOptions)' ;
end
if pruning
[tmp, tmp_] = local_state_space_iteration_2(yhat,zeros(number_of_structural_innovations,number_of_particles),ghx,ghu,constant,ghxx,ghuu,ghxu,yhat_,steadystate,DynareOptions.threads.local_state_space_iteration_2);
else
tmp = local_state_space_iteration_2(yhat,zeros(number_of_structural_innovations,number_of_particles),ghx,ghu,constant,ghxx,ghuu,ghxu,DynareOptions.threads.local_state_space_iteration_2);
end
PredictedObservedMean = weights*(tmp(mf1,:)');
PredictionError = bsxfun(@minus,Y(:,t),tmp(mf1,:));
dPredictedObservedMean = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean');
PredictedObservedVariance = bsxfun(@times,weights,dPredictedObservedMean)*dPredictedObservedMean' +H;
wtilde = exp(-.5*(const_lik+log(det(PredictedObservedVariance))+sum(PredictionError.*(PredictedObservedVariance\PredictionError),1))) ;
epsilon = Q_lower_triangular_cholesky*randn(number_of_structural_innovations,number_of_particles);
if pruning
[tmp, tmp_] = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,yhat_,steadystate,DynareOptions.threads.local_state_space_iteration_2);
StateVectors_ = tmp_(mf0,:);
else
tmp = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,DynareOptions.threads.local_state_space_iteration_2);
end
StateVectors = tmp(mf0,:);
PredictedObservedMean = mean(tmp(mf1,:),2);
PredictionError = bsxfun(@minus,Y(:,t),tmp(mf1,:));
dPredictedObservedMean = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean);
PredictedObservedVariance = (dPredictedObservedMean*dPredictedObservedMean')/number_of_particles + H;
lnw = exp(-.5*(const_lik+log(det(PredictedObservedVariance))+sum(PredictionError.*(PredictedObservedVariance\PredictionError),1)));
wtilde = lnw./wtilde;
weights = wtilde/sum(wtilde);
end
LIK = -sum(lik(start:end));
|