1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
function return_resample = residual_resampling(particles,weights,noise)
% Resamples particles.
%@info:
%! @deftypefn {Function File} {@var{indx} =} residual_resampling (@var{weights})
%! @anchor{particle/residual_resampling}
%! @sp 1
%! Resamples particles.
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item weights
%! n*1 vector of doubles, particles' weights.
%! @end table
%! @sp 2
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item indx
%! n*1 vector of intergers, indices.
%! @end table
%! @sp 2
%! @strong{This function is called by:}
%! @sp 1
%! @ref{particle/resample}
%! @sp 2
%! @strong{This function calls:}
%! @sp 2
%! @end deftypefn
%@eod:
% Copyright (C) 2011-2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR(S) frederic DOT karame AT univ DASH evry DOT fr
% stephane DOT adjemian AT univ DASH lemans DOT fr
% What is the number of particles?
number_of_particles = length(weights);
switch length(noise)
case 1
kitagawa_resampling = 1;
case number_of_particles
kitagawa_resampling = 0;
otherwise
error(['particle::resampling: Unknown method! The size of the second argument (' inputname(3) ') is wrong.'])
end
% Set vectors of indices.
jndx = 1:number_of_particles;
indx = zeros(1,number_of_particles);
% Multiply the weights by the number of particles.
WEIGHTS = number_of_particles*weights;
% Compute the integer part of the normalized weights.
iWEIGHTS = fix(WEIGHTS);
% Compute the number of resample
number_of_trials = number_of_particles-sum(iWEIGHTS);
if number_of_trials
WEIGHTS = (WEIGHTS-iWEIGHTS)/number_of_trials;
EmpiricalCDF = cumsum(WEIGHTS);
if kitagawa_resampling
u = (transpose(1:number_of_trials)-1+noise(:))/number_of_trials;
else
u = fliplr(cumprod(noise(1:number_of_trials).^(1./(number_of_trials:-1:1))));
end
j=1;
for i=1:number_of_trials
while (u(i)>EmpiricalCDF(j))
j=j+1;
end
iWEIGHTS(j)=iWEIGHTS(j)+1;
if kitagawa_resampling==0
j=1;
end
end
end
k=1;
for i=1:number_of_particles
if (iWEIGHTS(i)>0)
for j=k:k+iWEIGHTS(i)-1
indx(j) = jndx(i);
end
end
k = k + iWEIGHTS(i);
end
if particles==0
return_resample = indx ;
else
return_resample = particles(indx,:) ;
end
%@test:1
%$ % Define the weights
%$ weights = randn(2000,1).^2;
%$ weights = weights/sum(weights);
%$ % Initialize t.
%$ t = ones(1,1);
%$
%$ try
%$ indx1 = residual_resampling(weights);
%$ catch
%$ t(1) = 0;
%$ end
%$
%$ T = all(t);
%@eof:1
%@test:2
%$ % Define the weights
%$ weights = exp(randn(2000,1));
%$ weights = weights/sum(weights);
%$ % Initialize t.
%$ t = ones(1,1);
%$
%$ try
%$ indx1 = residual_resampling(weights);
%$ catch
%$ t(1) = 0;
%$ end
%$
%$ T = all(t);
%@eof:2
|