File: traditional_resampling.m

package info (click to toggle)
dynare 4.4.3-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 41,312 kB
  • ctags: 15,840
  • sloc: cpp: 77,029; ansic: 29,056; pascal: 13,241; sh: 4,811; objc: 3,061; yacc: 3,013; makefile: 1,476; lex: 1,258; python: 162; lisp: 54; xml: 8
file content (237 lines) | stat: -rw-r--r-- 5,545 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
function return_resample = traditional_resampling(particles,weights,noise)
% Resamples particles.

%@info:
%! @deftypefn {Function File} {@var{indx} =} traditional_resampling (@var{weights},@var{noise})
%! @anchor{particle/traditional_resampling}
%! @sp 1
%! Resamples particles (Resampling à la Kitagawa or stratified resampling).
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item weights
%! n*1 vector of doubles, particles' weights.
%! @item noise
%! n*1 vector of doubles sampled from a [0,1] uniform distribution (stratified resampling) or scalar double
%! sampled from a [0,1] uniform distribution (Kitagawa resampling).
%! @end table
%! @sp 2
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item indx
%! n*1 vector of intergers, indices.
%! @end table
%! @sp 2
%! @strong{This function is called by:}
%! @sp 1
%! @ref{particle/resample}
%! @sp 2
%! @strong{This function calls:}
%! @sp 2
%! @end deftypefn
%@eod:

% Copyright (C) 2011-2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

% AUTHOR(S) frederic DOT karame AT univ DASH evry DOT fr
%           stephane DOT adjemian AT univ DASH lemans DOT fr

% What is the number of particles?
number_of_particles = length(weights);

% Initialize the returned argument.
indx = ones(number_of_particles,1);

% Select method.
switch length(noise)
  case 1
    kitagawa_resampling = 1;
  case number_of_particles
    kitagawa_resampling = 0;
  otherwise
    error(['particle::resampling: Unknown method! The size of the second argument (' inputname(3) ') is wrong.'])
end

% Get the empirical  CDF.
c = cumsum(weights);

% Draw a starting point.
if kitagawa_resampling
    randvec = (transpose(1:number_of_particles)-1+noise(:))/number_of_particles ;
else 
    randvec = fliplr(cumprod(noise.^(1./(number_of_particles:-1:1))));
end

% Start at the bottom of the CDF
if kitagawa_resampling
    j = 1;
    for i=1:number_of_particles
        while (randvec(i)>c(j))
            j = j+1;
        end
        indx(i) = j;
    end
else
    for i=1:number_of_particles
        indx(i) = sum(randvec(i)>c);
    end
    % Matlab's indices start at 1...
    indx = indx+1;
end

if particles==0
    return_resample = indx ;
else
    return_resample = particles(indx,:) ;
end

%@test:1
%$ % Define the weights
%$ weights = randn(2000,1).^2;
%$ weights = weights/sum(weights);
%$ % Initialize t.
%$ t = ones(2,1);
%$
%$ % First, try the stratified resampling.
%$ try
%$     indx1 = traditional_resampling(weights,rand(2000,1));
%$ catch
%$     t(1) = 0;
%$ end
%$
%$ % Second, try the Kitagawa resampling.
%$ try
%$     indx2 = traditional_resampling(weights,rand);
%$ catch
%$     t(2) = 0;
%$ end
%$
%$ T = all(t);
%@eof:1

%@test:2
%$ % Define the weights
%$ weights = exp(randn(2000,1));
%$ weights = weights/sum(weights);
%$ % Initialize t.
%$ t = ones(2,1);
%$
%$ % First, try the stratified resampling.
%$ try
%$     indx1 = traditional_resampling(weights,rand(2000,1));
%$ catch
%$     t(1) = 0;
%$ end
%$
%$ % Second, try the Kitagawa resampling.
%$ try
%$     indx2 = traditional_resampling(weights,rand);
%$ catch
%$     t(2) = 0;
%$ end
%$
%$ T = all(t);
%@eof:2

%@test:3
%$ % Set the number of particles.
%$ number_of_particles = 20000;
%$
%$ show_plot = 0;
%$ show_time = 1;
%$
%$ % Define the weights
%$ weights = randn(number_of_particles,1).^2;
%$ weights = weights/sum(weights);
%$
%$ % Compute the empirical CDF
%$ c = cumsum(weights);
%$
%$ % Stratified resampling.
%$ noise  = rand(number_of_particles,1);
%$
%$ if show_time
%$     disp('Stratified resampling timing:')
%$     tic
%$ end
%$
%$ indx1  = traditional_resampling(weights,noise);
%$
%$ if show_time
%$     toc
%$     tic
%$ end
%$
%$ indx1_ = zeros(number_of_particles,1);
%$ randvec = (transpose(1:number_of_particles)-1+noise)/number_of_particles;
%$ for i=1:number_of_particles
%$     j = 1;
%$     while (randvec(i)>c(j))
%$         j = j + 1;
%$     end
%$     indx1_(i) = j;
%$ end
%$
%$ if show_time
%$     toc
%$ end
%$
%$ % Kitagawa's resampling.
%$ noise  = rand;
%$
%$ if show_time
%$     disp('Kitagawa''s resampling timing:')
%$     tic
%$ end
%$
%$ indx2  = traditional_resampling(weights,noise);
%$
%$ if show_time
%$     toc
%$     tic
%$ end
%$
%$ indx2_ = zeros(number_of_particles,1);
%$ randvec = (transpose(1:number_of_particles)-1+noise)/number_of_particles;
%$ j = 1;
%$ for i=1:number_of_particles
%$     while (randvec(i)>c(j))
%$         j = j + 1;
%$     end
%$     indx2_(i) = j;
%$ end
%$
%$ if show_time
%$     toc
%$ end
%$
%$ % REMARK
%$ % Note that the alternative code used in this test is sensibly faster than the code proposed
%$ % in the routine for the resampling scheme à la Kitagawa...
%$
%$ if show_plot
%$     plot(randvec,c,'-r'), hold on, plot([randvec(1),randvec(end)],[c(1),c(end)],'-k'), hold off, axis tight, box on
%$ end
%$
%$ % Check results.
%$ t(1) = dyn_assert(indx1,indx1_);
%$ t(2) = dyn_assert(indx2,indx2_);
%$ T = all(t);
%@eof:3