File: pmddf235.m

package info (click to toggle)
dynare 4.4.3-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 41,356 kB
  • ctags: 15,842
  • sloc: cpp: 77,029; ansic: 29,056; pascal: 13,241; sh: 4,811; objc: 3,061; yacc: 3,013; makefile: 1,479; lex: 1,258; python: 162; lisp: 54; xml: 8
file content (220 lines) | stat: -rw-r--r-- 7,323 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
function of = pmddf235(x,idmat0,idmat1,fss,nvar,ncoef,phi, ...
                          y,A0b,sg0bid,sgpbid)
%function of = pmddf232(x,idmat,fss,nvar,ncoef,phi, ...
%                          y,A0b,sg0bid,sgpbid)
% Leeper-Sims-Zha BVAR setup
% general program to setup A0 matrix and compute the likelihood
% requires
% x (parameter vector)
% a0indx (matrix indicating the free parameters in A0)
% fss (forecast sample size)
% nvar (number of variables)
% ncoef (number of coefficients in a single equation in A+)
% phi (r.h.s. observations in the system for A+)
% y (l.h.s. observations for A0)
% A0b (initial prior mean on A0)
% sg0bid (diagonal of Sigma0_bar, unweighted prior vcv on the parameters in i-th equation in A0)
% sgpbid (diagonal of Sigma+_bar, unweighted prior vcv on the parameters in i-th equation in A+)
%
% Revisions by CAS 9/27/96:  If we transmit idmat, rather than a0indx, we can scale the elements of
% idmat so that it carries information about relative prior variances.
%
% Revsions by TZ, 10/13/96:  efficiency improvement by streamlining the previous code
%     according to the general setup in Sims and Zha "Bayesian Methods for ...".
%
% Copyright (C) 1997-2012 Christopher A. Sims and Tao Zha
%
% This free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% If you did not received a copy of the GNU General Public License
% with this software, see <http://www.gnu.org/licenses/>.
%

global vaha0 vaMMa0 GlbAph FRESHFUNCTION
% FRESHFUNCTION added 8/20/90 by CAS.  It signals the pmddg23 whether the global variables
% it uses have been refreshed by a new pmddf231 call since the last gradient call.
a0indx=find(idmat0);
% pre-allocate GlbAph to be zeros(nvar,lags*nvar+1=ncoef)

nhp = 0;                 % <<>> 4 hyperparameters
na0p = length(a0indx);    % <<>> number of A0 parameters
nfp = na0p+nhp;

% *** initializing
vaha0 = zeros(na0p,1);
vaMMa0 = zeros(na0p,1);

%
A0h = zeros(nvar,nvar);
A0h(a0indx) = x(1:na0p);
%A0h = reshape(a0,nvar,nvar); CAS 9/24/96.  The reshape is not necessary if a0 starts as nvar x nvar
               %  restrictions on A0

[A0hl,A0hu] = lu(A0h);

% ** hyperparameters
%%mu = x(na0p+1:nfp);
mu = ones(5,1);
mu(1) = 1;
%mu(1) = 2;
mu(2) = 0.2;
mu(3) = 1;
%mu(4)=1;
mu(4)=10;
mu(5) =1;
%mu(5) = 40;
% results from ...\dummy1\foreh\pmdd6.out
%
% mu(1): overall tightness and also for A0;
% mu(2): relative tightness for A+;
% mu(3): relative tightness for the constant term;
% mu(4): weight on single dummy initial observation including constant;
% mu(5): weight on nvar sums of coeffs dummy observations.

% ** weight prior dummy observations
%phi(1:nvar,:) = (mu(5)^2/mu(1)^2)*phi(1:nvar,:);
%y(1:nvar,:) = (mu(5)^2/mu(1)^2)*y(1:nvar,:);
%phi(ndobs,:) = mu
% modified by CAS 8/6/96.  The dummy obs weights are naturally in std units, not var units.
phi(1:nvar,:) = mu(5)*phi(1:nvar,:);
y(1:nvar,:) = mu(5)*y(1:nvar,:);
phi(nvar+1,:) = mu(4)*phi(nvar+1,:);
y(nvar+1,:) = mu(4)*y(nvar+1,:);

% ** set up the conditional prior variance sg0bi and sgpbi.
sg0bida = mu(1)^2*sg0bid;
sgpbida = mu(1)^2*mu(2)^2*sgpbid;
sgpbida(ncoef) = mu(1)^2*mu(3)^2;
sgppbd = sgpbida(nvar+1:ncoef);    % corresponding to A++, in an SZ paper
sgppbdi = 1./sgppbd;
%sgppb = diag(sgppbd);

%
% **  some common terms
[u d v]=svd(phi,0); %trial
% xtx = phi'*phi; %trial
vd=v.*(ones(size(v,2),1)*diag(d)'); %trial
xtx=vd*vd';
% M = eye(fss) - phi*(xtx\phi'); % not used except in line below %trial
yu = y'*u; %trial
cxyxx=yu*yu'; %trial
yty=y'*y;
ymy=yty-cxyxx; %trial
%ymy = y'*M*y;
%cxy = phi'*y; %trial
cxy = vd*yu'; %trial
cyx = cxy';
%cxpy = xtx\cxy; %not used further except in line below
%cxyxx = cxy'*cxpy;

% ** estimate A+_hat conditional on A0, ncoef*nvar, but not using full prior
%GlbAph = cxpy*A0h;


%%%%%%%
%%% build the objective function below
%%%%%%%
%
t1f = diag(abs(A0hu));
t1f = log(t1f);
% * without the prior |A0|^k
tt1 = (-1.0)*fss*sum(t1f);

tt3 = 0;

disp(sprintf('Starting loop (of): %g',toc))

stril = 0;
Hptd = zeros(ncoef);
Hptdi=Hptd;
Hptd(nvar+1:ncoef,nvar+1:ncoef)=diag(sgppbd);
Hptdi(nvar+1:ncoef,nvar+1:ncoef)=diag(sgppbdi);
             % condtional on A0i, H_plus_tilde
for i = 1:nvar
   stri = find(idmat0(:,i)); %CAS change 9/24/96, to avoid slim chance of an exact zero in x vector
                              %at some point during an optimization.
   strm = length(stri);

   A0hb = A0h(stri,i)-A0b(stri,i);

   % ** set up the conditional prior variance sg0bi and sgpbi.
   % sg0bd =  zeros(stri,1); Commented out by CAS, 9/24/96.  Looks like this meant to have
   %                         strm where it has stri, and in any case it is "overwritten" below.
   %------------------------------
   % Introduce prior information on which variables "belong" in various equations.
   % In this first trial, we just introduce this information here, in a model-specific way.
   % Eventually this info has to be passed parametricly.  In our first shot, we just damp down
   % all coefficients except those on the diagonal.
   factor0=idmat0(:,i);
   sg0bd = sg0bida(stri).*factor0(stri);
   sg0bdi = 1./sg0bd;
   %sg0b = diag(sg0bd);
   %
   factor1=idmat1(:,i);
   sg1bd = sgpbida(1:nvar).*factor1;
   sg1bdi = 1./sg1bd;
   %sg1b = diag(sg1bd);

   % ** set up the unconditional prior variance on A0i and A+i
   XX = zeros(nvar,strm);
   XX(stri,:) = eye(strm);        % XX in Gelman, etel, on p479
   %
   % * final conditional prior variance on A+i give that on A0i, and
   % *    unconditional variance on A0+
   H0td = diag(sg0bd);    % unconditional
   % H_~: td: tilde for ~
   % ** inverse and chol decomp
   H0tdi = diag(sg0bdi);

   %
   Hptd(1:nvar,1:nvar)=diag(sg1bd);
   Hptdi(1:nvar,1:nvar)=diag(sg1bdi);
             % condtional on A0i, H_plus_tilde

   % common terms
   xxhp = xtx+Hptdi;
   A0hbH = A0hb'*H0tdi;
   H1p_1 = zeros(ncoef,nvar);
   H1p_1(1:nvar,:) = Hptdi(1:nvar,1:nvar);
   %%Hm = (cyx+H1p_1')*(xxhp\(cxy+H1p_1));
   Hm1 = (cyx+H1p_1')/xxhp;
   Hm2 = cxy+H1p_1;
   GlbAph(i,:) = A0h(stri,i)'*XX'*Hm1;     % alpha_plus_*_transpose
   %%alpMpyh = A0h(stri,i)'*XX'*(yty+Hptdi(1:nvar,1:nvar)-Hm)*XX;
   alpMpyh = A0h(stri,i)'*XX'*(yty+Hptdi(1:nvar,1:nvar))*XX - GlbAph(i,:)*Hm2*XX;

   % ** 3rd bid term in i-th equation,
   % **       with all other 3rd big terms before the i-th equation
   tt3 = tt3 + A0hbH*A0hb + alpMpyh*A0h(stri,i);

   %%%%
   % *** passing the gradient to "pmdg6.m" (analytical gradient)
   %%%%
   %
   % ** daha0 = d((alpha0-alpha0_tilde)'*inv(H_0_tilde)*
   % **                   (alpha0-alpha0_tilde))/d(a0??)
   daha0 = 2.0*A0hbH;
   vaha0(stril+1:stril+strm) = daha0(:);
   %
   % ** daMMa0 = d(alpha0'*P'*(Y'Y+H_1^(-1)+H_m)*P*apha0) / d(a0?)
   daMMa0 = 2.0*alpMpyh;
   vaMMa0(stril+1:stril+strm) = daMMa0(:);

   stril = stril + strm;
end

%disp(sprintf('Loop %d end: %g', i, toc))
disp(sprintf('Loop end (of): %g', toc))

%e_tfat = toc

of = tt1 + 0.5*tt3;
FRESHFUNCTION=1;