1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
function [LIK,lik] = gaussian_filter(ReducedForm,Y,start,DynareOptions)
% Evaluates the likelihood of a non-linear model approximating the
% predictive (prior) and filtered (posterior) densities for state variables
% by gaussian distributions.
% Gaussian approximation is done by:
% - a Kronrod-Paterson gaussian quadrature with a limited number of nodes.
% Multidimensional quadrature is obtained by the Smolyak operator (ref: Winschel & Kratzig, 2010).
% - a spherical-radial cubature (ref: Arasaratnam & Haykin, 2008,2009).
% - a scaled unscented transform cubature (ref: )
% - Monte-Carlo draws from a multivariate gaussian distribution.
% First and second moments of prior and posterior state densities are computed
% from the resulting nodes/particles and allows to generate new distributions at the
% following observation.
% => The use of nodes is much faster than Monte-Carlo Gaussian particle and standard particles
% filters since it treats a lesser number of particles and there is no need
% of resampling.
% However, estimations may reveal biaised if the model is truly non-gaussian
% since predictive and filtered densities are unimodal.
%
% INPUTS
% reduced_form_model [structure] Matlab's structure describing the reduced form model.
% reduced_form_model.measurement.H [double] (pp x pp) variance matrix of measurement errors.
% reduced_form_model.state.Q [double] (qq x qq) variance matrix of state errors.
% reduced_form_model.state.dr [structure] output of resol.m.
% Y [double] pp*smpl matrix of (detrended) data, where pp is the maximum number of observed variables.
% start [integer] scalar, likelihood evaluation starts at 'start'.
% smolyak_accuracy [integer] scalar.
%
% OUTPUTS
% LIK [double] scalar, likelihood
% lik [double] vector, density of observations in each period.
%
% REFERENCES
%
% NOTES
% The vector "lik" is used to evaluate the jacobian of the likelihood.
% Copyright (C) 2009-2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
persistent init_flag mf0 mf1
persistent nodes2 weights2 weights_c2 number_of_particles
persistent sample_size number_of_state_variables number_of_observed_variables
verbose = 1;
% Set default
if isempty(start)
start = 1;
end
% Set persistent variables.
if isempty(init_flag)
mf0 = ReducedForm.mf0;
mf1 = ReducedForm.mf1;
sample_size = size(Y,2);
number_of_state_variables = length(mf0);
number_of_observed_variables = length(mf1);
number_of_particles = DynareOptions.particle.number_of_particles;
init_flag = 1;
end
% compute gaussian quadrature nodes and weights on states and shocks
if isempty(nodes2) && strcmpi(DynareOptions.particle.approximation_method,'quadrature')
[nodes2,weights2] = nwspgr('GQN',number_of_state_variables,DynareOptions.particle.smolyak_accuracy) ;
weights_c2 = weights2 ;
end
if isempty(nodes2) && strcmpi(DynareOptions.particle.approximation_method,'cubature')
[nodes2,weights2] = spherical_radial_sigma_points(number_of_state_variables) ;
weights_c2 = weights2 ;
end
if isempty(nodes2) && strcmpi(DynareOptions.particle.approximation_method,'unscented')
[nodes2,weights2,weights_c2] = unscented_sigma_points(number_of_state_variables,DynareOptions) ;
end
if isempty(nodes2) && strcmpi(DynareOptions.particle.approximation_method,'monte-carlo')
set_dynare_seed('default');
end
% Get covariance matrices
Q = ReducedForm.Q;
H = ReducedForm.H;
if isempty(H)
H = 0;
H_lower_triangular_cholesky = 0;
else
H_lower_triangular_cholesky = reduced_rank_cholesky(H)';
end
% Get initial condition for the state vector.
StateVectorMean = ReducedForm.StateVectorMean;
StateVectorVarianceSquareRoot = reduced_rank_cholesky(ReducedForm.StateVectorVariance)';
state_variance_rank = size(StateVectorVarianceSquareRoot,2);
Q_lower_triangular_cholesky = reduced_rank_cholesky(Q)';
% Initialization of the likelihood.
const_lik = (2*pi)^(number_of_observed_variables/2) ;
lik = NaN(sample_size,1);
LIK = NaN;
SampleWeights = 1/number_of_particles ;
ks = 0 ;
%Estimate = zeros(number_of_state_variables,sample_size) ;
%V_Estimate = zeros(number_of_state_variables,number_of_state_variables,sample_size) ;
for t=1:sample_size
% build the proposal
[PredictedStateMean,PredictedStateVarianceSquareRoot,StateVectorMean,StateVectorVarianceSquareRoot] = ...
gaussian_filter_bank(ReducedForm,Y(:,t),StateVectorMean,StateVectorVarianceSquareRoot,Q_lower_triangular_cholesky,H_lower_triangular_cholesky,H,DynareOptions) ;
%Estimate(:,t) = PredictedStateMean ;
%V_Estimate(:,:,t) = PredictedStateVarianceSquareRoot ;
if strcmpi(DynareOptions.particle.approximation_method,'quadrature') || ... % sparse grids approximations
strcmpi(DynareOptions.particle.approximation_method,'cubature') || ...
strcmpi(DynareOptions.particle.approximation_method,'unscented')
StateParticles = bsxfun(@plus,StateVectorMean,StateVectorVarianceSquareRoot*nodes2') ;
IncrementalWeights = ...
gaussian_densities(Y(:,t),StateVectorMean,...
StateVectorVarianceSquareRoot,PredictedStateMean,...
PredictedStateVarianceSquareRoot,StateParticles,H,const_lik,...
weights2,weights_c2,ReducedForm,DynareOptions) ;
SampleWeights = weights2.*IncrementalWeights ;
SumSampleWeights = sum(SampleWeights) ;
lik(t) = log(SumSampleWeights) ;
SampleWeights = SampleWeights./SumSampleWeights ;
else % Monte-Carlo draws
StateParticles = bsxfun(@plus,StateVectorVarianceSquareRoot*randn(state_variance_rank,number_of_particles),StateVectorMean) ;
IncrementalWeights = ...
gaussian_densities(Y(:,t),StateVectorMean,...
StateVectorVarianceSquareRoot,PredictedStateMean,...
PredictedStateVarianceSquareRoot,StateParticles,H,const_lik,...
1/number_of_particles,1/number_of_particles,ReducedForm,DynareOptions) ;
SampleWeights = SampleWeights.*IncrementalWeights ;
SumSampleWeights = sum(SampleWeights) ;
%VarSampleWeights = IncrementalWeights-SumSampleWeights ;
%VarSampleWeights = VarSampleWeights*VarSampleWeights'/(number_of_particles-1) ;
lik(t) = log(SumSampleWeights) ; %+ .5*VarSampleWeights/(number_of_particles*(SumSampleWeights*SumSampleWeights)) ;
SampleWeights = SampleWeights./SumSampleWeights ;
Neff = 1/sum(bsxfun(@power,SampleWeights,2)) ;
if (Neff<.5*sample_size && strcmpi(DynareOptions.particle.resampling.status,'generic')) || ...
strcmpi(DynareOptions.particle.resampling.status,'systematic')
ks = ks + 1 ;
StateParticles = resample(StateParticles',SampleWeights,DynareOptions)' ;
StateVectorMean = mean(StateParticles,2) ;
StateVectorVarianceSquareRoot = reduced_rank_cholesky( (StateParticles*StateParticles')/(number_of_particles-1) - StateVectorMean*(StateVectorMean') )';
SampleWeights = 1/number_of_particles ;
elseif strcmpi(DynareOptions.particle.resampling.status,'none')
StateVectorMean = (sampleWeights*StateParticles)' ;
temp = sqrt(SampleWeights').*StateParticles ;
StateVectorVarianceSquareRoot = reduced_rank_cholesky( temp'*temp - StateVectorMean*(StateVectorMean') )';
end
end
end
LIK = -sum(lik(start:end));
|