1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
function [xparam,std_param,lb_95,ub_95,median_param] = online_auxiliary_filter(xparam1,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults)
% Carvalho & Lopes particle filter = auxiliary particle filter including Liu & West filter on parameters.
%
% INPUTS
% ReducedForm [structure] Matlab's structure describing the reduced form model.
% ReducedForm.measurement.H [double] (pp x pp) variance matrix of measurement errors.
% ReducedForm.state.Q [double] (qq x qq) variance matrix of state errors.
% ReducedForm.state.dr [structure] output of resol.m.
% Y [double] pp*smpl matrix of (detrended) data, where pp is the maximum number of observed variables.
% start [integer] scalar, likelihood evaluation starts at 'start'.
% mf [integer] pp*1 vector of indices.
% number_of_particles [integer] scalar.
%
% OUTPUTS
% LIK [double] scalar, likelihood
% lik [double] vector, density of observations in each period.
%
% REFERENCES
%
% NOTES
% The vector "lik" is used to evaluate the jacobian of the likelihood.
% Copyright (C) 2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
persistent Y init_flag mf0 mf1 bounds number_of_particles number_of_parameters liu_west_delta liu_west_chol_sigma_bar
persistent start_param sample_size number_of_observed_variables number_of_structural_innovations
% Set seed for randn().
set_dynare_seed('default') ;
pruning = DynareOptions.particle.pruning;
second_resample = 1 ;
variance_update = 1 ;
% initialization of state particles
[ys,trend_coeff,exit_flag,info,Model,DynareOptions,BayesInfo,DynareResults,ReducedForm] = ...
solve_model_for_online_filter(1,xparam1,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults) ;
% Set persistent variables.
if isempty(init_flag)
mf0 = ReducedForm.mf0;
mf1 = ReducedForm.mf1;
number_of_particles = DynareOptions.particle.number_of_particles;
number_of_parameters = size(xparam1,1) ;
Y = DynareDataset.data ;
sample_size = size(Y,2);
number_of_observed_variables = length(mf1);
number_of_structural_innovations = length(ReducedForm.Q);
liu_west_delta = DynareOptions.particle.liu_west_delta ;
%liu_west_chol_sigma_bar = DynareOptions.particle.liu_west_chol_sigma_bar*eye(number_of_parameters) ;
start_param = xparam1 ;
%liu_west_chol_sigma_bar = sqrt(bsxfun(@times,eye(number_of_parameters),BayesInfo.p2)) ;
%start_param = BayesInfo.p1 ;
bounds = [BayesInfo.lb BayesInfo.ub] ;
init_flag = 1;
end
% Get initial conditions for the state particles
StateVectorMean = ReducedForm.StateVectorMean;
StateVectorVarianceSquareRoot = reduced_rank_cholesky(ReducedForm.StateVectorVariance)';
state_variance_rank = size(StateVectorVarianceSquareRoot,2);
StateVectors = bsxfun(@plus,StateVectorVarianceSquareRoot*randn(state_variance_rank,number_of_particles),StateVectorMean);
if pruning
StateVectors_ = StateVectors;
end
% parameters for the Liu & West filter
h_square = (3*liu_west_delta-1)/(2*liu_west_delta) ;
h_square = 1-h_square*h_square ;
small_a = sqrt(1-h_square) ;
% Initialization of parameter particles
xparam = zeros(number_of_parameters,number_of_particles) ;
stderr = sqrt(bsxfun(@power,bounds(:,2)+bounds(:,1),2)/12)/100 ;
stderr = sqrt(bsxfun(@power,bounds(:,2)+bounds(:,1),2)/12)/50 ;
i = 1 ;
while i<=number_of_particles
%candidate = start_param + .001*liu_west_chol_sigma_bar*randn(number_of_parameters,1) ;
candidate = start_param + bsxfun(@times,stderr,randn(number_of_parameters,1)) ;
if all(candidate(:) >= bounds(:,1)) && all(candidate(:) <= bounds(:,2))
xparam(:,i) = candidate(:) ;
i = i+1 ;
end
end
%xparam = bsxfun(@plus,bounds(:,1),bsxfun(@times,(bounds(:,2)-bounds(:,1)),rand(number_of_parameters,number_of_particles))) ;
% Initialization of the weights of particles.
weights = ones(1,number_of_particles)/number_of_particles ;
% Initialization of the likelihood.
const_lik = log(2*pi)*number_of_observed_variables;
mean_xparam = zeros(number_of_parameters,sample_size) ;
median_xparam = zeros(number_of_parameters,sample_size) ;
std_xparam = zeros(number_of_parameters,sample_size) ;
lb95_xparam = zeros(number_of_parameters,sample_size) ;
ub95_xparam = zeros(number_of_parameters,sample_size) ;
%% The Online filter
for t=1:sample_size
disp(t)
% Moments of parameters particles distribution
m_bar = xparam*(weights') ;
temp = bsxfun(@minus,xparam,m_bar) ;
sigma_bar = (bsxfun(@times,weights,temp))*(temp') ;
if variance_update==1
chol_sigma_bar = chol(h_square*sigma_bar)' ;
end
% Prediction (without shocks)
ObservedVariables = zeros(number_of_observed_variables,number_of_particles) ;
for i=1:number_of_particles
% model resolution
[ys,trend_coeff,exit_flag,info,Model,DynareOptions,BayesInfo,DynareResults,ReducedForm] = ...
solve_model_for_online_filter(t,xparam(:,i),DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults) ;
steadystate = ReducedForm.steadystate;
state_variables_steady_state = ReducedForm.state_variables_steady_state;
% Set local state space model (second-order approximation).
constant = ReducedForm.constant;
ghx = ReducedForm.ghx;
ghu = ReducedForm.ghu;
ghxx = ReducedForm.ghxx;
ghuu = ReducedForm.ghuu;
ghxu = ReducedForm.ghxu;
% particle likelihood contribution
yhat = bsxfun(@minus,StateVectors(:,i),state_variables_steady_state);
if pruning
yhat_ = bsxfun(@minus,StateVectors_(:,i),state_variables_steady_state);
[tmp, tmp_] = local_state_space_iteration_2(yhat,zeros(number_of_structural_innovations,1),ghx,ghu,constant,ghxx,ghuu,ghxu,yhat_,steadystate,DynareOptions.threads.local_state_space_iteration_2);
else
tmp = local_state_space_iteration_2(yhat,zeros(number_of_structural_innovations,1),ghx,ghu,constant,ghxx,ghuu,ghxu,DynareOptions.threads.local_state_space_iteration_2);
end
ObservedVariables(:,i) = tmp(mf1,:) ;
end
PredictedObservedMean = sum(bsxfun(@times,weights,ObservedVariables),2) ;
PredictionError = bsxfun(@minus,Y(:,t),ObservedVariables);
dPredictedObservedMean = bsxfun(@minus,ObservedVariables,PredictedObservedMean);
PredictedObservedVariance = bsxfun(@times,weights,dPredictedObservedMean)*dPredictedObservedMean' + ReducedForm.H ;
wtilde = exp(-.5*(const_lik+log(det(PredictedObservedVariance))+sum(PredictionError.*(PredictedObservedVariance\PredictionError),1))) ;
% unormalized weights and observation likelihood contribution
tau_tilde = weights.*wtilde ;
sum_tau_tilde = sum(tau_tilde) ;
% particles selection
tau_tilde = tau_tilde/sum_tau_tilde ;
indx = index_resample(0,tau_tilde',DynareOptions);
StateVectors = StateVectors(:,indx) ;
if pruning
StateVectors_ = StateVectors_(:,indx) ;
end
xparam = bsxfun(@plus,(1-small_a).*m_bar,small_a.*xparam) ;
xparam = xparam(:,indx) ;
wtilde = wtilde(indx) ;
% draw in the new distributions
i = 1 ;
while i<=number_of_particles
candidate = xparam(:,i) + chol_sigma_bar*randn(number_of_parameters,1) ;
if all(candidate >= bounds(:,1)) && all(candidate <= bounds(:,2))
xparam(:,i) = candidate ;
% model resolution for new parameters particles
[ys,trend_coeff,exit_flag,info,Model,DynareOptions,BayesInfo,DynareResults,ReducedForm] = ...
solve_model_for_online_filter(t,xparam(:,i),DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults) ;
steadystate = ReducedForm.steadystate;
state_variables_steady_state = ReducedForm.state_variables_steady_state;
% Set local state space model (second order approximation).
constant = ReducedForm.constant;
ghx = ReducedForm.ghx;
ghu = ReducedForm.ghu;
ghxx = ReducedForm.ghxx;
ghuu = ReducedForm.ghuu;
ghxu = ReducedForm.ghxu;
% Get covariance matrices and structural shocks
epsilon = chol(ReducedForm.Q)'*randn(number_of_structural_innovations,1) ;
% compute particles likelihood contribution
yhat = bsxfun(@minus,StateVectors(:,i),state_variables_steady_state);
if pruning
yhat_ = bsxfun(@minus,StateVectors_(:,i),state_variables_steady_state);
[tmp, tmp_] = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,yhat_,steadystate,DynareOptions.threads.local_state_space_iteration_2);
StateVectors_(:,i) = tmp_(mf0,:) ;
else
tmp = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,DynareOptions.threads.local_state_space_iteration_2);
end
StateVectors(:,i) = tmp(mf0,:) ;
ObservedVariables(:,i) = tmp(mf1,:) ;
i = i+1 ;
end
end
PredictedObservedMean = sum(bsxfun(@times,weights,ObservedVariables),2) ;
PredictionError = bsxfun(@minus,Y(:,t),ObservedVariables);
dPredictedObservedMean = bsxfun(@minus,ObservedVariables,PredictedObservedMean);
PredictedObservedVariance = bsxfun(@times,weights,dPredictedObservedMean)*dPredictedObservedMean' + ReducedForm.H ;
lnw = exp(-.5*(const_lik+log(det(PredictedObservedVariance))+sum(PredictionError.*(PredictedObservedVariance\PredictionError),1)));
% importance ratio
wtilde = lnw./wtilde ;
% normalization
weights = wtilde/sum(wtilde);
if (variance_update==1) && (neff(weights)<DynareOptions.particle.resampling.neff_threshold*sample_size)
variance_update = 0 ;
end
% final resampling (advised)
if second_resample==1
indx = index_resample(0,weights,DynareOptions);
StateVectors = StateVectors(:,indx) ;
if pruning
StateVectors_ = StateVectors_(:,indx) ;
end
xparam = xparam(:,indx) ;
weights = ones(1,number_of_particles)/number_of_particles ;
mean_xparam(:,t) = mean(xparam,2);
mat_var_cov = bsxfun(@minus,xparam,mean_xparam(:,t)) ;
mat_var_cov = (mat_var_cov*mat_var_cov')/(number_of_particles-1) ;
std_xparam(:,t) = sqrt(diag(mat_var_cov)) ;
for i=1:number_of_parameters
temp = sortrows(xparam(i,:)') ;
lb95_xparam(i,t) = temp(0.025*number_of_particles) ;
median_xparam(i,t) = temp(0.5*number_of_particles) ;
ub95_xparam(i,t) = temp(0.975*number_of_particles) ;
end
end
if second_resample==0
mean_xparam(:,t) = xparam*(weights') ;
mat_var_cov = bsxfun(@minus,xparam,mean_xparam(:,t)) ;
mat_var_cov = mat_var_cov*(bsxfun(@times,mat_var_cov,weights)') ;
std_xparam(:,t) = sqrt(diag(mat_var_cov)) ;
for i=1:number_of_parameters
temp = sortrows([xparam(i,:)' weights'],1) ;
cumulated_weights = cumsum(temp(:,2)) ;
pass1=1 ;
pass2=1 ;
pass3=1 ;
for j=1:number_of_particles
if cumulated_weights(j)>0.025 && pass1==1
lb95_xparam(i,t) = (temp(j-1,1)+temp(j,1))/2 ;
pass1 = 2 ;
end
if cumulated_weights(j)>0.5 && pass2==1
median_xparam(i,t) = (temp(j-1,1)+temp(j,1))/2 ;
pass2 = 2 ;
end
if cumulated_weights(j)>0.975 && pass3==1
ub95_xparam(i,t) = (temp(j-1,1)+temp(j,1))/2 ;
pass3 = 2 ;
end
end
end
end
disp([lb95_xparam(:,t) mean_xparam(:,t) ub95_xparam(:,t)])
end
distrib_param = xparam ;
xparam = mean_xparam(:,sample_size) ;
std_param = std_xparam(:,sample_size) ;
lb_95 = lb95_xparam(:,sample_size) ;
ub_95 = ub95_xparam(:,sample_size) ;
median_param = median_xparam(:,sample_size) ;
%% Plot parameters trajectory
TeX = DynareOptions.TeX;
[nbplt,nr,nc,lr,lc,nstar] = pltorg(number_of_parameters);
if TeX
fidTeX = fopen([Model.fname '_param_traj.TeX'],'w');
fprintf(fidTeX,'%% TeX eps-loader file generated by online_auxiliary_filter.m (Dynare).\n');
fprintf(fidTeX,['%% ' datestr(now,0) '\n']);
fprintf(fidTeX,' \n');
end
z = 1:1:sample_size ;
for plt = 1:nbplt,
if TeX
NAMES = [];
TeXNAMES = [];
end
hh = dyn_figure(DynareOptions,'Name','Parameters Trajectories');
for k=1:min(nstar,length(xparam)-(plt-1)*nstar)
subplot(nr,nc,k)
kk = (plt-1)*nstar+k;
[name,texname] = get_the_name(kk,TeX,Model,EstimatedParameters,DynareOptions);
if TeX
if isempty(NAMES)
NAMES = name;
TeXNAMES = texname;
else
NAMES = char(NAMES,name);
TeXNAMES = char(TeXNAMES,texname);
end
end
y = [mean_xparam(kk,:)' median_xparam(kk,:)' lb95_xparam(kk,:)' ub95_xparam(kk,:)' xparam(kk)*ones(sample_size,1)] ;
plot(z,y);
hold on
title(name,'interpreter','none')
hold off
axis tight
drawnow
end
dyn_saveas(hh,[ Model.fname '_param_traj' int2str(plt) ],DynareOptions);
if TeX
% TeX eps loader file
fprintf(fidTeX,'\\begin{figure}[H]\n');
for jj = 1:min(nstar,length(x)-(plt-1)*nstar)
fprintf(fidTeX,'\\psfrag{%s}[1][][0.5][0]{%s}\n',deblank(NAMES(jj,:)),deblank(TeXNAMES(jj,:)));
end
fprintf(fidTeX,'\\centering \n');
fprintf(fidTeX,'\\includegraphics[scale=0.5]{%s_ParamTraj%s}\n',Model.fname,int2str(plt));
fprintf(fidTeX,'\\caption{Parameters trajectories.}');
fprintf(fidTeX,'\\label{Fig:ParametersPlots:%s}\n',int2str(plt));
fprintf(fidTeX,'\\end{figure}\n');
fprintf(fidTeX,' \n');
end
end
%% Plot Parameter Densities
number_of_grid_points = 2^9; % 2^9 = 512 !... Must be a power of two.
bandwidth = 0; % Rule of thumb optimal bandwidth parameter.
kernel_function = 'gaussian'; % Gaussian kernel for Fast Fourier Transform approximation.
for plt = 1:nbplt,
if TeX
NAMES = [];
TeXNAMES = [];
end
hh = dyn_figure(DynareOptions,'Name','Parameters Densities');
for k=1:min(nstar,length(xparam)-(plt-1)*nstar)
subplot(nr,nc,k)
kk = (plt-1)*nstar+k;
[name,texname] = get_the_name(kk,TeX,Model,EstimatedParameters,DynareOptions);
if TeX
if isempty(NAMES)
NAMES = name;
TeXNAMES = texname;
else
NAMES = char(NAMES,name);
TeXNAMES = char(TeXNAMES,texname);
end
end
optimal_bandwidth = mh_optimal_bandwidth(distrib_param(kk,:)',number_of_particles,bandwidth,kernel_function);
[density(:,1),density(:,2)] = kernel_density_estimate(distrib_param(kk,:)',number_of_grid_points,...
number_of_particles,optimal_bandwidth,kernel_function);
plot(density(:,1),density(:,2));
hold on
title(name,'interpreter','none')
hold off
axis tight
drawnow
end
dyn_saveas(hh,[ Model.fname '_param_density' int2str(plt) ],DynareOptions);
if TeX
% TeX eps loader file
fprintf(fidTeX,'\\begin{figure}[H]\n');
for jj = 1:min(nstar,length(x)-(plt-1)*nstar)
fprintf(fidTeX,'\\psfrag{%s}[1][][0.5][0]{%s}\n',deblank(NAMES(jj,:)),deblank(TeXNAMES(jj,:)));
end
fprintf(fidTeX,'\\centering \n');
fprintf(fidTeX,'\\includegraphics[scale=0.5]{%s_ParametersDensities%s}\n',Model.fname,int2str(plt));
fprintf(fidTeX,'\\caption{ParametersDensities.}');
fprintf(fidTeX,'\\label{Fig:ParametersDensities:%s}\n',int2str(plt));
fprintf(fidTeX,'\\end{figure}\n');
fprintf(fidTeX,' \n');
end
end
|