1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
function [y,y_] = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,a,b,c)%yhat_,ss)
%@info:
%! @deftypefn {Function File} {@var{y}, @var{y_} =} local_state_equation_2 (@var{yhat},@var{epsilon}, @var{ghx}, @var{ghu}, @var{constant}, @var{ghxx}, @var{ghuu}, @var{ghxu}, @var{yhat_}, @var{ss})
%! @anchor{particle/local_state_space_iteration_2}
%! @sp 1
%! Given the states (y) and structural innovations (epsilon), this routine computes the level of selected endogenous variables when the
%! model is approximated by an order two taylor expansion around the deterministic steady state. Depending on the number of input/output
%! argument the pruning algorithm advocated by C. Sims is used or not (this version should not be used if the selected endogenous variables
%! are not the states of the model).
%!
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item yhat
%! n*1 vector of doubles, initial condition, where n is the number of state variables.
%! @item epsilon
%! q*1 vector of doubles, structural innovations.
%! @item ghx
%! m*n matrix of doubles, restricted dr.ghx where we only consider the lines corresponding to a subset of endogenous variables.
%! @item ghu
%! m*q matrix of doubles, restricted dr.ghu where we only consider the lines corresponding to a subset of endogenous variables.
%! @item constant
%! m*1 vector of doubles, deterministic steady state plus second order correction for a subset of endogenous variables.
%! @item ghxx
%! m*n² matrix of doubles, restricted dr.ghxx where we only consider the lines corresponding to a subset of endogenous variables.
%! @item ghuu
%! m*q² matrix of doubles, restricted dr.ghuu where we only consider the lines corresponding to a subset of endogenous variables.
%! @item ghxu
%! m*(nq) matrix of doubles, subset of dr.ghxu where we only consider the lines corresponding to a subset of endogenous variables.
%! @item yhat_
%! n*1 vector of doubles, spurious states for the pruning version.
%! @item ss
%! n*1 vector of doubles, steady state for the states.
%! @end table
%! @sp 2
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item y
%! m*1 vector of doubles, selected endogenous variables.
%! @item y_
%! m*1 vector of doubles, update of the latent variables needed for the pruning version (first order update).
%! @end table
%! @sp 2
%! @strong{Remarks}
%! @sp 1
%! [1] If the function has 10 input arguments then it must have 2 output arguments (pruning version).
%! @sp 1
%! [2] If the function has 08 input arguments then it must have 1 output argument.
%! @sp 2
%! @strong{This function is called by:}
%! @sp 2
%! @strong{This function calls:}
%!
%!
%! @end deftypefn
%@eod:
% Copyright (C) 2011-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR(S) stephane DOT adjemian AT univ DASH lemans DOT fr
% frederic DOT karame AT univ DASH evry DOT fr
if nargin==9
pruning = 0; numthreads = a;
if nargout>1
error('local_state_space_iteration_2:: Numbers of input and output argument are inconsistent!')
end
elseif nargin==11
pruning = 1; numthreads = c; yhat_ = a; ss = b;
if nargout~=2
error('local_state_space_iteration_2:: Numbers of input and output argument are inconsistent!')
end
else
error('local_state_space_iteration_2:: Wrong number of input arguments!')
end
number_of_threads = numthreads;
switch pruning
case 0
for i =1:size(yhat,2)
y(:,i) = constant + ghx*yhat(:,i) + ghu*epsilon(:,i) ...
+ A_times_B_kronecker_C(.5*ghxx,yhat(:,i),number_of_threads) ...
+ A_times_B_kronecker_C(.5*ghuu,epsilon(:,i),number_of_threads) ...
+ A_times_B_kronecker_C(ghxu,yhat(:,i),epsilon(:,i),number_of_threads);
end
case 1
for i =1:size(yhat,2)
y(:,i) = constant + ghx*yhat(:,i) + ghu*epsilon(:,i) ...
+ A_times_B_kronecker_C(.5*ghxx,yhat_(:,i),number_of_threads) ...
+ A_times_B_kronecker_C(.5*ghuu,epsilon(:,i),number_of_threads) ...
+ A_times_B_kronecker_C(ghxu,yhat_(:,i),epsilon(:,i),number_of_threads);
end
y_ = ghx*yhat_+ghu*epsilon;
y_ = bsxfun(@plus,y_,ss);
end
%@test:1
%$ n = 2;
%$ q = 3;
%$
%$ yhat = zeros(n,1);
%$ epsilon = zeros(q,1);
%$ ghx = rand(n,n);
%$ ghu = rand(n,q);
%$ constant = ones(n,1);
%$ ghxx = rand(n,n*n);
%$ ghuu = rand(n,q*q);
%$ ghxu = rand(n,n*q);
%$ yhat_ = zeros(n,1);
%$ ss = ones(n,1);
%$
%$ % Call the tested routine.
%$ for i=1:10
%$ y1 = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,1);
%$ [y2,y2_] = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,yhat_,ss,1);
%$ end
%$
%$ % Check the results.
%$ t(1) = dyn_assert(y1,ones(n,1));
%$ t(2) = dyn_assert(y2,ones(n,1));
%$ t(3) = dyn_assert(y2_,ones(n,1));
%$ T = all(t);
%@eof:1
%@test:2
%$ old_path = pwd;
%$ cd([fileparts(which('dynare')) '/../tests/']);
%$ dynare('dsge_base2');
%$ load dsge_base2;
%$ cd(old_path);
%$ dr = oo_.dr;
%$ clear('oo_','options_','M_');
%$ delete([fileparts(which('dynare')) '/../tests/dsge_base2.mat']);
%$ istates = dr.nstatic+(1:dr.npred);
%$ n = dr.npred;
%$ q = size(dr.ghu,2);
%$ yhat = zeros(n,1);
%$ epsilon = zeros(q,1);
%$ ghx = dr.ghx(istates,:);
%$ ghu = dr.ghu(istates,:);
%$ constant = dr.ys(istates,:)+dr.ghs2(istates,:);
%$ ghxx = dr.ghxx(istates,:);
%$ ghuu = dr.ghuu(istates,:);
%$ ghxu = dr.ghxu(istates,:);
%$ yhat_ = zeros(n,1);
%$ ss = dr.ys(istates,:);
%$
%$ t = ones(2,1);
%$
%$ % Call the tested routine.
%$ try
%$ y1 = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,1);
%$ catch
%$ t(1) = 0;
%$ end
%$ try
%$ [y2,y2_] = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,yhat_,ss,1);
%$ catch
%$ t(2) = 0;
%$ end
%$
%$ % Check the results.
%$ T = all(t);
%@eof:2
%@test:3
%$ Bohrbug = 1; % A bug that manifests reliably under a possibly unknown but well-defined set of conditions.
%$ if ~Bohrbug
%$ n = 2;
%$ q = 3;
%$
%$ yhat = .01*randn(n,1);
%$ epsilon = .001*randn(q,1);
%$ ghx = rand(n,n);
%$ ghu = rand(n,q);
%$ constant = ones(n,1);
%$ ghxx = rand(n,n*n);
%$ ghuu = rand(n,q*q);
%$ ghxu = rand(n,n*q);
%$ yhat_ = zeros(n,1);
%$ ss = ones(n,1);
%$
%$ % Call the tested routine (mex version).
%$ y1a = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,1);
%$ [y2a,y2a_] = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,yhat_,ss,1);
%$
%$ % Call the tested routine (matlab version)
%$ path_to_mex = fileparts(which(['qmc_sequence.' mexext]));
%$ where_am_i_coming_from = pwd;
%$ cd(path_to_mex);
%$ tar('local_state_space_iteration_2.tar',['local_state_space_iteration_2.' mexext]);
%$ cd(where_am_i_coming_from);
%$ dynare_config([],0);
%$ y1b = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,1);
%$ [y2b,y2b_] = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,yhat_,ss,1);
%$ cd(path_to_mex);
%$ untar('local_state_space_iteration_2.tar');
%$ delete('local_state_space_iteration_2.tar');
%$ cd(where_am_i_coming_from);
%$ dynare_config([],0);
%$ % Check the results.
%$ t(1) = dyn_assert(y1a,y1b);
%$ t(2) = dyn_assert(y2a,y2b);
%$ t(3) = dyn_assert(y2a_,y2b_);
%$ T = all(t);
%$ else
%$ t(1) = 1;
%$ T = all(t);
%$ end
%@eof:3
%@test:4
%$ % TIMING TEST (parallelization with openmp)
%$ old_path = pwd;
%$ cd([fileparts(which('dynare')) '/../tests/']);
%$ dynare('dsge_base2');
%$ load dsge_base2;
%$ cd(old_path);
%$ dr = oo_.dr;
%$ clear('oo_','options_','M_');
%$ delete([fileparts(which('dynare')) '/../tests/dsge_base2.mat']);
%$ istates = dr.nstatic+(1:dr.npred);
%$ n = dr.npred;
%$ q = size(dr.ghu,2);
%$ yhat = zeros(n,10000000);
%$ epsilon = zeros(q,10000000);
%$ ghx = dr.ghx(istates,:);
%$ ghu = dr.ghu(istates,:);
%$ constant = dr.ys(istates,:)+dr.ghs2(istates,:);
%$ ghxx = dr.ghxx(istates,:);
%$ ghuu = dr.ghuu(istates,:);
%$ ghxu = dr.ghxu(istates,:);
%$ yhat_ = zeros(n,10000000);
%$ ss = dr.ys(istates,:);
%$
%$ t = NaN(4,1);
%$ tic, for i=1:10, y1 = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,1); end
%$ t1 = toc;
%$ tic, for i=1:10, y2 = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,2); end
%$ t2 = toc;
%$ t(1) = dyn_assert(y1,y2,1e-15); clear('y1');
%$ tic, for i=1:10, y3 = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,3); end
%$ t3 = toc;
%$ t(2) = dyn_assert(y2,y3,1e-15); clear('y2');
%$ tic, for i=1:10, y4 = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,4); end
%$ t4 = toc;
%$ t(3) = dyn_assert(y4,y3,1e-15); clear('y3','y4');
%$ t(4) = (t1>t2) && (t2>t3) && (t3>t4);
%$ if ~t(4)
%$ disp('Timmings:')
%$ [t1, t2, t3, t4]
%$ end
%$ % Check the results.
%$ T = all(t);
%@eof:4
|