File: dynare.texi

package info (click to toggle)
dynare 4.4.3-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 41,356 kB
  • ctags: 15,842
  • sloc: cpp: 77,029; ansic: 29,056; pascal: 13,241; sh: 4,811; objc: 3,061; yacc: 3,013; makefile: 1,479; lex: 1,258; python: 162; lisp: 54; xml: 8
file content (11492 lines) | stat: -rw-r--r-- 391,591 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
\input texinfo
@c %**start of header
@setfilename dynare.info
@documentencoding UTF-8
@settitle Dynare Reference Manual
@afourwide
@dircategory Math
@direntry
* Dynare: (dynare).             A platform for handling a wide class
                                  of economic models.
@end direntry

@include version.texi

@c Define some macros

@macro descriptionhead
@ifnothtml
@sp 1
@end ifnothtml
@emph{Description}
@end macro

@macro optionshead
@iftex
@sp 1
@end iftex
@emph{Options}
@end macro

@macro flagshead
@iftex
@sp 1
@end iftex
@emph{Flags}
@end macro

@macro examplehead
@iftex
@sp 1
@end iftex
@emph{Example}
@end macro

@macro exampleshead
@iftex
@sp 1
@end iftex
@emph{Examples}
@end macro

@macro remarkhead
@iftex
@sp 1
@end iftex
@noindent @emph{Remark}
@end macro

@macro outputhead
@iftex
@sp 1
@end iftex
@emph{Output}
@end macro

@macro algorithmhead
@iftex
@sp 1
@end iftex
@emph{Algorithm}
@end macro

@macro algorithmshead
@iftex
@sp 1
@end iftex
@emph{Algorithms}
@end macro

@macro customhead{title}
@iftex
@sp 1
@end iftex
@emph{\title\}
@end macro

@macro dates
@code{dates }
@end macro

@macro dseries
@code{dseries }
@end macro

@c %**end of header

@copying
Copyright @copyright{} 1996-2014, Dynare Team.

@quotation
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license can be found at @uref{http://www.gnu.org/licenses/fdl.txt}.
@end quotation
@end copying

@titlepage
@title Dynare
@subtitle Reference Manual, version @value{VERSION}
@author Stéphane Adjemian
@author Houtan Bastani
@author Frédéric Karamé
@author Michel Juillard
@author Junior Maih
@author Ferhat Mihoubi
@author George Perendia
@author Johannes Pfeifer
@author Marco Ratto
@author Sébastien Villemot
@page
@vskip 0pt plus 1filll
@insertcopying
@end titlepage

@contents

@ifnottex
@node Top
@top Dynare
This is Dynare Reference Manual, version @value{VERSION}.

@insertcopying
@end ifnottex

@menu
* Introduction::
* Installation and configuration::
* Running Dynare::
* The Model file::
* The Configuration File::
* Time Series::
* Reporting::
* Examples::
* Dynare misc commands::
* Bibliography::
* Command and Function Index::
* Variable Index::

@detailmenu
 --- The Detailed Node Listing ---

Introduction

* What is Dynare ?::
* Documentation sources::
* Citing Dynare in your research::

Installation and configuration

* Software requirements::
* Installation of Dynare::
* Configuration::

Installation of Dynare

* On Windows::
* On Debian GNU/Linux and Ubuntu::
* On Mac OS X::
* For other systems::

Configuration

* For MATLAB::
* For GNU Octave::
* Some words of warning::

Running Dynare

* Dynare invocation::
* Dynare hooks::
* Understanding Preprocessor Error Messages::

The Model file

* Conventions::
* Variable declarations::
* Expressions::
* Parameter initialization::
* Model declaration::
* Auxiliary variables::
* Initial and terminal conditions::
* Shocks on exogenous variables::
* Other general declarations::
* Steady state::
* Getting information about the model::
* Deterministic simulation::
* Stochastic solution and simulation::
* Estimation::
* Forecasting::
* Optimal policy::
* Sensitivity and identification analysis::
* Markov-switching SBVAR::
* Displaying and saving results::
* Macro-processing language::
* Verbatim inclusion::
* Misc commands::

Expressions

* Parameters and variables::
* Operators::
* Functions::
* A few words of warning in stochastic context::

Parameters and variables

* Inside the model::
* Outside the model::

Functions

* Built-in Functions::
* External Functions::

Steady state

* Finding the steady state with Dynare nonlinear solver::
* Using a steady state file::
* Replace some equations during steady state computations::

Stochastic solution and simulation

* Computing the stochastic solution::
* Typology and ordering of variables::
* First order approximation::
* Second order approximation::
* Third order approximation::

Sensitivity and identification analysis

* Sampling::
* Stability Mapping::
* Reduced Form Mapping::
* RMSE::
* Screening Analysis::
* Identification Analysis::
* Performing Sensitivity and Identification Analysis::

Macro-processing language

* Macro expressions::
* Macro directives::
* Typical usages::
* MATLAB/Octave loops versus macro-processor loops::

Typical usages

* Modularization::
* Indexed sums or products::
* Multi-country models::
* Endogeneizing parameters::

The Configuration File

* Dynare Configuration::
* Parallel Configuration::

Time Series

* Dates::
* dseries class::

Dates

* dates in a mod file::
* dates class::

@end detailmenu
@end menu

@node Introduction
@chapter Introduction

@menu
* What is Dynare ?::
* Documentation sources::
* Citing Dynare in your research::
@end menu

@node What is Dynare ?
@section What is Dynare ?

Dynare is a software platform for handling a wide class of economic
models, in particular dynamic stochastic general equilibrium (DSGE)
and overlapping generations (OLG) models. The models solved by Dynare
include those relying on the @i{rational expectations} hypothesis, wherein
agents form their expectations about the future in a way consistent
with the model. But Dynare is also able to handle models where
expectations are formed differently: on one extreme, models where
agents perfectly anticipate the future; on the other extreme, models
where agents have limited rationality or imperfect knowledge of the
state of the economy and, hence, form their expectations through a
learning process. In terms of types of agents, models solved by Dynare
can incorporate consumers, productive firms, governments, monetary
authorities, investors and financial intermediaries. Some degree of
heterogeneity can be achieved by including several distinct classes of
agents in each of the aforementioned agent categories.

Dynare offers a user-friendly and intuitive way of describing these
models. It is able to perform simulations of the model given a
calibration of the model parameters and is also able to estimate these
parameters given a dataset. In practice, the user will write a text
file containing the list of model variables, the dynamic equations
linking these variables together, the computing tasks to be performed
and the desired graphical or numerical outputs.

A large panel of applied mathematics and computer science techniques
are internally employed by Dynare: multivariate nonlinear solving and
optimization, matrix factorizations, local functional approximation,
Kalman filters and smoothers, MCMC techniques for Bayesian estimation,
graph algorithms, optimal control, @dots{}

Various public bodies (central banks, ministries of economy and
finance, international organisations) and some private financial
institutions use Dynare for performing policy analysis exercises and
as a support tool for forecasting exercises. In the academic world,
Dynare is used for research and teaching purposes in postgraduate
macroeconomics courses.

Dynare is a free software, which means that it can be downloaded free
of charge, that its source code is freely available, and that it can
be used for both non-profit and for-profit purposes. Most of the
source files are covered by the GNU General Public Licence (GPL)
version 3 or later (there are some exceptions to this, see the file
@file{license.txt} in Dynare distribution). It is available for the
Windows, Mac and Linux platforms and is fully documented through a
user guide and a reference manual. Part of Dynare is programmed in
C++, while the rest is written using the
@uref{http://www.mathworks.com/products/matlab/, MATLAB} programming
language.  The latter implies that commercially-available MATLAB
software is required in order to run Dynare. However, as an
alternative to MATLAB, Dynare is also able to run on top of
@uref{http://www.octave.org, GNU Octave} (basically a free clone of
MATLAB): this possibility is particularly interesting for students or
institutions who cannot afford, or do not want to pay for, MATLAB and
are willing to bear the concomitant performance loss.

The development of Dynare is mainly done at
@uref{http://www.cepremap.fr, Cepremap} by a core team of
researchers who devote part of their time to software development.
Currently the development team of Dynare is composed of Stéphane
Adjemian (Université du Maine, Gains and Cepremap), Houtan Bastani
(Cepremap), Michel Juillard (Banque de France), Frédéric Karamé
(Université du Maine, Gains and Cepremap), Junior Maih (Norges Bank),
Ferhat Mihoubi (Université Paris-Est Créteil, Epee and Cepremap), George
Perendia, Johannes Pfeifer (University of Mannheim), Marco Ratto (JRC)
and Sébastien Villemot (Cepremap).
Increasingly, the developer base is expanding, as tools developed by
researchers outside of Cepremap are integrated into Dynare. Financial
support is provided by Cepremap, Banque de France and DSGE-net (an
international research network for DSGE modeling). The Dynare project
also received funding through the Seventh Framework Programme for
Research (FP7) of the European Commission's Socio-economic Sciences
and Humanities (SSH) Program from October 2008 to September 2011 under
grant agreement SSH-CT-2009-225149.

Interaction between developers and users of Dynare is central to the
project. A @uref{http://www.dynare.org/phpBB3, web forum} is available
for users who have questions about the usage of Dynare or who want to
report bugs. Training sessions are given through the Dynare Summer
School, which is organized every year and is attended by about 40
people. Finally, priorities in terms of future developments and
features to be added are decided in cooperation with the institutions
providing financial support.

@node Documentation sources
@section Documentation sources

The present document is the reference manual for Dynare. It documents
all commands and features in a systematic fashion.

New users should rather begin with Dynare User Guide (@cite{Mancini
(2007)}), distributed with Dynare and also available from the
@uref{http://www.dynare.org,official Dynare web site}.

Other useful sources of information include the
@uref{http://www.dynare.org,Dynare wiki} and the
@uref{http://www.dynare.org/phpBB3, Dynare forums}.

@node Citing Dynare in your research
@section Citing Dynare in your research

If you would like to refer to Dynare in a research article, the
recommended way is to cite the present manual, as follows:

@quotation
Stéphane Adjemian, Houtan Bastani, Michel Juillard, Frédéric Karamé,
Ferhat Mihoubi, George Perendia, Johannes Pfeifer, Marco Ratto and
Sébastien Villemot (2011), ``Dynare: Reference Manual, Version 4,''
@i{Dynare Working Papers}, 1, CEPREMAP
@end quotation

Note that citing the Dynare Reference Manual in your research is a
good way to help the Dynare project.

If you want to give a URL, use the address of the Dynare website:
@uref{http://www.dynare.org}.

@node Installation and configuration
@chapter Installation and configuration

@menu
* Software requirements::
* Installation of Dynare::
* Configuration::
@end menu

@node Software requirements
@section Software requirements

Packaged versions of Dynare are available for Windows XP/Vista/7/8,
@uref{http://www.debian.org,Debian GNU/Linux},
@uref{http://www.ubuntu.com/,Ubuntu} and Mac OS X Leopard/Snow
Leopard.  Dynare should work on other systems, but some compilation
steps are necessary in that case.

In order to run Dynare, you need one of the following:

@itemize

@item
MATLAB version 7.3 (R2006b) or above;

@item
GNU Octave version 3.6 or above.
@end itemize

Packages of GNU Octave can be downloaded on the
@uref{http://www.dynare.org/download/octave,Dynare website}.

The following optional extensions are also useful to benefit from extra
features, but are in no way required:

@itemize

@item
If under MATLAB: the optimization toolbox, the statistics toolbox, the
control system toolbox;

@item
If under GNU Octave, the following
@uref{http://octave.sourceforge.net/,Octave-Forge} packages: optim,
io, java, statistics, control.

@end itemize

If you plan to use the @code{use_dll} option of the @code{model}
command, you will need to install the necessary requirements for
compiling MEX files on your machine. If you are using MATLAB under
Windows, install a C++ compiler on your machine and configure it with
MATLAB: see
@uref{http://www.dynare.org/DynareWiki/ConfigureMatlabWindowsForMexCompilation,instructions
on the Dynare wiki}. Users of Octave under Linux should install the
package for MEX file compilation (under Debian or Ubuntu, it is called
@file{liboctave-dev}). If you are
using Octave or MATLAB under Mac OS X, you should install the latest
version of XCode: see
@uref{http://www.dynare.org/DynareWiki/InstallOnMacOSX,instructions on
the Dynare wiki}. Mac OS X Octave users will also need to install
gnuplot if they want graphing capabilities. Users of MATLAB under
Linux and Mac OS X, and users of Octave under Windows, normally need
to do nothing, since a working compilation environment is available by
default.

@node Installation of Dynare
@section Installation of Dynare

After installation, Dynare can be used in any directory on your
computer. It is best practice to keep your model files in directories
different from the one containing the Dynare toolbox. That way you can
upgrade Dynare and discard the previous version without having to worry
about your own files.

@menu
* On Windows::
* On Debian GNU/Linux and Ubuntu::
* On Mac OS X::
* For other systems::
@end menu

@node On Windows
@subsection On Windows

Execute the automated installer called @file{dynare-4.@var{x}.@var{y}-win.exe}
(where 4.@var{x}.@var{y} is the version number), and follow the instructions. The
default installation directory is @file{c:\dynare\4.@var{x}.@var{y}}.

After installation, this directory will contain several sub-directories,
among which are @file{matlab}, @file{mex} and @file{doc}.

The installer will also add an entry in your Start Menu with a shortcut
to the documentation files and uninstaller.

Note that you can have several versions of Dynare coexisting (for
example in @file{c:\dynare}), as long as you correctly adjust your path
settings (@pxref{Some words of warning}).

@node On Debian GNU/Linux and Ubuntu
@subsection On Debian GNU/Linux and Ubuntu

Please refer to the
@uref{http://www.dynare.org/DynareWiki/InstallOnDebianOrUbuntu,Dynare
Wiki} for detailed instructions.

Dynare will be installed under @file{/usr/share/dynare} and
@file{/usr/lib/dynare}. Documentation will be under
@file{/usr/share/doc/dynare}.

@node On Mac OS X
@subsection On Mac OS X

Execute the automated installer called
@file{dynare-4.@var{x}.@var{y}.pkg} (where
4.@var{x}.@var{y} is the version number), and follow the
instructions. The default installation directory is
@file{/Applications/Dynare/4.@var{x}.@var{y}}.

Please refer to the
@uref{http://www.dynare.org/DynareWiki/InstallOnMacOSX,Dynare Wiki} for
detailed instructions.

After installation, this directory will contain several sub-directories,
among which are @file{matlab}, @file{mex} and @file{doc}.

Note that you can have several versions of Dynare coexisting (for
example in @file{/Applications/Dynare}), as long as you correctly
adjust your path settings (@pxref{Some words of warning}).

@node For other systems
@subsection For other systems

You need to download Dynare source code from the
@uref{http://www.dynare.org,Dynare website} and unpack it somewhere.

Then you will need to recompile the pre-processor and the dynamic
loadable libraries. Please refer to
@uref{https://github.com/DynareTeam/dynare/blob/master/README.md,README.md}.

@node Configuration
@section Configuration

@menu
* For MATLAB::
* For GNU Octave::
* Some words of warning::
@end menu

@node For MATLAB
@subsection For MATLAB

You need to add the @file{matlab} subdirectory of your Dynare
installation to MATLAB path. You have two options for doing that:

@itemize

@item
Using the @code{addpath} command in the MATLAB command window:

Under Windows, assuming that you have installed Dynare in the standard
location, and replacing @code{4.@var{x}.@var{y}} with the correct
version number, type:

@example
addpath c:\dynare\4.@var{x}.@var{y}\matlab
@end example

Under Debian GNU/Linux or Ubuntu, type:

@example
addpath /usr/share/dynare/matlab
@end example

Under Mac OS X, assuming that you have installed Dynare in the standard
location, and replacing @code{4.@var{x}.@var{y}} with the correct version
number, type:

@example
addpath /Applications/Dynare/4.@var{x}.@var{y}/matlab
@end example

MATLAB will not remember this setting next time you run it, and you
will have to do it again.

@item
Via the menu entries:

Select the ``Set Path'' entry in the ``File'' menu, then click on
``Add Folder@dots{}'', and select the @file{matlab} subdirectory of your
Dynare installation. Note that you @emph{should not} use ``Add with
Subfolders@dots{}''. Apply the settings by clicking on ``Save''. Note that
MATLAB will remember this setting next time you run it.
@end itemize

@node For GNU Octave
@subsection For GNU Octave

You need to add the @file{matlab} subdirectory of your Dynare
installation to Octave path, using the @code{addpath} at the Octave
command prompt.

Under Windows, assuming that you have installed Dynare in the standard
location, and replacing ``4.@var{x}.@var{y}'' with the correct version
number, type:

@example
addpath c:\dynare\4.@var{x}.@var{y}\matlab
@end example

Under Debian GNU/Linux or Ubuntu, there is no need to use the
@code{addpath} command; the packaging does it for you.

Under Mac OS X, assuming that you have installed Dynare in the
standard location, and replacing ``4.@var{x}.@var{y}'' with the correct
version number, type:

@example
addpath /Applications/Dynare/4.@var{x}.@var{y}/matlab
@end example

If you don't want to type this command every time you run Octave, you
can put it in a file called @file{.octaverc} in your home directory
(under Windows this will generally be @file{c:\Documents and
Settings\USERNAME\} while under Mac OS X it is @file{/Users/USERNAME/}).
This file is run by Octave at every startup.

@node Some words of warning
@subsection Some words of warning

You should be very careful about the content of your MATLAB or Octave
path. You can display its content by simply typing @code{path} in the
command window.

The path should normally contain system directories of MATLAB or Octave,
and some subdirectories of your Dynare installation. You have to
manually add the @file{matlab} subdirectory, and Dynare will
automatically add a few other subdirectories at runtime (depending on
your configuration). You must verify that there is no directory coming
from another version of Dynare than the one you are planning to use.

You have to be aware that adding other directories to your path can
potentially create problems if any of your M-files have the same name
as a Dynare file. Your file would then override the Dynare file, making
Dynare unusable.

@node Running Dynare
@chapter Running Dynare

In order to give instructions to Dynare, the user has to write a
@emph{model file} whose filename extension must be @file{.mod}. This
file contains the description of the model and the computing tasks
required by the user. Its contents is described in @ref{The Model file}.

@menu
* Dynare invocation::
* Dynare hooks::
* Understanding Preprocessor Error Messages::
@end menu

@node Dynare invocation
@section Dynare invocation

Once the model file is written, Dynare is invoked using the
@code{dynare} command at the MATLAB or Octave prompt (with the filename
of the @file{.mod} given as argument).

In practice, the handling of the model file is done in two steps: in the
first one, the model and the processing instructions written by the user
in a @emph{model file} are interpreted and the proper MATLAB or GNU
Octave instructions are generated; in the second step, the program
actually runs the computations. Both steps are triggered automatically
by the @code{dynare} command.

@deffn {MATLAB/Octave command} dynare @var{FILENAME}[.mod] [@var{OPTIONS}@dots{}]

@descriptionhead

This command launches Dynare and executes the instructions included in
@file{@var{FILENAME}.mod}.  This user-supplied file contains the model
and the processing instructions, as described in @ref{The Model file}.

@code{dynare} begins by launching the preprocessor on the @file{.mod}
file.  By default (unless @code{use_dll} option has been given to
@code{model}), the preprocessor creates three intermediary files:

@table @file

@item @var{FILENAME}.m
Contains variable declarations, and computing tasks

@item @var{FILENAME}_dynamic.m
@vindex M_.lead_lag_incidence
Contains the dynamic model equations. Note that Dynare might introduce auxiliary equations and variables (@pxref{Auxiliary variables}). Outputs are the residuals of the dynamic model equations in the order the equations were declared and the Jacobian of the dynamic model equations. For higher order approximations also the Hessian and the third-order derivatives are provided. When computing the Jacobian of the dynamic model, the order of the endogenous variables in the columns is stored in @code{M_.lead_lag_incidence}. The rows of this matrix represent time periods: the first row denotes a lagged (time t-1) variable, the second row a contemporaneous (time t) variable, and the third row a leaded (time t+1) variable. The columns of the matrix represent the endogenous variables in their order of declaration. A zero in the matrix means that this endogenous does not appear in the model in this time period. The value in the @code{M_.lead_lag_incidence} matrix corresponds to the column of that variable in the Jacobian of the dynamic model. Example: Let the second declared variable be @code{c} and the @code{(3,2)} entry of @code{M_.lead_lag_incidence} be @code{15}. Then the @code{15}th column of the Jacobian is the derivative with respect to @code{y(+1)}.

@item @var{FILENAME}_static.m
Contains the long run static model equations. Note that Dynare might introduce auxiliary equations and variables (@pxref{Auxiliary variables}). Outputs are the residuals of the static model equations in the order the equations were declared and the Jacobian of the static equations. Entry @code{(i,j)} of the Jacobian represents the derivative of the @code{i}th static model equation with respect to the @code{j}th model variable in declaration order.
@end table

@noindent
These files may be looked at to understand errors reported at the simulation stage.

@code{dynare} will then run the computing tasks by executing @file{@var{FILENAME}.m}.

A few words of warning is warranted here: the filename of the
@file{.mod} file should be chosen in such a way that the generated
@file{.m} files described above do not conflict with @file{.m} files
provided by MATLAB/Octave or by Dynare. Not respecting this rule could
cause crashes or unexpected behaviour. In particular, it means that
the @file{.mod} file cannot be given the name of a MATLAB/Octave or
Dynare command. Under Octave, it also means that the @file{.mod} file
cannot be named @file{test.mod}.

@optionshead

@table @code

@item noclearall
By default, @code{dynare} will issue a @code{clear all} command to
MATLAB or Octave, thereby deleting all workspace variables; this options
instructs @code{dynare} not to clear the workspace

@item debug
Instructs the preprocessor to write some debugging information about the
scanning and parsing of the @file{.mod} file

@item notmpterms
Instructs the preprocessor to omit temporary terms in the static and
dynamic files; this generally decreases performance, but is used for
debugging purposes since it makes the static and dynamic files more
readable

@item savemacro[=@var{FILENAME}]
Instructs @code{dynare} to save the intermediary file which is obtained
after macro-processing (@pxref{Macro-processing language}); the saved
output will go in the file specified, or if no file is specified in
@file{@var{FILENAME}-macroexp.mod}

@item onlymacro
Instructs the preprocessor to only perform the macro-processing step,
and stop just after. Mainly useful for debugging purposes or for using
the macro-processor independently of the rest of Dynare toolbox.

@item nolinemacro
Instructs the macro-preprocessor to omit line numbering information in
the intermediary @file{.mod} file created after the macro-processing
step. Useful in conjunction with @code{savemacro} when one wants that to
reuse the intermediary @file{.mod} file, without having it cluttered by
line numbering directives.

@item nolog
Instructs Dynare to no create a logfile of this run in
@file{@var{FILENAME}.log}. The default is to create the logfile.

@item nowarn
Suppresses all warnings.

@item warn_uninit
Display a warning for each variable or parameter which is not
initialized. @xref{Parameter initialization}, or
@ref{load_params_and_steady_state} for initialization of parameters.
@xref{Initial and terminal conditions}, or
@ref{load_params_and_steady_state} for initialization of endogenous
and exogenous variables.

@item console
Activate console mode. In addition to the behavior of
@code{nodisplay}, Dynare will not use graphical waitbars for long
computations.

@item nograph
Activate the @code{nograph} option (@pxref{nograph}), so that Dynare will not produce any
graph

@item nointeractive
Instructs Dynare to not request user input

@item cygwin
Tells Dynare that your MATLAB is configured for compiling MEX files with
Cygwin (@pxref{Software requirements}). This option is only available
under Windows, and is used in conjunction with @code{use_dll}.

@item msvc
Tells Dynare that your MATLAB is configured for compiling MEX files with
Microsoft Visual C++ (@pxref{Software requirements}). This option is
only available under Windows, and is used in conjunction with
@code{use_dll}.

@item parallel[=@var{CLUSTER_NAME}]
Tells Dynare to perform computations in parallel. If @var{CLUSTER_NAME}
is passed, Dynare will use the specified cluster to perform parallel
computations. Otherwise, Dynare will use the first cluster specified in
the configuration file. @xref{The Configuration File}, for more
information about the configuration file.

@item conffile=@var{FILENAME}
Specifies the location of the configuration file if it differs from the
default. @xref{The Configuration File}, for more information about the
configuration file and its default location.

@item parallel_slave_open_mode
Instructs Dynare to leave the connection to the slave node open after
computation is complete, closing this connection only when Dynare
finishes processing.

@item parallel_test
Tests the parallel setup specified in the configuration file without
executing the @file{.mod} file. @xref{The Configuration File}, for more
information about the configuration file.

@item -D@var{MACRO_VARIABLE}=@var{MACRO_EXPRESSION}
Defines a macro-variable from the command line (the same effect as using
the Macro directive @code{@@#define} in a model file, @pxref{Macro-processing language}).

@item nostrict
Allows Dynare to issue a warning and continue processing when
@enumerate
@item there are more endogenous variables than equations
@item an undeclared symbol is assigned in @code{initval} or @code{endval}
@end enumerate
@end table

@outputhead

Depending on the computing tasks requested in the @file{.mod} file,
executing the @code{dynare} command will leave variables containing
results in the workspace available for further processing. More
details are given under the relevant computing tasks.

The @code{M_}, @code{oo_}, and @code{options_} structures are saved in
a file called @file{@var{FILENAME}_results.mat}. If they exist,
@code{estim_params_}, @code{bayestopt_}, @code{dataset_}, and
@code{estimation_info} are saved in the same file.

@examplehead

@example
dynare ramst
dynare ramst.mod savemacro
@end example

@end deffn

The output of Dynare is left into three main variables in the
MATLAB/Octave workspace:

@defvr {MATLAB/Octave variable} M_
Structure containing various information about the model.
@end defvr

@defvr {MATLAB/Octave variable} options_
Structure contains the values of the various options used by Dynare
during the computation.
@end defvr

@defvr {MATLAB/Octave variable} oo_
Structure containing the various results of the computations.
@end defvr


@node Dynare hooks
@section Dynare hooks

It is possible to call pre and post Dynare preprocessor hooks written as MATLAB scripts.
The script @file{@var{MODFILENAME}/hooks/priorprocessing.m} is executed before the
call to Dynare's preprocessor, and  can be used to programmatically transform the mod file
that will be read by the preprocessor. The script @file{@var{MODFILENAME}/hooks/postprocessing.m}
is executed just after the call to Dynare's preprocessor, and can be used to programmatically
transform the files generated by Dynare's preprocessor before actual computations start. The
pre and/or post dynare preprocessor hooks are executed if and only if the aforementioned scripts
are detected in the same folder as the the model file, @file{@var{FILENAME}.mod}.


@node Understanding Preprocessor Error Messages
@section Understanding Preprocessor Error Messages

If the preprocessor runs into an error while processing your
@file{.mod} file, it will issue an error. Due to the way that a parser
works, sometimes these errors can be misleading. Here, we aim to
demystify these error messages.

The preprocessor issues error messages of the form:
@enumerate
@item @code{ERROR: <<file.mod>>: line A, col B: <<error message>>}
@item @code{ERROR: <<file.mod>>: line A, cols B-C: <<error message>>}
@item @code{ERROR: <<file.mod>>: line A, col B - line C, col D: <<error message>>}
@end enumerate
@noindent The first two errors occur on a single line, with error
two spanning multiple columns. Error three spans multiple rows.

Often, the line and column numbers are precise, leading you directly
to the offending syntax. Infrequently however, because of the way the
parser works, this is not the case. The most common example of
misleading line and column numbers (and error message for that matter)
is the case of a missing semicolon, as seen in the following example:
@example
varexo a, b
parameters c, ...;
@end example
@noindent In this case, the parser doesn't know a semicolon is missing at the
end of the @code{varexo} command until it begins parsing the second
line and bumps into the @code{parameters} command. This is because we
allow commands to span multiple lines and, hence, the parser cannot
know that the second line will not have a semicolon on it until it
gets there. Once the parser begins parsing the second line, it
realizes that it has encountered a keyword, @code{parameters}, which
it did not expect. Hence, it throws an error of the form: @code{ERROR:
<<file.mod>>: line 2, cols 0-9: syntax error, unexpected
PARAMETERS}. In this case, you would simply place a semicolon at the
end of line one and the parser would continue processing.

@node The Model file
@chapter The Model file

@menu
* Conventions::
* Variable declarations::
* Expressions::
* Parameter initialization::
* Model declaration::
* Auxiliary variables::
* Initial and terminal conditions::
* Shocks on exogenous variables::
* Other general declarations::
* Steady state::
* Getting information about the model::
* Deterministic simulation::
* Stochastic solution and simulation::
* Estimation::
* Forecasting::
* Optimal policy::
* Sensitivity and identification analysis::
* Markov-switching SBVAR::
* Displaying and saving results::
* Macro-processing language::
* Verbatim inclusion::
* Misc commands::
@end menu

@node Conventions
@section Conventions

A model file contains a list of commands and of blocks.  Each command
and each element of a block is terminated by a semicolon
(@code{;}). Blocks are terminated by @code{end;}.

Most Dynare commands have arguments and several accept options,
indicated in parentheses after the command keyword. Several options
are separated by commas.

In the description of Dynare commands, the following conventions are
observed:

@itemize

@item
optional arguments or options are indicated between square brackets:
@samp{[]};

@item
repreated arguments are indicated by ellipses: ``@dots{}'';

@item
mutually exclusive arguments are separated by vertical bars: @samp{|};

@item
@var{INTEGER} indicates an integer number;

@item
@var{DOUBLE} indicates a double precision number. The following syntaxes
are valid: @code{1.1e3}, @code{1.1E3}, @code{1.1d3}, @code{1.1D3}. In
some places, infinite values @code{Inf} and @code{-Inf} are also allowed;

@item
@var{NUMERICAL_VECTOR} indicates a vector of numbers separated by spaces,
enclosed by square brackets;

@item
@var{EXPRESSION} indicates a mathematical expression valid outside the
model description (@pxref{Expressions});

@item
@var{MODEL_EXPRESSION} indicates a mathematical expression valid in the
model description (@pxref{Expressions} and @ref{Model declaration});

@item
@var{MACRO_EXPRESSION} designates an expression of the macro-processor
(@pxref{Macro expressions});

@item
@var{VARIABLE_NAME} indicates a variable name starting with an
alphabetical character and can't contain: @samp{()+-*/^=!;:@@#.} or
accentuated characters;

@item
@var{PARAMETER_NAME} indicates a parameter name starting with an
alphabetical character and can't contain: @samp{()+-*/^=!;:@@#.} or
accentuated characters;

@item
@var{LATEX_NAME} indicates a valid @LaTeX{} expression in math mode
(not including the dollar signs);

@item
@var{FUNCTION_NAME} indicates a valid MATLAB function name;

@item
@var{FILENAME} indicates a filename valid in the underlying operating
system; it is necessary to put it between quotes when specifying the
extension or if the filename contains a non-alphanumeric character;

@end itemize

@node Variable declarations
@section Variable declarations

Declarations of variables and parameters are made with the following commands:

@deffn Command var @var{VARIABLE_NAME} [$@var{LATEX_NAME}$] [(long_name=@var{QUOTED_STRING})]@dots{};
@deffnx Command var (deflator = @var{MODEL_EXPRESSION}) @var{VARIABLE_NAME} [$@var{LATEX_NAME}$] [(long_name=@var{QUOTED_STRING})]@dots{};
@deffnx Command var (log_deflator = @var{MODEL_EXPRESSION}) @var{VARIABLE_NAME} [$@var{LATEX_NAME}$] [(long_name=@var{QUOTED_STRING})]@dots{};

@descriptionhead

This required command declares the endogenous variables in the
model. @xref{Conventions}, for the syntax of @var{VARIABLE_NAME} and
@var{MODEL_EXPRESSION}. Optionally it is possible to give a @LaTeX{}
name to the variable or, if it is nonstationary, provide information
regarding its deflator.

@code{var} commands can appear several times in the file and Dynare will
concatenate them.

@optionshead

If the model is nonstationary and is to be written as such in the
@code{model} block, Dynare will need the trend deflator for the
appropriate endogenous variables in order to stationarize the model. The
trend deflator must be provided alongside the variables that follow this
trend.

@table @code

@item deflator = @var{MODEL_EXPRESSION}
The expression used to detrend an endogenous variable. All trend
variables, endogenous variables and parameters referenced in
@var{MODEL_EXPRESSION} must already have been declared by the
@code{trend_var}, @code{log_trend_var}, @code{var} and
@code{parameters} commands. The deflator is assumed to be
multiplicative; for an additive deflator, use @code{log_deflator}.

@item log_deflator = @var{MODEL_EXPRESSION}
Same as @code{deflator}, except that the deflator is assumed to be
additive instead of multiplicative (or, to put it otherwise, the
declared variable is equal to the log of a variable with a
multiplicative trend).

@anchor{long_name}
@item long_name = @var{QUOTED_STRING}
This is the long version of the variable name. Its value is stored in
@code{M_.endo_names_long}. Default: @var{VARIABLE_NAME}
@end table

@examplehead

@example
var c gnp q1 q2;
var(deflator=A) i b;
var c $C$ (long_name=`Consumption');
@end example

@end deffn

@deffn Command varexo @var{VARIABLE_NAME} [$@var{LATEX_NAME}$] [(long_name=@var{QUOTED_STRING})]@dots{};

@descriptionhead

This optional command declares the exogenous variables in the model.
@xref{Conventions}, for the syntax of @var{VARIABLE_NAME}. Optionally it
is possible to give a @LaTeX{} name to the variable.

Exogenous variables are required if the user wants to be able to apply
shocks to her model.

@code{varexo} commands can appear several times in the file and Dynare
will concatenate them.

@optionshead
@table @code
@item long_name = @var{QUOTED_STRING}
Like @ref{long_name} but value stored in @code{M_.exo_names_long}.
@end table

@examplehead

@example
varexo m gov;
@end example

@end deffn

@deffn Command varexo_det @var{VARIABLE_NAME} [$@var{LATEX_NAME}$] [(long_name=@var{QUOTED_STRING})]@dots{};

@descriptionhead

This optional command declares exogenous deterministic variables in a
stochastic model. See @ref{Conventions}, for the syntax of
@var{VARIABLE_NAME}. Optionally it is possible to give a @LaTeX{} name
to the variable.

It is possible to mix deterministic and stochastic shocks to build
models where agents know from the start of the simulation about future
exogenous changes. In that case @code{stoch_simul} will compute the
rational expectation solution adding future information to the state
space (nothing is shown in the output of @code{stoch_simul}) and
@code{forecast} will compute a simulation conditional on initial
conditions and future information.

@code{varexo_det} commands can appear several times in the file and
Dynare will concatenate them.

@optionshead
@table @code
@item long_name = @var{QUOTED_STRING}
Like @ref{long_name} but value stored in @code{M_.exo_det_names_long}.
@end table

@examplehead

@example

varexo m gov;
varexo_det tau;

@end example

@end deffn

@deffn Command parameters @var{PARAMETER_NAME} [$@var{LATEX_NAME}$] [(long_name=@var{QUOTED_STRING})]@dots{};

@descriptionhead

This command declares parameters used in the model, in variable
initialization or in shocks declarations. See @ref{Conventions}, for the
syntax of @var{PARAMETER_NAME}. Optionally it is possible to give a
@LaTeX{} name to the parameter.

The parameters must subsequently be assigned values (@pxref{Parameter
initialization}).

@code{parameters} commands can appear several times in the file and
Dynare will concatenate them.

@optionshead
@table @code
@item long_name = @var{QUOTED_STRING}
Like @ref{long_name} but value stored in @code{M_.param_names_long}.
@end table

@examplehead

@example
parameters alpha, bet;
@end example

@end deffn

@deffn Command change_type (var | varexo | varexo_det | parameters) @var{VARIABLE_NAME} | @var{PARAMETER_NAME}@dots{};

@descriptionhead

Changes the types of the specified variables/parameters to another type:
endogenous, exogenous, exogenous deterministic or parameter.

It is important to understand that this command has a global effect on
the @file{.mod} file: the type change is effective after, but also
before, the @code{change_type} command. This command is typically used
when flipping some variables for steady state calibration: typically a
separate model file is used for calibration, which includes the list of
variable declarations with the macro-processor, and flips some variable.

@examplehead

@example
var y, w;
parameters alpha, bet;
@dots{}
change_type(var) alpha, bet;
change_type(parameters) y, w;
@end example

Here, in the whole model file, @code{alpha} and @code{beta} will be
endogenous and @code{y} and @code{w} will be parameters.

@end deffn

@anchor{predetermined_variables}
@deffn Command predetermined_variables @var{VARIABLE_NAME}@dots{};

@descriptionhead

In Dynare, the default convention is that the timing of a variable
reflects when this variable is decided. The typical example is for
capital stock: since the capital stock used at current period is
actually decided at the previous period, then the capital stock entering
the production function is @code{k(-1)}, and the law of motion of
capital must be written:

@example
k = i + (1-delta)*k(-1)
@end example

Put another way, for stock variables, the default in Dynare is to use a
``stock at the end of the period'' concept, instead of a ``stock at the
beginning of the period'' convention.

The @code{predetermined_variables} is used to change that
convention. The endogenous variables declared as predetermined variables
are supposed to be decided one period ahead of all other endogenous
variables. For stock variables, they are supposed to follow a ``stock at
the beginning of the period'' convention.

Note that Dynare internally always uses the ``stock at the end of the period''
concept, even when the model has been entered using the
@code{predetermined_variables}-command. Thus, when plotting,
computing or simulating variables, Dynare will follow the convention to
use variables that are decided in the current period. For example,
when generating impulse response functions for capital, Dynare
will plot @code{k}, which is the capital stock decided upon by
investment today (and which will be used in tomorrow's production function).
This is the reason that capital is shown to be moving on impact, because
it is @code{k} and not the predetermined @code{k(-1)} that is displayed.
It is important to remember that this also affects simulated time
series and output from smoother routines for predetermined variables.
Compared to non-predetermined variables they might otherwise appear
to be falsely shifted to the future by one period.
@examplehead

The following two program snippets are strictly equivalent.

@emph{Using default Dynare timing convention:}

@example
var y, k, i;
@dots{}
model;
y = k(-1)^alpha;
k = i + (1-delta)*k(-1);
@dots{}
end;
@end example

@emph{Using the alternative timing convention:}

@example
var y, k, i;
predetermined_variables k;
@dots{}
model;
y = k^alpha;
k(+1) = i + (1-delta)*k;
@dots{}
end;
@end example

@end deffn

@deffn Command trend_var (growth_factor = @var{MODEL_EXPRESSION}) @var{VARIABLE_NAME} [$@var{LATEX_NAME}$]@dots{};

@descriptionhead

This optional command declares the trend variables in the
model. @xref{Conventions}, for the syntax of @var{MODEL_EXPRESSION}
and @var{VARIABLE_NAME}. Optionally it is possible to give a @LaTeX{}
name to the variable.

The variable is assumed to have a multiplicative growth trend. For an
additive growth trend, use @code{log_trend_var} instead.

Trend variables are required if the user wants to be able to write a
nonstationary model in the @code{model} block. The @code{trend_var}
command must appear before the @code{var} command that references the
trend variable.

@code{trend_var} commands can appear several times in the file and
Dynare will concatenate them.

If the model is nonstationary and is to be written as such in the
@code{model} block, Dynare will need the growth factor of every trend
variable in order to stationarize the model. The growth factor must be
provided within the declaration of the trend variable, using the
@code{growth_factor} keyword. All endogenous variables and
parameters referenced in @var{MODEL_EXPRESSION} must already have been
declared by the @code{var} and @code{parameters} commands.

@examplehead

@example
trend_var (growth_factor=gA) A;
@end example

@end deffn

@deffn Command log_trend_var (log_growth_factor = @var{MODEL_EXPRESSION}) @var{VARIABLE_NAME} [$@var{LATEX_NAME}$]@dots{};

@descriptionhead

Same as @code{trend_var}, except that the variable is supposed to have
an additive trend (or, to put it otherwise, to be equal to the log of
a variable with a multiplicative trend).

@end deffn


@node Expressions
@section Expressions

Dynare distinguishes between two types of mathematical expressions:
those that are used to describe the model, and those that are used
outside the model block (@i{e.g.} for initializing parameters or
variables, or as command options). In this manual, those two types of
expressions are respectively denoted by @var{MODEL_EXPRESSION} and
@var{EXPRESSION}.

Unlike MATLAB or Octave expressions, Dynare expressions are necessarily
scalar ones: they cannot contain matrices or evaluate to
matrices@footnote{Note that arbitrary MATLAB or Octave expressions can
be put in a @file{.mod} file, but those expressions have to be on
separate lines, generally at the end of the file for post-processing
purposes. They are not interpreted by Dynare, and are simply passed on
unmodified to MATLAB or Octave. Those constructions are not addresses in
this section.}.

Expressions can be constructed using integers (@var{INTEGER}), floating
point numbers (@var{DOUBLE}), parameter names (@var{PARAMETER_NAME}),
variable names (@var{VARIABLE_NAME}), operators and functions.

The following special constants are also accepted in some contexts:

@deffn Constant inf
Represents infinity.
@end deffn

@deffn Constant nan
``Not a number'': represents an undefined or unrepresentable value.
@end deffn

@menu
* Parameters and variables::
* Operators::
* Functions::
* A few words of warning in stochastic context::
@end menu

@node Parameters and variables
@subsection Parameters and variables

Parameters and variables can be introduced in expressions by simply
typing their names. The semantics of parameters and variables is quite
different whether they are used inside or outside the model block.

@menu
* Inside the model::
* Outside the model::
@end menu

@node Inside the model
@subsubsection Inside the model

Parameters used inside the model refer to the value given through
parameter initialization (@pxref{Parameter initialization}) or
@code{homotopy_setup} when doing a simulation, or are the estimated
variables when doing an estimation.

Variables used in a @var{MODEL_EXPRESSION} denote @emph{current period}
values when neither a lead or a lag is given. A lead or a lag can be
given by enclosing an integer between parenthesis just after the
variable name: a positive integer means a lead, a negative one means a
lag. Leads or lags of more than one period are allowed. For example, if
@code{c} is an endogenous variable, then @code{c(+1)} is the variable
one period ahead, and @code{c(-2)} is the variable two periods before.

When specifying the leads and lags of endogenous variables, it is
important to respect the following convention: in Dynare, the timing of
a variable reflects when that variable is decided. A control variable ---
which by definition is decided in the current period --- must have no
lead. A predetermined variable --- which by definition has been decided in
a previous period --- must have a lag. A consequence of this is that all
stock variables must use the ``stock at the end of the period''
convention. Please refer to @cite{Mancini-Griffoli (2007)} for more
details and concrete examples.

Leads and lags are primarily used for endogenous variables, but can be
used for exogenous variables. They have no effect on parameters and are
forbidden for local model variables (@pxref{Model declaration}).

@node Outside the model
@subsubsection Outside the model

When used in an expression outside the model block, a parameter or a
variable simply refers to the last value given to that variable. More
precisely, for a parameter it refers to the value given in the
corresponding parameter initialization (@pxref{Parameter
initialization}); for an endogenous or exogenous variable, it refers to
the value given in the most recent @code{initval} or @code{endval} block.

@node Operators
@subsection Operators

The following operators are allowed in both @var{MODEL_EXPRESSION} and
@var{EXPRESSION}:

@itemize

@item
binary arithmetic operators: @code{+}, @code{-}, @code{*}, @code{/}, @code{^}

@item
unary arithmetic operators: @code{+}, @code{-}

@item
binary comparison operators (which evaluate to either @code{0} or
@code{1}): @code{<}, @code{>}, @code{<=}, @code{>=}, @code{==},
@code{!=}

Note that these operators are differentiable everywhere except on a
line of the 2-dimensional real plane. However for facilitating
convergence of Newton-type methods, Dynare assumes that, at the points
of non-differentiability, the partial derivatives of these operators
with respect to both arguments is equal to @math{0} (since this is the
value of the partial derivatives everywhere else).
@end itemize

The following special operators are accepted in @var{MODEL_EXPRESSION}
(but not in @var{EXPRESSION}):

@deffn Operator STEADY_STATE (@var{MODEL_EXPRESSION})
This operator is used to take the value of the enclosed expression at
the steady state. A typical usage is in the Taylor rule, where you may
want to use the value of GDP at steady state to compute the output gap.
@end deffn

@anchor{expectation}
@deffn Operator EXPECTATION (@var{INTEGER}) (@var{MODEL_EXPRESSION})
This operator is used to take the expectation of some expression using
a different information set than the information available at current
period. For example, @code{EXPECTATION(-1)(x(+1))} is equal to the
expected value of variable @code{x} at next period, using the
information set available at the previous period. @xref{Auxiliary
variables}, for an explanation of how this operator is handled
internally and how this affects the output.
@end deffn

@node Functions
@subsection Functions

@menu
* Built-in Functions::
* External Functions::
@end menu

@node Built-in Functions
@subsubsection Built-in Functions

The following standard functions are supported internally for both
@var{MODEL_EXPRESSION} and @var{EXPRESSION}:

@defun exp (@var{x})
Natural exponential.
@end defun

@defun log (@var{x})
@defunx ln (@var{x})
Natural logarithm.
@end defun

@defun log10 (@var{x})
Base 10 logarithm.
@end defun

@defun sqrt (@var{x})
Square root.
@end defun

@defun abs (@var{x})
Absolute value.

Note that this function is not differentiable at @math{x=0}. However,
for facilitating convergence of Newton-type methods, Dynare assumes
that the derivative at @math{x=0} is equal to @math{0} (this
assumption comes from the observation that the derivative of
@math{abs(x)} is equal to @math{sign(x)} for @math{x\neq 0} and from
the convention for the derivative of @math{sign(x)} at @math{x=0}).
@end defun

@defun sign (@var{x})
Signum function.

Note that this function is not differentiable at @math{x=0}. However,
for facilitating convergence of Newton-type methods, Dynare assumes
that the derivative at @math{x=0} is equal to @math{0} (this assumption
comes from the observation that both the right- and left-derivatives
at this point exist and are equal to @math{0}).
@end defun

@defun sin (@var{x})
@defunx cos (@var{x})
@defunx tan (@var{x})
@defunx asin (@var{x})
@defunx acos (@var{x})
@defunx atan (@var{x})
Trigonometric functions.
@end defun

@defun max (@var{a}, @var{b})
@defunx min (@var{a}, @var{b})
Maximum and minimum of two reals.

Note that these functions are differentiable everywhere except on a
line of the 2-dimensional real plane defined by @math{a=b}. However
for facilitating convergence of Newton-type methods, Dynare assumes
that, at the points of non-differentiability, the partial derivative
of these functions with respect to the first (resp. the second)
argument is equal to @math{1} (resp. to @math{0}) (@i{i.e.} the
derivatives at the kink are equal to the derivatives observed on the
half-plane where the function is equal to its first argument).
@end defun

@defun normcdf (@var{x})
@defunx normcdf (@var{x}, @var{mu}, @var{sigma})
Gaussian cumulative density function, with mean @var{mu} and standard
deviation @var{sigma}. Note that @code{normcdf(@var{x})} is equivalent
to @code{normcdf(@var{x},0,1)}.
@end defun

@defun normpdf (@var{x})
@defunx normpdf (@var{x}, @var{mu}, @var{sigma})
Gaussian probability density function, with mean @var{mu} and standard
deviation @var{sigma}. Note that @code{normpdf(@var{x})} is equivalent
to @code{normpdf(@var{x},0,1)}.
@end defun

@defun erf (@var{x})
Gauss error function.
@end defun

@node External Functions
@subsubsection External Functions

Any other user-defined (or built-in) MATLAB or Octave function may be
used in both a @var{MODEL_EXPRESSION} and an @var{EXPRESSION}, provided
that this function has a scalar argument as a return value.

To use an external function in a @var{MODEL_EXPRESSION}, one must
declare the function using the @code{external_function} statement. This
is not necessary for external functions used in an @var{EXPRESSION}.

@deffn Command external_function (@var{OPTIONS}@dots{});

@descriptionhead

This command declares the external functions used in the model block. It
is required for every unique function used in the model block.

@code{external_function} commands can appear several times in the file
and must come before the model block.

@optionshead

@table @code

@item name = @var{NAME}
The name of the function, which must also be the name of the M-/MEX file
implementing it. This option is mandatory.

@item nargs = @var{INTEGER}
The number of arguments of the function. If this option is not provided,
Dynare assumes @code{nargs = 1}.

@item first_deriv_provided [= @var{NAME}]
If @var{NAME} is provided, this tells Dynare that the Jacobian is
provided as the only output of the M-/MEX file given as the option
argument. If @var{NAME} is not provided, this tells Dynare that the
M-/MEX file specified by the argument passed to @code{name} returns the
Jacobian as its second output argument.

@item second_deriv_provided [= @var{NAME}]
If @var{NAME} is provided, this tells Dynare that the Hessian is
provided as the only output of the M-/MEX file given as the option
argument. If @var{NAME} is not provided, this tells Dynare that the
M-/MEX file specified by the argument passed to @code{name} returns the
Hessian as its third output argument. NB: This option can only be used
if the @code{first_deriv_provided} option is used in the same
@code{external_function} command.
@end table

@examplehead

@example
external_function(name = funcname);
external_function(name = otherfuncname, nargs = 2,
                  first_deriv_provided, second_deriv_provided);
external_function(name = yetotherfuncname, nargs = 3,
                  first_deriv_provided = funcname_deriv);
@end example

@end deffn

@node A few words of warning in stochastic context
@subsection A few words of warning in stochastic context

The use of the following functions and operators is strongly
discouraged in a stochastic context: @code{max}, @code{min},
@code{abs}, @code{sign}, @code{<}, @code{>}, @code{<=}, @code{>=},
@code{==}, @code{!=}.

The reason is that the local approximation used by @code{stoch_simul}
or @code{estimation} will by nature ignore the non-linearities
introduced by these functions if the steady state is away from the
kink. And, if the steady state is exactly at the kink, then the
approximation will be bogus because the derivative of these functions
at the kink is bogus (as explained in the respective documentations of
these functions and operators).

Note that @code{extended_path} is not affected by this problem,
because it does not rely on a local approximation of the model.

@node Parameter initialization
@section Parameter initialization

When using Dynare for computing simulations, it is necessary to
calibrate the parameters of the model. This is done through parameter
initialization.

The syntax is the following:

@example
@var{PARAMETER_NAME} = @var{EXPRESSION};
@end example

Here is an example of calibration:

@example
parameters alpha, bet;

beta = 0.99;
alpha = 0.36;
A = 1-alpha*beta;
@end example

Internally, the parameter values are stored in @code{M_.params}:

@defvr {MATLAB/Octave variable} M_.params

Contains the values of model parameters. The parameters are in the
order that was used in the @code{parameters} command.

@end defvr


@node Model declaration
@section Model declaration

The model is declared inside a @code{model} block:

@deffn Block model ;
@deffnx Block model (@var{OPTIONS}@dots{});

@descriptionhead

The equations of the model are written in a block delimited by
@code{model} and @code{end} keywords.

There must be as many equations as there are endogenous variables in the
model, except when computing the unconstrained optimal policy with
@code{ramsey_policy} or @code{discretionary_policy}.

The syntax of equations must follow the conventions for
@var{MODEL_EXPRESSION} as described in @ref{Expressions}. Each equation
must be terminated by a semicolon (@samp{;}). A normal equation looks
like:
@example
@var{MODEL_EXPRESSION} = @var{MODEL_EXPRESSION};
@end example

When the equations are written in homogenous form, it is possible to
omit the @samp{=0} part and write only the left hand side of the
equation. A homogenous equation looks like:
@example
@var{MODEL_EXPRESSION};
@end example

Inside the model block, Dynare allows the creation of @emph{model-local
variables}, which constitute a simple way to share a common expression
between several equations. The syntax consists of a pound sign
(@code{#}) followed by the name of the new model local variable (which
must @strong{not} be declared as in @ref{Variable declarations}), an equal
sign, and the expression for which this new variable will stand. Later
on, every time this variable appears in the model, Dynare will
substitute it by the expression assigned to the variable. Note that the
scope of this variable is restricted to the model block; it cannot be
used outside. A model local variable declaration looks like:
@example
# @var{VARIABLE_NAME} = @var{MODEL_EXPRESSION};
@end example

@optionshead

@table @code

@item linear
Declares the model as being linear. It spares oneself from having to
declare initial values for computing the steady state of a stationary
linear model. This options can't be used with non-linear models, it will
NOT trigger linearization of the model.

@item use_dll
@anchor{use_dll}
Instructs the preprocessor to create dynamic loadable libraries (DLL)
containing the model equations and derivatives, instead of writing those
in M-files. You need a working compilation environment, @i{i.e.}
a working @code{mex} command (see @ref{Software requirements} for more
details). Using this option can result in faster simulations or
estimations, at the expense of some initial compilation
time.@footnote{In particular, for big models, the compilation step can
be very time-consuming, and use of this option may be counter-productive
in those cases.}

@item block
@anchor{block}
Perform the block decomposition of the model, and exploit it in
computations (steady-state, deterministic simulation,
stochastic simulation with first order approximation and estimation). See
@uref{http://www.dynare.org/DynareWiki/FastDeterministicSimulationAndSteadyStateComputation,Dynare
wiki} for details on the algorithms used in deterministic simulation and steady-state computation.

@item bytecode
@anchor{bytecode}
Instead of M-files, use a bytecode representation of the model, @i{i.e.}
a binary file containing a compact representation of all the equations.

@item cutoff = @var{DOUBLE}
Threshold under which a jacobian element is considered as null during
the model normalization. Only available with option
@code{block}. Default: @code{1e-15}

@item mfs = @var{INTEGER}
Controls the handling of minimum feedback set of endogenous
variables. Only available with option @code{block}. Possible values:

@table @code

@item 0
All the endogenous variables are considered as feedback variables (Default).

@item 1
The endogenous variables assigned to equation naturally normalized
(@i{i.e.} of the form @math{x=f(Y)} where @math{x} does not appear in
@math{Y}) are potentially recursive variables. All the other variables
are forced to belong to the set of feedback variables.

@item 2
In addition of variables with @code{mfs = 1} the endogenous variables
related to linear equations which could be normalized are potential
recursive variables. All the other variables are forced to belong to
the set of feedback variables.

@item 3
In addition of variables with @code{mfs = 2} the endogenous variables
related to non-linear equations which could be normalized are
potential recursive variables. All the other variables are forced to
belong to the set of feedback variables.
@end table

@item no_static
Don't create the static model file. This can be useful for models which
don't have a steady state.

@item differentiate_forward_vars
@itemx differentiate_forward_vars = ( @var{VARIABLE_NAME} [@var{VARIABLE_NAME} @dots{}] )
Tells Dynare to create a new auxiliary variable for each endogenous
variable that appears with a lead, such that the new variable is the
time differentiate of the original one. More precisely, if the model
contains @code{x(+1)}, then a variable @code{AUX_DIFF_VAR} will be
created such that @code{AUX_DIFF_VAR=x-x(-1)}, and @code{x(+1)} will
be replaced with @code{x+AUX_DIFF_VAR(+1)}.

The transformation is applied to all endogenous variables with a lead
if the option is given without a list of variables. If there is a
list, the transformation is restricted to endogenous with a lead that
also appear in the list.

This option can useful for some deterministic simulations where
convergence is hard to obtain. Bad values for terminal conditions in
the case of very persistent dynamics or permanent shocks can hinder
correct solutions or any convergence. The new differentiated variables
have obvious zero terminal conditions (if the terminal condition is a
steady state) and this in many cases helps convergence of simulations.

@item parallel_local_files = ( @var{FILENAME} [, @var{FILENAME}]@dots{} )
Declares a list of extra files that should be transferred to slave
nodes when doing a parallel computation (@pxref{Parallel Configuration}).

@end table

@customhead{Example 1: elementary RBC model}

@example
var c k;
varexo x;
parameters aa alph bet delt gam;

model;
c =  - k + aa*x*k(-1)^alph + (1-delt)*k(-1);
c^(-gam) = (aa*alph*x(+1)*k^(alph-1) + 1 - delt)*c(+1)^(-gam)/(1+bet);
end;
@end example

@customhead{Example 2: use of model local variables}

The following program:

@example
model;
# gamma = 1 - 1/sigma;
u1 = c1^gamma/gamma;
u2 = c2^gamma/gamma;
end;
@end example

@noindent
@dots{}is formally equivalent to:

@example
model;
u1 = c1^(1-1/sigma)/(1-1/sigma);
u2 = c2^(1-1/sigma)/(1-1/sigma);
end;
@end example

@customhead{Example 3: a linear model}

@example
model(linear);
x = a*x(-1)+b*y(+1)+e_x;
y = d*y(-1)+e_y;
end;
@end example

@end deffn

Dynare has the ability to output the list of model equations to a
@LaTeX{} file, using the @code{write_latex_dynamic_model} command. The
static model can also be written with the
@code{write_latex_static_model} command.

@anchor{write_latex_dynamic_model}

@deffn Command write_latex_dynamic_model ;

@descriptionhead

This command creates a @LaTeX{} file containing the (dynamic) model.

If your @file{.mod} file is @file{@var{FILENAME}.mod}, then Dynare
will create a file called @file{@var{FILENAME}_dynamic.tex},
containing the list of all the dynamic model equations.

If @LaTeX{} names were given for variables and parameters
(@pxref{Variable declarations}), then those will be used; otherwise,
the plain text names will be used.

Time subscripts (@code{t}, @code{t+1}, @code{t-1}, @dots{}) will be
appended to the variable names, as @LaTeX{} subscripts.

Note that the model written in the @TeX{} file will differ from the
model declared by the user in the following dimensions:

@itemize

@item
the timing convention of predetermined variables
(@pxref{predetermined_variables}) will have been changed to the
default Dynare timing convention; in other words, variables declared
as predetermined will be lagged on period back,

@item
the expectation operators (@pxref{expectation}) will have
been removed, replaced by auxiliary variables and new equations as
explained in the documentation of the operator,

@item
endogenous variables with leads or lags greater or equal than two will
have been removed, replaced by new auxiliary variables and equations,

@item
for a stochastic model, exogenous variables with leads or lags will
also have been replaced by new auxiliary variables and equations.
@end itemize

Compiling the @TeX{} file requires the following @LaTeX{} packages:
@code{geometry}, @code{fullpage}, @code{breqn}.

@end deffn

@deffn Command write_latex_static_model ;

@descriptionhead

This command creates a @LaTeX{} file containing the static model.

If your @file{.mod} file is @file{@var{FILENAME}.mod}, then Dynare
will create a file called @file{@var{FILENAME}_static.tex}, containing
the list of all the equations of the steady state model.

If @LaTeX{} names were given for variables and parameters
(@pxref{Variable declarations}), then those will be used; otherwise,
the plain text names will be used.

Note that the model written in the @TeX{} file will differ from the
model declared by the user in the some dimensions
(@pxref{write_latex_dynamic_model} for details).

Also note that this command will not output the contents of the
optional @code{steady_state_model} block (@pxref{steady_state_model});
it will rather output a static version (@i{i.e.} without leads and
lags) of the dynamic model declared in the @code{model} block.

Compiling the @TeX{} file requires the following @LaTeX{} packages:
@code{geometry}, @code{fullpage}, @code{breqn}.

@end deffn

@node Auxiliary variables
@section Auxiliary variables

The model which is solved internally by Dynare is not exactly the
model declared by the user. In some cases, Dynare will introduce
auxiliary endogenous variables---along with corresponding auxiliary
equations---which will appear in the final output.

The main transformation concerns leads and lags. Dynare will perform a
transformation of the model so that there is only one lead and one lag
on endogenous variables and, in the case of a stochastic model, no leads/lags on
exogenous variables.

This transformation is achieved by the creation of auxiliary
variables and corresponding equations. For example, if @code{x(+2)}
exists in the model, Dynare will create one auxiliary variable
@code{AUX_ENDO_LEAD = x(+1)}, and replace @code{x(+2)} by
@code{AUX_ENDO_LEAD(+1)}.

A similar transformation is done for lags greater than 2 on endogenous
(auxiliary variables will have a name beginning with
@code{AUX_ENDO_LAG}), and for exogenous with leads and lags (auxiliary
variables will have a name beginning with @code{AUX_EXO_LEAD} or
@code{AUX_EXO_LAG} respectively).

Another transformation is done for the @code{EXPECTATION}
operator. For each occurrence of this operator, Dynare creates an
auxiliary variable defined by a new equation, and replaces the
expectation operator by a reference to the new auxiliary variable. For
example, the expression @code{EXPECTATION(-1)(x(+1))} is replaced by
@code{AUX_EXPECT_LAG_1(-1)}, and the new auxiliary variable is
declared as @code{AUX_EXPECT_LAG_1 = x(+2)}.

Auxiliary variables are also introduced by the preprocessor for the
@code{ramsey_policy} command. In this case, they are used to represent the Lagrange
multipliers when first order conditions of the Ramsey problem are computed.
The new variables take the form @code{MULT_@var{i}}, where @var{i} represents
the constraint with which the multiplier is associated (counted from the
order of declaration in the model block).

The last type of auxiliary variables is introduced by the
@code{differentiate_forward_vars} option of the @code{model} block.
The new variables take the form @code{AUX_DIFF_FWRD_@var{i}}, and are
equal to @code{x-x(-1)} for some endogenous variable @code{x}.

Once created, all auxiliary variables are included in the set of
endogenous variables. The output of decision rules (see below) is such
that auxiliary variable names are replaced by the original variables
they refer to.

@vindex M_.orig_endo_nbr
@vindex M_.endo_nbr
The number of endogenous variables before the creation of auxiliary
variables is stored in @code{M_.orig_endo_nbr}, and the number of
endogenous variables after the creation of auxiliary variables is
stored in @code{M_.endo_nbr}.

See @uref{http://www.dynare.org/DynareWiki/AuxiliaryVariables,Dynare
Wiki} for more technical details on auxiliary variables.

@node Initial and terminal conditions
@section Initial and terminal conditions

For most simulation exercises, it is necessary to provide initial (and
possibly terminal) conditions. It is also necessary to provide initial
guess values for non-linear solvers. This section describes the
statements used for those purposes.

In many contexts (deterministic or stochastic), it is necessary to
compute the steady state of a non-linear model: @code{initval} then
specifies numerical initial values for the non-linear solver. The
command @code{resid} can be used to compute the equation residuals for
the given initial values.

Used in perfect foresight mode, the types of forward-looking models for
which Dynare was designed require both initial and terminal
conditions. Most often these initial and terminal conditions are
static equilibria, but not necessarily.

One typical application is to consider an economy at the equilibrium,
trigger a shock in first period, and study the trajectory of return at
the initial equilibrium. To do that, one needs @code{initval} and
@code{shocks} (@pxref{Shocks on exogenous variables}.

Another one is to study, how an economy, starting from arbitrary
initial conditions converges toward equilibrium. To do that, one needs
@code{initval} and @code{endval}.

For models with lags on more than one period, the command
@code{histval} permits to specify different historical initial values
for periods before the beginning of the simulation.

@deffn Block initval ;
@deffnx Block initval (@var{OPTIONS}@dots{});

@descriptionhead

The @code{initval} block serves two purposes: declaring the initial
(and possibly terminal) conditions in a simulation exercise, and
providing guess values for non-linear solvers.

This block is terminated by @code{end;}, and contains lines of the
form:
@example
@var{VARIABLE_NAME} = @var{EXPRESSION};
@end example

@customhead{In a deterministic (@i{i.e.} perfect foresight) model}

First, it provides the initial conditions for all the endogenous and
exogenous variables at all the periods preceeding the first simulation
period (unless some of these initial values are modified by
@code{histval}).

Second, in the absence of an @code{endval} block, it sets the terminal
conditions for all the periods succeeding the last simulation period.

Third, in the absence of an @code{endval} block, it provides initial
guess values at all simulation dates for the non-linear solver
implemented in @code{simul}.

For this last reason, it necessary to provide values for all the
endogenous variables in an @code{initval} block (even though,
theoretically, initial conditions are only necessary for lagged
variables). If some variables, endogenous or exogenous, are not mentioned in the
@code{initval} block, a zero value is assumed.

Note that if the @code{initval} block is immediately followed by a
@code{steady} command, its semantics is changed. The @code{steady}
command will compute the steady state of the model for all the
endogenous variables, assuming that exogenous variables are kept
constant to the value declared in the @code{initval} block, and using
the values declared for the endogenous as initial guess values for the
non-linear solver. An @code{initval} block followed by @code{steady}
is formally equivalent to an @code{initval} block with the same values
for the exogenous, and with the associated steady state values for the
endogenous.

@customhead{In a stochastic model}

The main purpose of @code{initval} is to provide initial guess values
for the non-linear solver in the steady state computation. Note that
if the @code{initval} block is not followed by @code{steady}, the
steady state computation will still be triggered by subsequent
commands (@code{stoch_simul}, @code{estimation}@dots{}).

It is not necessary to declare @code{0} as initial value for exogenous
stochastic variables, since it is the only possible value.

This steady state will be used as the initial condition at all the
periods preceeding the first simulation period for the two possible
types of simulations in stochastic mode:

@itemize

@item
in @code{stoch_simul}, if the @code{periods} options is specified

@item
in @code{forecast} (in this case, note that it is still possible to
modify some of these initial values with @code{histval})
@end itemize

@optionshead

@table @code

@item all_values_required
@anchor{all_values_required}
Issues an error and stops processing the @file{.mod} file if there is at least
one endogenous or exogenous variable that has not been set in the @code{initval}
block.
@end table

@examplehead

@example
initval;
c = 1.2;
k = 12;
x = 1;
end;

steady;
@end example

@end deffn

@deffn Block endval ;
@deffnx Block endval (@var{OPTIONS}@dots{});

@descriptionhead

This block is terminated by @code{end;}, and contains lines of the
form:
@example
@var{VARIABLE_NAME} = @var{EXPRESSION};
@end example

The @code{endval} block makes only sense in a deterministic model, and
serves two purposes.

First, it sets the terminal conditions for all the periods succeeding
the last simulation period.

Second, it provides initial guess values at all the simulation dates
for the non-linear solver implemented in @code{simul}.

For this last reason, it necessary to provide values for all the
endogenous variables in an @code{endval} block (even though,
theoretically, terminal conditions are only necessary for forward
variables). If some variables, endogenous or exogenous, are not mentioned in the
@code{endval} block, the value assumed is that of the last
@code{initval} block or @code{steady} command.

Note that if the @code{endval} block is immediately followed by a
@code{steady} command, its semantics is changed. The @code{steady}
command will compute the steady state of the model for all the
endogenous variables, assuming that exogenous variables are kept
constant to the value declared in the @code{endval} block, and using
the values declared for the endogenous as initial guess values for the
non-linear solver. An @code{endval} block followed by @code{steady} is
formally equivalent to an @code{endval} block with the same values for
the exogenous, and with the associated steady state values for the
endogenous.

@optionshead

@table @code

@item all_values_required
@xref{all_values_required}.
@end table

@examplehead

@example
var c k;
varexo x;
@dots{}
initval;
c = 1.2;
k = 12;
x = 1;
end;

steady;

endval;
c = 2;
k = 20;
x = 2;
end;

steady;
@end example

The initial equilibrium is computed by @code{steady} for @code{x=1},
and the terminal one, for @code{x=2}.

@examplehead

@example
var c k;
varexo x;
@dots{}
model;
c + k - aa*x*k(-1)^alph - (1-delt)*k(-1);
c^(-gam) - (1+bet)^(-1)*(aa*alph*x(+1)*k^(alph-1) + 1 - delt)*c(+1)^(-gam);
end;

initval;
c = 1.2;
k = 12;
x = 1;
end;

endval;
c = 2;
k = 20;
x = 1.1;
end;
simul(periods=200);

@end example

In this example, the problem is finding the optimal path for consumption
and capital for the periods t=1 to T=200, given the path of the exogenous
technology level @code{x}. Setting @code{x=1.1} in the
@code{endval}-block without a @code{shocks}-block implies that technology
jumps to this new level in t=1 and stays there forever. Because the law
of motion for capital is backward-looking, we also need an initial
condition for @code{k} at time 0, specified in the @code{initval}-block.
Similarly, because the Euler equation is forward-looking, we need a
terminal condition for @code{c} at t=201, which is specified in the
@code{endval}-block. Specifying @code{c} in the @code{initval}-block and
@code{k} in the @code{endval}-block has no impact on the results: due to
the optimization problem in the first period being to choose @code{c,k}
at t=1 given predetermined capital stock @code{k} inherited from t=0 as
well as the current and future values for technology, the value for
@code{c} at time t=0 plays no role. The same applies to the choice of
@code{c,k} at time t=200, which does not depend on @code{k} at t=201. As
the Euler equation shows, that choice only depends on current capital as
well as future consumption @code{c} and technology @code{x}, but not on
future capital @code{k}. The intuitive reason is that those variables are
the consequence of optimization problems taking place in at periods t=0
and t=201, respectively, which are not considered. Thus, when specifying
those values in the @code{initval} and @code{endval}-blocks, Dynare takes
them as given and basically assumes that there were realizations
of exogenous variables and states (basically initial/terminal conditions
at the unspecified time periods t<0 and t>201) that make those choices
equilibrium values.
 
This also suggest another way of looking at the use of @code{steady}
after @code{initval} and @code{endval}. Instead of saying that the
implicit unspecified conditions before and after the simulation range
have to fit the initial/terminal conditions of the endogenous variables
in those blocks, @code{steady} specifies that those conditions at t<0 and
t>201 are equal to being at the steady state given the exogenous
variables in the @code{initval} and @code{endval}-blocks and sets the
endogenous variables at t=0 and t=201 to the corresponding steady state
equilibrium values.
 
The fact that @code{c} at t=0 and @code{k} at t=201 specified in
@code{initval} and @code{endval} are taken as given has an important
implication for plotting the simulated vector for the endogenous
variables: this vector will also contain the initial and terminal
conditions and thus is 202 periods long in the example. When you specify
arbitrary values for the initial and terminal conditions for forward- and
backward-looking variables, respectively, these values can be very far
away from the endogenously determined values at t=1 and t=200. While the
values at t=0 and t=201 are unrelated to the dynamics for 0<t<201, they
may result in strange-looking large jumps. In the example above,
consumption will display a large jump from t=0 to t=1 and capital will
jump from t=200 to t=201.

@end deffn

@deffn Block histval ;

@descriptionhead

@customhead{In a deterministic perfect foresight context}

In models with lags on more than one period, the @code{histval} block
permits to specify different historical initial values for different
periods.

This block is terminated by @code{end;}, and contains lines of the
form:
@example
@var{VARIABLE_NAME}(@var{INTEGER}) = @var{EXPRESSION};
@end example

@var{EXPRESSION} is any valid expression returning a numerical value
and can contain already initialized variable names.

By convention in Dynare, period 1 is the first period of the
simulation. Going backward in time, the first period before the start
of the simulation is period @code{0}, then period @code{-1}, and so on.

If your lagged variables are linked by identities, be careful to
satisfy these identities when you set historical initial values.

Variables not initialized in the @code{histval} block are assumed to
have a value of zero at period 0 and before. Note that this behavior
differs from the case where there is no @code{histval} block, where all
variables are initialized at their steady state value at period 0 and
before (except when a @code{steady} command doesn't follow an
@code{initval} block).

@customhead{In a stochastic simulation context}

In the context of stochastic simulations, @code{histval} allows setting
the starting point of those simulations in the state space (it does not
affect the starting point for impulse response functions). As for the case of
perfect foresight simulations, all not explicitly specified variables are set to 0.
Moreover, as only states enter the recursive policy functions, all values specified for control variables will be ignored.

@examplehead

@example
var x y;
varexo e;

model;
x = y(-1)^alpha*y(-2)^(1-alpha)+e;
@dots{}
end;

initval;
x = 1;
y = 1;
e = 0.5;
end;

steady;

histval;
y(0) = 1.1;
y(-1) = 0.9;
end;
@end example

@end deffn

@deffn Command resid ;

This command will display the residuals of the static equations of the
model, using the values given for the endogenous in the last
@code{initval} or @code{endval} block (or the steady state file if you
provided one, @pxref{Steady state}).

@end deffn


@deffn Command initval_file (filename = @var{FILENAME});

@descriptionhead

In a deterministic setup, this command is used to specify a path for
all endogenous and exogenous variables. The length of these paths must
be equal to the number of simulation periods, plus the number of leads
and the number of lags of the model (for example, with 50 simulation
periods, in a model with 2 lags and 1 lead, the paths must have a
length of 53). Note that these paths cover two different things:

@itemize

@item
the constraints of the problem, which are given by the path for
exogenous and the initial and terminal values for endogenous

@item
the initial guess for the non-linear solver, which is given by the
path for endogenous variables for the simulation periods (excluding
initial and terminal conditions)
@end itemize

The command accepts three file formats:

@itemize

@item
M-file (extension @file{.m}): for each endogenous and exogenous
variable, the file must contain a row vector of the same name.

@item
MAT-file (extension @file{.mat}): same as for M-files.

@item
Excel file (extension @file{.xls} or @file{.xlsx}): for each
endogenous and exogenous, the file must contain a column of the same
name (supported under Octave if the
@uref{http://octave.sourceforge.net/io/,io} and
@uref{http://octave.sourceforge.net/java/,java} packages from
Octave-Forge are installed, along with a
@uref{http://www.java.com/download,Java Runtime Environment}).
@end itemize

@customhead{Warning}

The extension must be omitted in the command argument. Dynare will
automatically figure out the extension and select the appropriate file
type.

@end deffn

@node Shocks on exogenous variables
@section Shocks on exogenous variables

In a deterministic context, when one wants to study the transition of
one equilibrium position to another, it is equivalent to analyze the
consequences of a permanent shock and this in done in Dynare through
the proper use of @code{initval} and @code{endval}.

Another typical experiment is to study the effects of a temporary
shock after which the system goes back to the original equilibrium (if
the model is stable@dots{}). A temporary shock is a temporary change of
value of one or several exogenous variables in the model. Temporary
shocks are specified with the command @code{shocks}.

In a stochastic framework, the exogenous variables take random values
in each period. In Dynare, these random values follow a normal
distribution with zero mean, but it belongs to the user to specify the
variability of these shocks. The non-zero elements of the matrix of
variance-covariance of the shocks can be entered with the @code{shocks}
command. Or, the entire matrix can be directly entered with
@code{Sigma_e} (this use is however deprecated).

If the variance of an exogenous variable is set to zero, this variable
will appear in the report on policy and transition functions, but
isn't used in the computation of moments and of Impulse Response
Functions. Setting a variance to zero is an easy way of removing an
exogenous shock.

@deffn Block shocks ;

@customhead{In deterministic context}

For deterministic simulations, the @code{shocks} block specifies
temporary changes in the value of exogenous variables. For
permanent shocks, use an @code{endval} block.

The block should contain one or more occurrences of the following
group of three lines:

@example
var @var{VARIABLE_NAME};
periods @var{INTEGER}[:@var{INTEGER}] [[,] @var{INTEGER}[:@var{INTEGER}]]@dots{};
values @var{DOUBLE} | (@var{EXPRESSION})  [[,] @var{DOUBLE} | (@var{EXPRESSION}) ]@dots{};
@end example

It is possible to specify shocks which last several periods and which can
vary over time. The @code{periods} keyword accepts a list of
several dates or date ranges, which must be matched by as many shock values
in the @code{values} keyword. Note that a range in the
@code{periods} keyword can be matched by only one value in the
@code{values} keyword. If @code{values} represents a scalar, the same
value applies to the whole range. If @code{values} represents a vector,
it must have as many elements as there are periods in the range.

Note that shock values are not restricted to numerical constants:
arbitrary expressions are also allowed, but you have to enclose them
inside parentheses.

Here is an example:

@example
shocks;
var e;
periods 1;
values 0.5;
var u;
periods 4:5;
values 0;
var v;
periods 4:5 6 7:9;
values 1 1.1 0.9;
var w;
periods 1 2;
values (1+p) (exp(z));
end;
@end example

A second example with a vector of values:

@example
xx = [1.2; 1.3; 1];

shocks;
var e;
periods 1:3;
values (xx);
end;
@end example


@customhead{In stochastic context}

For stochastic simulations, the @code{shocks} block specifies the non
zero elements of the covariance matrix of the shocks of exogenous
variables.

You can use the following types of entries in the block:

@table @code

@item var @var{VARIABLE_NAME}; stderr @var{EXPRESSION};
Specifies the standard error of a variable.

@item var @var{VARIABLE_NAME} = @var{EXPRESSION};
Specifies the variance error of a variable.

@item var @var{VARIABLE_NAME}, @var{VARIABLE_NAME} = @var{EXPRESSION};
Specifies the covariance of two variables.

@item corr @var{VARIABLE_NAME}, @var{VARIABLE_NAME} = @var{EXPRESSION};
Specifies the correlation of two variables.

@end table

In an estimation context, it is also possible to specify variances and
covariances on endogenous variables: in that case, these values are
interpreted as the calibration of the measurement errors on these
variables. This requires the @code{var_obs}-command to be specified before the @code{shocks}-block.

Here is an example:

@example
shocks;
var e = 0.000081;
var u; stderr 0.009;
corr e, u = 0.8;
var v, w = 2;
end;
@end example

@customhead{Mixing deterministic and stochastic shocks}

It is possible to mix deterministic and stochastic shocks to build
models where agents know from the start of the simulation about future
exogenous changes. In that case @code{stoch_simul} will compute the
rational expectation solution adding future information to the state
space (nothing is shown in the output of @code{stoch_simul}) and
@code{forecast} will compute a simulation conditional on initial
conditions and future information.

Here is an example:

@example
varexo_det tau;
varexo e;

@dots{}

shocks;
var e; stderr 0.01;
var tau;
periods 1:9;
values -0.15;
end;

stoch_simul(irf=0);

forecast;
@end example

@end deffn


@deffn Block mshocks ;

The purpose of this block is similar to that of the @code{shocks}
block for deterministic shocks, except that the numeric values given
will be interpreted in a multiplicative way. For example, if a value
of @code{1.05} is given as shock value for some exogenous at some
date, it means 5% above its steady state value (as given by the last
@code{initval} or @code{endval} block).

The syntax is the same than @code{shocks} in a deterministic context.

This command is only meaningful in two situations:

@itemize

@item
on exogenous variables with a non-zero steady state, in a deterministic setup,

@item
on deterministic exogenous variables with a non-zero steady state, in
a stochastic setup.
@end itemize

@end deffn

@defvr {Special variable} Sigma_e

@customhead{Warning}

@strong{The use of this special variable is deprecated and is strongly
discouraged.} You should use a @code{shocks} block instead.

@descriptionhead

This special variable specifies directly the covariance matrix of the
stochastic shocks, as an upper (or lower) triangular matrix. Dynare
builds the corresponding symmetric matrix. Each row of the triangular
matrix, except the last one, must be terminated by a semi-colon
@code{;}. For a given element, an arbitrary @var{EXPRESSION} is
allowed (instead of a simple constant), but in that case you need to
enclose the expression in parentheses. @emph{The order of the
covariances in the matrix is the same as the one used in the
@code{varexo} declaration.}

@examplehead

@example

varexo u, e;
@dots{}
Sigma_e = [ 0.81 (phi*0.9*0.009);
            0.000081];
@end example

This sets the variance of @code{u} to 0.81, the variance of @code{e}
to 0.000081, and the correlation between @code{e} and @code{u} to
@code{phi}.

@end defvr

@node Other general declarations
@section Other general declarations

@deffn {Command} dsample @var{INTEGER} [@var{INTEGER}];
Reduces the number of periods considered in subsequent output commands.
@end deffn

@deffn {Command} periods @var{INTEGER};

@descriptionhead

This command is now deprecated (but will still work for older model
files). It is not necessary when no simulation is performed and is
replaced by an option @code{periods} in @code{simul} and
@code{stoch_simul}.

This command sets the number of periods in the simulation. The periods
are numbered from @code{1} to @var{INTEGER}. In perfect foresight
simulations, it is assumed that all future events are perfectly known
at the beginning of period @code{1}.

@examplehead

@example
periods 100;
@end example

@end deffn

@node Steady state
@section Steady state

There are two ways of computing the steady state (@i{i.e.} the static
equilibrium) of a model. The first way is to let Dynare compute the
steady state using a nonlinear Newton-type solver; this should work
for most models, and is relatively simple to use. The second way is to
give more guidance to Dynare, using your knowledge of the model, by
providing it with a ``steady state file''.

@menu
* Finding the steady state with Dynare nonlinear solver::
* Using a steady state file::
* Replace some equations during steady state computations::
@end menu

@node Finding the steady state with Dynare nonlinear solver
@subsection Finding the steady state with Dynare nonlinear solver

@deffn Command steady ;
@deffnx Command steady (@var{OPTIONS}@dots{});

@descriptionhead

This command computes the steady state of a model using a nonlinear
Newton-type solver and displays it. When a steady state file is used @code{steady} displays the steady state and checks that it is a solution of the static model.

More precisely, it computes the equilibrium value of the endogenous
variables for the value of the exogenous variables specified in the
previous @code{initval} or @code{endval} block.

@code{steady} uses an iterative procedure and takes as initial guess
the value of the endogenous variables set in the previous
@code{initval} or @code{endval} block.

For complicated models, finding good numerical initial values for the
endogenous variables is the trickiest part of finding the equilibrium
of that model. Often, it is better to start with a smaller model and
add new variables one by one.

@optionshead

@table @code

@item maxit = @var{INTEGER}
Determines the maximum number of iterations used in the non-linear solver.
The default value of @code{maxit} is 10. The @code{maxit} option is shared with the
@code{simul} command. So a change in @code{maxit} in a @code{steady} command will
also be considered in the following @code{simul} commands.


@item solve_algo = @var{INTEGER}
@anchor{solve_algo}
Determines the non-linear solver to use. Possible values for the option are:

@table @code

@item 0
Use @code{fsolve} (under MATLAB, only available if you have the
Optimization Toolbox; always available under Octave)

@item 1
Use Dynare's own nonlinear equation solver (a Newton-like algorithm with
line-search)

@item 2
Splits the model into recursive blocks and solves each block in turn
using the same solver as value @code{1}

@item 3
Use Chris Sims' solver

@item 4
Same as value @code{2}, except that it does not try to adapt the
search direction when the Jacobian is nearly singular

@item 5
Newton algorithm with a sparse Gaussian elimination (SPE) (requires
@code{bytecode} option, @pxref{Model declaration})

@item 6
Newton algorithm with a sparse LU solver at each iteration (requires
@code{bytecode} and/or @code{block} option, @pxref{Model declaration})

@item 7
Newton algorithm with a Generalized Minimal Residual (GMRES) solver at
each iteration (requires @code{bytecode} and/or @code{block} option,
@pxref{Model declaration}; not available under Octave)

@item 8
Newton algorithm with a Stabilized Bi-Conjugate Gradient (BICGSTAB)
solver at each iteration (requires @code{bytecode} and/or @code{block}
option, @pxref{Model declaration})
@end table

@noindent
Default value is @code{2}.

@item homotopy_mode = @var{INTEGER}
Use a homotopy (or divide-and-conquer) technique to solve for the
steady state. If you use this option, you must specify a
@code{homotopy_setup} block. This option can take three possible
values:


@table @code

@item 1
In this mode, all the parameters are changed simultaneously, and the
distance between the boundaries for each parameter is divided in as
many intervals as there are steps (as defined by @code{homotopy_steps}
option); the problem is solves as many times as there are steps.

@item 2
Same as mode @code{1}, except that only one parameter is changed at a
time; the problem is solved as many times as steps times number of
parameters.

@item 3
Dynare tries first the most extreme values. If it fails to compute the
steady state, the interval between initial and desired values is
divided by two for all parameters. Every time that it is impossible to
find a steady state, the previous interval is divided by two. When it
succeeds to find a steady state, the previous interval is multiplied
by two. In that last case @code{homotopy_steps} contains the maximum
number of computations attempted before giving up.
@end table

@item homotopy_steps = @var{INTEGER}
Defines the number of steps when performing a homotopy. See
@code{homotopy_mode} option for more details.


@item homotopy_force_continue = @var{INTEGER}
This option controls what happens when homotopy fails.

@table @code

@item 0
@code{steady} fails with an error message

@item 1
@code{steady} keeps the values of the last homotopy step that was
successful and continues. BE CAREFUL: parameters and/or exogenous
variables are NOT at the value expected by the user
@end table

@noindent
Default is @code{0}.

@item nocheck
Don't check the steady state values when they are provided explicitly either by a steady state file or a @code{steady_state_model} block. This is useful for models with unit roots as, in this case, the steady state is not unique or doesn't exist.

@item markowitz = @var{DOUBLE}
Value of the Markowitz criterion, used to select the pivot. Only used
when @code{solve_algo = 5}. Default: @code{0.5}.

@end table

@examplehead

@xref{Initial and terminal conditions}.

@end deffn

After computation, the steady state is available in the following
variable:

@defvr {MATLAB/Octave variable} oo_.steady_state

Contains the computed steady state.

Endogenous variables are ordered in order of declaration used in
@code{var} command (which is also the order used in @code{M_.endo_names}).

@end defvr

@deffn Block homotopy_setup ;

@descriptionhead

This block is used to declare initial and final values when using
a homotopy method. It is used in conjunction with the option
@code{homotopy_mode} of the @code{steady} command.

The idea of homotopy (also called divide-and-conquer by some authors)
is to subdivide the problem of finding the steady state into smaller
problems. It assumes that you know how to compute the steady state for
a given set of parameters, and it helps you finding the steady state
for another set of parameters, by incrementally moving from one to
another set of parameters.

The purpose of the @code{homotopy_setup} block is to declare the final
(and possibly also the initial) values for the parameters or exogenous
that will be changed during the homotopy. It should contain lines of
the form:

@example
@var{VARIABLE_NAME}, @var{EXPRESSION}, @var{EXPRESSION};
@end example

This syntax specifies the initial and final values of a given
parameter/exogenous.

There is an alternative syntax:
@example
@var{VARIABLE_NAME}, @var{EXPRESSION};
@end example

Here only the final value is specified for a given
parameter/exogenous; the initial value is taken from the preceeding
@code{initval} block.

A necessary condition for a successful homotopy is that Dynare must be
able to solve the steady state for the initial parameters/exogenous
without additional help (using the guess values given in the
@code{initval} block).

If the homotopy fails, a possible solution is to increase the number
of steps (given in @code{homotopy_steps} option of @code{steady}).

@examplehead

In the following example, Dynare will first compute the steady state
for the initial values (@code{gam=0.5} and @code{x=1}), and then
subdivide the problem into 50 smaller problems to find the steady
state for the final values (@code{gam=2} and @code{x=2}).

@example
var c k;
varexo x;

parameters alph gam delt bet aa;
alph=0.5;
delt=0.02;
aa=0.5;
bet=0.05;

model;
c + k - aa*x*k(-1)^alph - (1-delt)*k(-1);
c^(-gam) - (1+bet)^(-1)*(aa*alph*x(+1)*k^(alph-1) + 1 - delt)*c(+1)^(-gam);
end;

initval;
x = 1;
k = ((delt+bet)/(aa*x*alph))^(1/(alph-1));
c = aa*x*k^alph-delt*k;
end;

homotopy_setup;
gam, 0.5, 2;
x, 2;
end;

steady(homotopy_mode = 1, homotopy_steps = 50);
@end example

@end deffn

@node Using a steady state file
@subsection Using a steady state file

If you know how to compute the steady state for your model, you can
provide a MATLAB/Octave function doing the computation instead of
using @code{steady}. Again, there are two options for doing that:

@itemize

@item
The easiest way is to write a @code{steady_state_model} block, which
is described below in more details. See also @file{fs2000.mod} in the
@file{examples} directory for an example.

The steady state file generated by Dynare will be called
@file{@var{FILENAME}_steadystate2.m}.

@item
You can write the corresponding MATLAB function by hand. If your
MOD-file is called @file{@var{FILENAME}.mod}, the steady state file
must be called @file{@var{FILENAME}_steadystate.m}. See
@file{NK_baseline_steadystate.m} in the @file{examples} directory for
an example. This option gives a bit more flexibility, at the expense
of a heavier programming burden and a lesser efficiency.

@end itemize

Note that both files allow to update parameters in each call of
the function. This allows for example to calibrate a model to a labor
supply of 0.2 in steady state by setting the labor disutility parameter
to a corresponding value (see @file{NK_baseline_steadystate.m} in the
@file{examples} directory). They can also be used in estimation
where some parameter may be a function of an estimated parameter
and needs to be updated for every parameter draw. For example, one might
 want to set the capital utilization cost parameter as a function
of the discount rate to ensure that capacity utilization is 1 in steady
state. Treating both parameters as independent or not updating one as
a function of the other would lead to wrong results. But this also means
that care is required. Do not accidentally overwrite your parameters
with new values as it will lead to wrong results.

@anchor{steady_state_model}
@deffn Block steady_state_model ;

@descriptionhead

When the analytical solution of the model is known, this command can
be used to help Dynare find the steady state in a more efficient and
reliable way, especially during estimation where the steady state has
to be recomputed for every point in the parameter space.

Each line of this block consists of a variable (either an endogenous,
a temporary variable or a parameter) which is assigned an expression
(which can contain parameters, exogenous at the steady state, or any
endogenous or temporary variable already declared above). Each line
therefore looks like:

@example
@var{VARIABLE_NAME} = @var{EXPRESSION};
@end example

Note that it is also possible to assign several variables at the same
time, if the main function in the right hand side is a MATLAB/Octave
function returning several arguments:

@example
[ @var{VARIABLE_NAME}, @var{VARIABLE_NAME}@dots{} ] = @var{EXPRESSION};
@end example

Dynare will automatically generate a steady state file (of the form
@file{@var{FILENAME}_steadystate2.m}) using the information provided in
this block.

@customhead{Steady state file for deterministic models}

@code{steady_state_model} block works also with deterministic
models. An @code{initval} block and, when necessary, an @code{endval}
block, is used to set the value of the exogenous variables. Each
@code{initval} or @code{endval} block must be followed by @code{steady}
to execute the function created by @code{steady_state_model} and set the
initial, respectively terminal, steady state.

@examplehead

@example
var m P c e W R k d n l gy_obs gp_obs y dA;
varexo e_a e_m;

parameters alp bet gam mst rho psi del;

@dots{}
// parameter calibration, (dynamic) model declaration, shock calibration@dots{}
@dots{}

steady_state_model;
  dA = exp(gam);
  gst = 1/dA; // A temporary variable
  m = mst;

  // Three other temporary variables
  khst = ( (1-gst*bet*(1-del)) / (alp*gst^alp*bet) )^(1/(alp-1));
  xist = ( ((khst*gst)^alp - (1-gst*(1-del))*khst)/mst )^(-1);
  nust = psi*mst^2/( (1-alp)*(1-psi)*bet*gst^alp*khst^alp );

  n  = xist/(nust+xist);
  P  = xist + nust;
  k  = khst*n;

  l  = psi*mst*n/( (1-psi)*(1-n) );
  c  = mst/P;
  d  = l - mst + 1;
  y  = k^alp*n^(1-alp)*gst^alp;
  R  = mst/bet;

  // You can use MATLAB functions which return several arguments
  [W, e] = my_function(l, n);

  gp_obs = m/dA;
  gy_obs = dA;
end;

steady;
@end example

@end deffn

@anchor{equation_tag_for_conditional_steady_state}
@node Replace some equations during steady state computations
@subsection Replace some equations during steady state computations

When there is no steady state file, Dynare computes the steady state
by solving the static model, @i{i.e.} the model from the @file{.mod}
file from which leads and lags have been removed.

In some specific cases, one may want to have more control over the way
this static model is created. Dynare therefore offers the possibility
to explicitly give the form of equations that should be in the static
model.

More precisely, if an equation is prepended by a @code{[static]} tag,
then it will appear in the static model used for steady state
computation, but that equation will not be used for other
computations. For every equation tagged in this way, you must tag
another equation with @code{[dynamic]}: that equation will not be used
for steady state computation, but will be used for other computations.

This functionality can be useful on models with a unit root, where
there is an infinity of steady states. An equation (tagged
@code{[dynamic]}) would give the law of motion of the nonstationary
variable (like a random walk). To pin down one specific steady state,
an equation tagged @code{[static]} would affect a constant value to
the nonstationary variable.

@examplehead

This is a trivial example with two endogenous variables. The second equation
takes a different form in the static model.

@example
var c k;
varexo x;

@dots{}

model;
c + k - aa*x*k(-1)^alph - (1-delt)*k(-1);
[dynamic] c^(-gam) - (1+bet)^(-1)*(aa*alph*x(+1)*k^(alph-1) + 1 - delt)*c(+1)^(-gam);
[static] k = ((delt+bet)/(x*aa*alph))^(1/(alph-1));
end;
@end example


@node Getting information about the model
@section Getting information about the model

@deffn Command check ;
@deffnx Command check (solve_algo = @var{INTEGER}) ;

@descriptionhead

Computes the eigenvalues of the model linearized around the values
specified by the last @code{initval}, @code{endval} or @code{steady}
statement. Generally, the eigenvalues are only meaningful if the
linearization is done around a steady state of the model. It is a
device for local analysis in the neighborhood of this steady state.

A necessary condition for the uniqueness of a stable equilibrium in
the neighborhood of the steady state is that there are as many
eigenvalues larger than one in modulus as there are forward looking
variables in the system. An additional rank condition requires that
the square submatrix of the right Schur vectors corresponding to the
forward looking variables (jumpers) and to the explosive eigenvalues
must have full rank.

@optionshead

@table @code

@item solve_algo = @var{INTEGER}
@xref{solve_algo}, for the possible values and their meaning.

@item qz_zero_threshold = @var{DOUBLE}
@anchor{qz_zero_threshold}
Value used to test if a generalized eigenvalue is 0/0 in the generalized
Schur decomposition  (in which case  the model  does not admit  a unique
solution). Default: @code{1e-6}.

@end table

@outputhead

@code{check} returns the eigenvalues in the global variable
@code{oo_.dr.eigval}.

@end deffn

@defvr {MATLAB/Octave variable} oo_.dr.eigval
Contains the eigenvalues of the model, as computed by the @code{check}
command.
@end defvr


@deffn Command model_diagnostics ;

This command performs various sanity checks on the model, and prints a
message if a problem is detected (missing variables at current period,
invalid steady state, singular Jacobian of static model).

@end deffn


@deffn Command model_info ;
@deffnx Command model_info (@var{OPTIONS}@dots{});

@descriptionhead

This command provides information about:

@itemize

@item
the normalization of the model: an endogenous variable is attributed
to each equation of the model;

@item
the block structure of the model: for each block model_info indicates
its type, the equations number and endogenous variables belonging to
this block.

@end itemize

This command can only be used in conjunction with the @code{block}
option of the @code{model} block.

There are five different types of blocks depending on the simulation
method used:

@table @samp

@item EVALUATE FORWARD
In this case the block contains only equations where endogenous
variable attributed to the equation appears currently on the left hand
side and where no forward looking endogenous variables appear. The
block has the form: @math{y_{j,t} = f_j(y_t, y_{t-1}, \ldots, y_{t-k})}.

@item EVALUATE BACKWARD
The block contains only equations where endogenous variable attributed
to the equation appears currently on the left hand side and where no
backward looking endogenous variables appear. The block has the form:
@math{y_{j,t} = f_j(y_t, y_{t+1}, \ldots, y_{t+k})}.

@item SOLVE FORWARD @var{x}
The block contains only equations where endogenous variable attributed
to the equation does not appear currently on the left hand side and
where no forward looking endogenous variables appear. The block has
the form: @math{g_j(y_{j,t}, y_t, y_{t-1}, \ldots, y_{t-k})=0}.
@var{x} is equal to @samp{SIMPLE} if the block has only one
equation. If several equation appears in the block, @var{x} is equal
to @samp{COMPLETE}.

@item SOLVE FORWARD @var{x}
The block contains only equations where endogenous variable attributed
to the equation does not appear currently on the left hand side and
where no backward looking endogenous variables appear. The block has
the form: @math{g_j(y_{j,t}, y_t, y_{t+1}, \ldots,
y_{t+k})=0}. @var{x} is equal to @samp{SIMPLE} if the block has only
one equation. If several equation appears in the block, @var{x} is
equal to @samp{COMPLETE}.

@item SOLVE TWO BOUNDARIES @var{x}
The block contains equations depending on both forward and backward
variables. The block looks like: @math{g_j(y_{j,t}, y_t, y_{t-1},
\ldots, y_{t-k} ,y_t, y_{t+1}, \ldots, y_{t+k})=0}. @var{x} is equal
to @samp{SIMPLE} if the block has only one equation. If several
equation appears in the block, @var{x} is equal to @samp{COMPLETE}.
@end table

@optionshead

@table @code

@item 'static'
Prints out the block decomposition of the static model.
Without 'static' option model_info displays the block decomposition
of the dynamic model.

@item 'incidence'
Displays the gross incidence matrix and the reordered incidence matrix
of the block decomposed model.

@end table


@end deffn

@deffn Command print_bytecode_dynamic_model ;
Prints the equations and the Jacobian matrix of the dynamic model
stored in the bytecode binary format file. Can only be used in
conjunction with the @code{bytecode} option of the @code{model} block.
@end deffn

@deffn Command print_bytecode_static_model ;
Prints the equations and the Jacobian matrix of the static model
stored in the bytecode binary format file. Can only be used in
conjunction with the @code{bytecode} option of the @code{model} block.
@end deffn

@node Deterministic simulation
@section Deterministic simulation

When the framework is deterministic, Dynare can be used for models
with the assumption of perfect foresight. Typically, the system is
supposed to be in a state of equilibrium before a period @samp{1} when
the news of a contemporaneous or of a future shock is learned by the
agents in the model. The purpose of the simulation is to describe the
reaction in anticipation of, then in reaction to the shock, until the
system returns to the old or to a new state of equilibrium. In most
models, this return to equilibrium is only an asymptotic phenomenon,
which one must approximate by an horizon of simulation far enough in
the future.  Another exercise for which Dynare is well suited is to
study the transition path to a new equilibrium following a permanent
shock.  For deterministic simulations, the numerical problem consists of solving
 a nonlinar system of simultaneous equations in @code{n} endogenous
 variables in @code{T} periods. Dynare offers several algorithms for
 solving this problem, which can be chosen via the
 @code{stack_solve_algo}-option. By default (@code{stack_solve_algo=0}),
Dynare uses a Newton-type method to solve the simultaneous equation
system. Because the resulting Jacobian is in the order of @code{n} by
@code{T} and hence will be very large for long simulations with many
variables, Dynare makes use of the sparse matrix capacities of
MATLAB/Octave. A slower but potentially less memory consuming alternative
(@code{stack_solve_algo=6}) is based on a Newton-type algorithm first
proposed by @cite{Laffargue (1990)} and @cite{Boucekkine (1995)}, which
uses relaxation techniques. Thereby, the algorithm avoids ever storing
the full Jacobian. The details of the algorithm can be found in
@cite{Juillard (1996)}. The third type of algorithms makes use of block
decomposition techniques (divide-and-conquer methods) that exploit the
structure of the model. The principle is to identify recursive and
simultaneous blocks in the model structure and use this information to
aid the solution process.  These solution algorithms can provide a
significant speed-up on large models.




@deffn Command simul ;
@deffnx Command simul (@var{OPTIONS}@dots{});

@descriptionhead

Triggers the computation of a deterministic simulation of the model
for the number of periods set in the option @code{periods}.

@optionshead

@table @code

@item periods = @var{INTEGER}
Number of periods of the simulation

@item maxit = @var{INTEGER}
Determines the maximum number of iterations used in the non-linear solver.
The default value of @code{maxit} is 10. The @code{maxit} option is shared with the
@code{steady} command. So a change in @code{maxit} in a @code{simul} command will
also be considered in the following @code{steady} commands.


@item stack_solve_algo = @var{INTEGER}
Algorithm used for computing the solution. Possible values are:

@table @code

@item 0
Newton method to solve simultaneously all the equations for every
period, using sparse matrices (Default).

@item 1
Use a Newton algorithm with a sparse LU solver at each iteration
(requires @code{bytecode} and/or @code{block} option, @pxref{Model
declaration}).

@item 2
Use a Newton algorithm with a Generalized Minimal Residual (GMRES)
solver at each iteration (requires @code{bytecode} and/or @code{block}
option, @pxref{Model declaration}; not available under Octave)

@item 3
Use a Newton algorithm with a Stabilized Bi-Conjugate Gradient
(BICGSTAB) solver at each iteration (requires @code{bytecode} and/or
@code{block} option, @pxref{Model declaration}).

@item 4
Use a Newton algorithm with a optimal path length at each iteration
(requires @code{bytecode} and/or @code{block} option, @pxref{Model
declaration}).

@item 5
Use a Newton algorithm with a sparse Gaussian elimination (SPE) solver
at each iteration (requires @code{bytecode} option, @pxref{Model
declaration}).

@item 6
Use the historical algorithm proposed in @cite{Juillard (1996)}: it is
slower than @code{stack_solve_algo=0}, but may be less memory consuming
on big models (not available with @code{bytecode} and/or @code{block}
options).

@end table

@item markowitz = @var{DOUBLE}
Value of the Markowitz criterion, used to select the pivot. Only used
when @code{stack_solve_algo = 5}. Default: @code{0.5}.

@item minimal_solving_periods = @var{INTEGER}
Specify the minimal number of periods where the model has to be
solved, before using a constant set of operations for the remaining
periods. Only used when @code{stack_solve_algo = 5}. Default: @code{1}.

@item datafile = @var{FILENAME}
If the variables of the model are not constant over time, their
initial values, stored in a text file, could be loaded, using that
option, as initial values before a deterministic simulation.
@end table

@outputhead

The simulated endogenous variables are available in global matrix
@code{oo_.endo_simul}.

@end deffn

@anchor{oo_.endo_simul}
@defvr {MATLAB/Octave variable} oo_.endo_simul
This variable stores the result of a deterministic simulation
(computed by @code{simul}) or of a stochastic simulation (computed by
@code{stoch_simul} with the @code{periods} option or by
@code{extended_path}).

The variables are arranged row by row, in order of declaration (as in
@code{M_.endo_names}). Note that this variable also contains initial
and terminal conditions, so it has more columns than the value of
@code{periods} option.
@end defvr

@anchor{oo_.exo_simul}
@defvr {MATLAB/Octave variable} oo_.exo_simul
This variable stores the path of exogenous variables during a
simulation (computed by @code{simul}, @code{stoch_simul} or
@code{extended_path}).

The variables are arranged in columns, in order of declaration (as in
@code{M_.endo_names}). Periods are in rows. Note that this convention
regarding columns and rows is the opposite of the convention for
@code{oo_.endo_simul}!

@end defvr

@node Stochastic solution and simulation
@section Stochastic solution and simulation

In a stochastic context, Dynare computes one or several simulations
corresponding to a random draw of the shocks.

The main algorithm for solving stochastic models relies on a Taylor
approximation, up to third order, of the expectation functions (see
@cite{Judd (1996)}, @cite{Collard and Juillard (2001a)}, @cite{Collard
and Juillard (2001b)}, and @cite{Schmitt-Grohé and Uríbe (2004)}). The
details of the Dynare implementation of the first order solution are
given in @cite{Villemot (2011)}. Such a solution is computed using
the @code{stoch_simul} command.

As an alternative, it is possible to compute a simulation to a
stochastic model using the @emph{extended path} method presented by
@cite{Fair and Taylor (1983)}. This method is especially useful when
there are strong nonlinearities or binding constraints. Such a
solution is computed using the @code{extended_path} command.

@menu
* Computing the stochastic solution::
* Typology and ordering of variables::
* First order approximation::
* Second order approximation::
* Third order approximation::
@end menu

@node Computing the stochastic solution
@subsection Computing the stochastic solution

@deffn Command stoch_simul [@var{VARIABLE_NAME}@dots{}];
@deffnx Command stoch_simul (@var{OPTIONS}@dots{}) [@var{VARIABLE_NAME}@dots{}];

@descriptionhead

@code{stoch_simul} solves a stochastic (@i{i.e.} rational
expectations) model, using perturbation techniques.

More precisely, @code{stoch_simul} computes a Taylor approximation of
the decision and transition functions for the model. Using this, it
computes impulse response functions and various descriptive statistics
(moments, variance decomposition, correlation and autocorrelation
coefficients). For correlated shocks, the variance decomposition is
computed as in the VAR literature through a Cholesky decomposition of
the covariance matrix of the exogenous variables. When the shocks are
correlated, the variance decomposition depends upon the order of the
variables in the @code{varexo} command.

The Taylor approximation is computed around the steady state
(@pxref{Steady state}).

The IRFs are computed as the difference between the trajectory of a
variable following a shock at the beginning of period 1 and its steady
state value. More details on the computation of IRFs can be found on the
@uref{http://www.dynare.org/DynareWiki/IrFs,DynareWiki}.

Variance decomposition, correlation, autocorrelation are only
displayed for variables with strictly positive variance. Impulse response
functions are only plotted for variables with response larger than
@math{10^{-10}}.

Variance decomposition is computed relative to the sum of the
contribution of each shock. Normally, this is of course equal to
aggregate variance, but if a model generates very large variances, it
may happen that, due to numerical error, the two differ by a
significant amount. Dynare issues a warning if the maximum relative
difference between the sum of the contribution of each shock and
aggregate variance is larger than 0.01%.

The covariance matrix of the shocks is specified with the
@code{shocks} command (@pxref{Shocks on exogenous variables}).

When a list of @var{VARIABLE_NAME} is specified, results are displayed
only for these variables.

The @code{stoch_simul} command with a first order approximation can benefit from the block decomposition of the model (@pxref{block}).

@optionshead

@table @code

@item ar = @var{INTEGER}
@anchor{ar}
Order of autocorrelation coefficients to compute and to print. Default: @code{5}.

@item drop = @var{INTEGER}
Number of points (burnin) dropped at the beginning of simulation before computing the summary statistics. Note that this option does not affect the simulated series stored in @var{oo_.endo_simul} and the workspace. Here, no periods are dropped. Default: @code{100}.

@item hp_filter = @var{DOUBLE}
Uses HP filter with @math{\lambda} = @var{DOUBLE} before computing
moments. Default: no filter.

@item hp_ngrid = @var{INTEGER}
Number of points in the grid for the discrete Inverse Fast Fourier
Transform used in the HP filter computation. It may be necessary to
increase it for highly autocorrelated processes. Default: @code{512}.

@item irf = @var{INTEGER}
@anchor{irf}
Number of periods on which to compute the IRFs. Setting @code{irf=0},
suppresses the plotting of IRFs. Default: @code{40}.

@item irf_shocks = ( @var{VARIABLE_NAME} [[,] @var{VARIABLE_NAME} @dots{}] )
@anchor{irf_shocks}
The exogenous variables for which to compute IRFs. Default: all.

@item relative_irf
Requests the computation of normalized IRFs in percentage of the
standard error of each shock.

@item irf_plot_threshold = @var{DOUBLE}
@anchor{irf_plot_threshold}
Threshold size for plotting IRFs. All IRFs for a particular variable with a maximum absolute deviation from the steady state smaller than this value are not displayed. Default: @code{1e-10}.

@item nocorr
Don't print the correlation matrix (printing them is the default).

@item nofunctions
Don't print the coefficients of the approximated solution (printing
them is the default).

@item nomoments
Don't print moments of the endogenous variables (printing them is the
default).

@item nograph
@anchor{nograph} Do not create graphs (which implies that they are not
saved to the disk nor displayed). If this option is not used, graphs
will be saved to disk (to the format specified by @code{graph_format}
option, except if @code{graph_format=none}) and displayed to screen
(unless @code{nodisplay} option is used).

@item nodisplay
@anchor{nodisplay} Do not display the graphs, but still save them to disk
(unless @code{nograph} is used).

@item graph_format = @var{FORMAT}
@itemx graph_format = ( @var{FORMAT}, @var{FORMAT}@dots{} )
@anchor{graph_format}
Specify the file format(s) for graphs saved to disk. Possible values are
@code{eps} (the default), @code{pdf}, @code{fig} and @code{none} (under Octave,
only @code{eps} and @code{none} are available). If the file format is set equal to
@code{none}, the graphs are displayed but not saved to the disk.

@item noprint
Don't print anything. Useful for loops.

@item print
Print results (opposite of @code{noprint}).

@item order = @var{INTEGER}
@anchor{order}
Order of Taylor approximation. Acceptable values are @code{1},
@code{2} and @code{3}. Note that for third order,
@code{k_order_solver} option is implied and only empirical moments are
available (you must provide a value for @code{periods}
option). Default: @code{2} (except after an @code{estimation} command,
in which case the default is the value used for the estimation).

@item k_order_solver
@anchor{k_order_solver}
Use a k-order solver (implemented in C++) instead of the default
Dynare solver. This option is not yet compatible with the
@code{bytecode} option (@pxref{Model declaration}. Default: disabled
for order 1 and 2, enabled otherwise

@item periods = @var{INTEGER}
@vindex oo_.endo_simul
If different from zero, empirical moments will be computed instead of
theoretical moments. The value of the option specifies the number of
periods to use in the simulations. Values of the @code{initval} block,
possibly recomputed by @code{steady}, will be used as starting point
for the simulation. The simulated endogenous variables are made
available to the user in a vector for each variable and in the global
matrix @code{oo_.endo_simul} (@pxref{oo_.endo_simul}). The simulated
exogenous variables are made available in @code{oo_.exo_simul}
(@pxref{oo_.exo_simul}). Default: @code{0}.

@item qz_criterium = @var{DOUBLE}
Value used to split stable from unstable eigenvalues in reordering the
Generalized Schur decomposition used for solving 1^st order
problems. Default: @code{1.000001} (except when estimating with
@code{lik_init} option equal to @code{1}: the default is
@code{0.999999} in that case; @pxref{Estimation}).

@item qz_zero_threshold = @var{DOUBLE}
@xref{qz_zero_threshold}.

@item replic = @var{INTEGER}
Number of simulated series used to compute the IRFs. Default: @code{1}
if @code{order}=@code{1}, and @code{50} otherwise.

@item simul_replic = @var{INTEGER}
Number of series to simulate when empirical moments are requested
(@i{i.e.} @code{periods} > 0). Note that if this option is greater
than @code{1}, the additional series will not be used for computing
the empirical moments but will simply be saved in binary form to the
file @file{@var{FILENAME}_simul}. Default: @code{1}.

@item solve_algo = @var{INTEGER}
@xref{solve_algo}, for the possible values and their meaning.

@item aim_solver
@anchor{aim_solver}
Use the Anderson-Moore Algorithm (AIM) to compute the decision rules,
instead of using Dynare's default method based on a generalized Schur
decomposition. This option is only valid for first order
approximation. See
@uref{http://www.federalreserve.gov/Pubs/oss/oss4/aimindex.html,AIM
website} for more details on the algorithm.

@item conditional_variance_decomposition = @var{INTEGER}
@anchor{conditional_variance_decomposition = INTEGER}
See below.

@item conditional_variance_decomposition = [@var{INTEGER1}:@var{INTEGER2}]
See below.

@item conditional_variance_decomposition = [@var{INTEGER1} @var{INTEGER2} @dots{}]
Computes a conditional variance decomposition for the specified
period(s). The periods must be strictly positive. Conditional variances are given by
@math{var(y_{t+k}|t)}. For period 1, the conditional variance
decomposition provides the decomposition of the effects of shocks upon
impact. The results are stored in
@code{oo_.conditional_variance_decomposition}
(@pxref{oo_.conditional_variance_decomposition}). The variance decomposition is only conducted, if theoretical moments are requested, i.e. using the @code{periods=0}-option. In case of @code{order=2}, Dynare provides a second-order accurate approximation to the true second moments based on the linear terms of the second-order solution (see @cite{Kim, Kim, Schaumburg and Sims (2008)}). Note that the unconditional variance decomposition (i.e. at horizon infinity) is automatically conducted if theoretical moments are requested (@pxref{oo_.variance_decomposition})

@item pruning
Discard higher order terms when iteratively computing simulations of
the solution. At second order, Dynare uses the algorithm of @cite{Kim, Kim, Schaumburg and Sims (2008)}, while at third order its generalization by @cite{Andreasen, Fernández-Villaverde and Rubio-Ramírez (2013)} is used.

@item partial_information
@anchor{partial_information}

Computes the solution of the model under partial information, along
the lines of @cite{Pearlman, Currie and Levine (1986)}. Agents are
supposed to observe only some variables of the economy. The set of
observed variables is declared using the @code{varobs} command. Note
that if @code{varobs} is not present or contains all endogenous
variables, then this is the full information case and this option has
no effect. More references can be found at
@uref{http://www.dynare.org/DynareWiki/PartialInformation}.

@item sylvester = @var{OPTION}
@anchor{sylvester}
Determines the algorithm used to solve the Sylvester equation for block decomposed model. Possible values for @code{@var{OPTION}} are:

@table @code

@item default
Uses the default solver for Sylvester equations (@code{gensylv}) based
on Ondra Kamenik's algorithm (see
@uref{http://www.dynare.org/documentation-and-support/dynarepp/sylvester.pdf/at_download/file,the
Dynare Website} for more information).

@item fixed_point
Uses a fixed point algorithm to solve the Sylvester equation (@code{gensylv_fp}). This method is faster than the @code{default} one for large scale models.

@end table

@noindent
Default value is @code{default}

@item sylvester_fixed_point_tol = @var{DOUBLE}
@anchor{sylvester_fixed_point_tol}
It is the convergence criterion used in the fixed point Sylvester solver. Its default value is 1e-12.

@item dr = @var{OPTION}
@anchor{dr}
Determines the method used to compute the decision rule. Possible values for @code{@var{OPTION}} are:

@table @code

@item default
Uses the default method to compute the decision rule based on the generalized Schur decomposition
(see @cite{Villemot (2011)} for more information).

@item cycle_reduction
Uses the cycle reduction algorithm to solve the polynomial equation for retrieving the coefficients
associated to the endogenous variables in the decision rule. This method is faster than the @code{default} one for large scale models.

@item logarithmic_reduction
Uses the logarithmic reduction algorithm to solve the polynomial equation for retrieving the coefficients
associated to the endogenous variables in the decision rule. This method is in general slower than the @code{cycle_reduction}.

@end table

@noindent
Default value is @code{default}

@item dr_cycle_reduction_tol = @var{DOUBLE}
@anchor{dr_cycle_reduction_tol}
The convergence criterion used in the cycle reduction algorithm. Its default value is 1e-7.

@item dr_logarithmic_reduction_tol = @var{DOUBLE}
@anchor{dr_logarithmic_reduction_tol}
The convergence criterion used in the logarithmic reduction algorithm. Its default value is 1e-12.

@item dr_logarithmic_reduction_maxiter = @var{INTEGER}
@anchor{dr_logarithmic_reduction_maxiter}
The maximum number of iterations used in the logarithmic reduction algorithm. Its default value is 100.

@item loglinear
@xref{loglinear}. Note that ALL variables are log-transformed by using the Jacobian transformation,
not only selected ones. Thus, you have to make sure that your variables have strictly positive
steady states. @code{stoch_simul} will display the moments, decision rules,
and impulse responses for the log-linearized variables. The decision rules saved
in @code{oo_.dr} and the simulated variables will also be the ones for the log-linear variables.

@end table

@outputhead

This command sets @code{oo_.dr}, @code{oo_.mean}, @code{oo_.var} and
@code{oo_.autocorr}, which are described below.

If option @code{periods} is present, sets @code{oo_.endo_simul}
(@pxref{oo_.endo_simul}), and also saves the simulated variables in
MATLAB/Octave vectors of the global workspace with the same name as
the endogenous variables.

If options @code{irf} is different from zero, sets @code{oo_.irfs}
(see below) and also saves the IRFs in MATLAB/Octave vectors of
the global workspace (this latter way of accessing the IRFs is
deprecated and will disappear in a future version).


@customhead{Example 1}

@example
shocks;
var e;
stderr 0.0348;
end;

stoch_simul;
@end example

Performs the simulation of the 2nd order approximation of a model
with a single stochastic shock @code{e}, with a standard error of
0.0348.

@customhead{Example 2}

@example
stoch_simul(irf=60) y k;
@end example

Performs the simulation of a model and displays impulse
response functions on 60 periods for variables @code{y} and @code{k}.
@end deffn

@defvr {MATLAB/Octave variable} oo_.mean
After a run of @code{stoch_simul}, contains the mean of the endogenous
variables. Contains theoretical mean if the @code{periods} option is
not present, and empirical mean otherwise. The variables are arranged
in declaration order.
@end defvr

@defvr {MATLAB/Octave variable} oo_.var
After a run of @code{stoch_simul}, contains the variance-covariance of
the endogenous variables. Contains theoretical variance if the
@code{periods} option is not present (or an approximation thereof for @code{order=2}), and empirical variance
otherwise. The variables are arranged in declaration order.
@end defvr

@anchor{oo_.autocorr}
@defvr {MATLAB/Octave variable} oo_.autocorr
After a run of @code{stoch_simul}, contains a cell array of the
autocorrelation matrices of the endogenous variables. The element
number of the matrix in the cell array corresponds to the order of
autocorrelation. The option @code{ar} specifies the number of
autocorrelation matrices available. Contains theoretical
autocorrelations if the @code{periods} option is not present (or an approximation thereof for @code{order=2}), and
empirical autocorrelations otherwise. The field is only created if stationary variables are present.

The element @code{oo_.autocorr@{i@}(k,l)} is equal to the correlation
between @math{y^k_t} and @math{y^l_{t-i}}, where @math{y^k}
(resp. @math{y^l}) is the @math{k}-th (resp. @math{l}-th) endogenous
variable in the declaration order.

Note that if theoretical moments have been requested,
@code{oo_.autocorr@{i@}} is the same than @code{oo_.gamma_y@{i+1@}}.
@end defvr

@defvr {MATLAB/Octave variable} oo_.gamma_y
After a run of @code{stoch_simul}, if theoretical moments have been
requested (@i{i.e.} if the @code{periods} option is not present), this
variable contains a cell array with the following values (where
@code{ar} is the value of the option of the same name):

@table @code
@item oo_.gamma@{1@}
Variance/co-variance matrix.

@item oo_.gamma@{i+1@} (for i=1:ar)
Autocorrelation function. @pxref{oo_.autocorr} for more
details. Beware, this is the @i{autocorrelation} function, not the
@i{autocovariance} function.

@item oo_.gamma@{nar+2@}
Unconditional variance decomposition @pxref{oo_.variance_decomposition}

@item oo_.gamma@{nar+3@}
If a second order approximation has been requested, contains the
vector of the mean correction terms.
@end table

In case of @code{order=2}, the theoretical second moments are a second order accurate approximation of the true second moments, see @code{conditional_variance_decomposition}.

@end defvr

@anchor{oo_.variance_decomposition}
@defvr {MATLAB/Octave variable} oo_.variance_decomposition
After a run of @code{stoch_simul} when requesting theoretical moments (@code{periods=0}), contains a matrix with the result of the unconditional variance decomposition (i.e. at horizon infinity). The first dimension corresponds to the endogenous variables (in the order of declaration) and the second dimension corresponds to exogenous variables (in the order of declaration). Numbers are in percent and sum up to 100 across columns.
@end defvr

@anchor{oo_.conditional_variance_decomposition}
@defvr {MATLAB/Octave variable} oo_.conditional_variance_decomposition
After a run of @code{stoch_simul} with the
@code{conditional_variance_decomposition} option, contains a
three-dimensional array with the result of the decomposition. The
first dimension corresponds to forecast horizons (as declared with the
option), the second dimension corresponds to endogenous variables (in
the order of declaration), the third dimension corresponds to
exogenous variables (in the order of declaration).
@end defvr

@defvr {MATLAB/Octave variable} oo_.irfs
After a run of @code{stoch_simul} with option @code{irf} different
from zero, contains the impulse responses, with the following naming
convention: @code{@var{VARIABLE_NAME}_@var{SHOCK_NAME}}.

For example, @code{oo_.irfs.gnp_ea} contains the effect on @code{gnp}
of a one standard deviation shock on @code{ea}.
@end defvr

The approximated solution of a model takes the form of a set of decision
rules or transition equations expressing the current value of the endogenous
variables of the model as function of the previous state of the model and
shocks observed at the beginning of the period. The decision rules are stored
in the structure @code{oo_.dr} which is described below.

@deffn Command extended_path ;
@deffnx Command extended_path (@var{OPTIONS}@dots{}) ;

@descriptionhead

@code{extended_path}   solves    a   stochastic    (@i{i.e.}    rational
expectations) model, using the  @emph{extended path} method presented by
@cite{Fair and Taylor (1983)}. Time  series for the endogenous variables
are generated  by assuming that the agents  believe that there  will no
more shocks in the following periods.

This function first  computes a random path for  the exogenous variables
(stored   in  @code{oo_.exo_simul},   @pxref{oo_.exo_simul})  and   then
computes  the corresponding  path for  endogenous variables,  taking the
steady state as  starting point. The result of the  simulation is stored
in  @code{oo_.endo_simul}   (@pxref{oo_.endo_simul}).  Note   that  this
simulation  approach  does  not  solve for  the  policy  and  transition
equations but for paths for the endogenous variables.

@optionshead

@table @code

@item periods = @var{INTEGER}
The number of periods for which the simulation is to be computed. No
default value, mandatory option.

@item solver_periods = @var{INTEGER}
The  number of  periods  used to  compute the  solution  of the  perfect
foresight at every iteration of the algorithm. Default: @code{200}.

@item order = @var{INTEGER}
If @code{order} is greater than 0 Dynare uses a gaussian quadrature to take into account the effects of future uncertainty. If @code{order}=@var{S} then the time  series for the endogenous variables
are generated  by assuming that the agents  believe that there  will no more shocks after period @var{t+S}. This is an experimental feature and can be quite slow. Default: @code{0}.

@item hybrid
Use the constant of the second order perturbation reduced form to correct the paths generated by the (stochastic) extended path algorithm.

@end table

@end deffn

@node Typology and ordering of variables
@subsection Typology and ordering of variables

Dynare distinguishes four types of endogenous variables:

@table @emph

@item Purely backward (or purely predetermined) variables
@vindex M_.npred
Those that appear only at current and past period in the model, but
not at future period (@i{i.e.} at @math{t} and @math{t-1} but not
@math{t+1}). The number of such variables is equal to
@code{M_.npred}.

@item Purely forward variables
@vindex M_.nfwrd
Those that appear only at current and future period in the model, but
not at past period (@i{i.e.} at @math{t} and @math{t+1} but not
@math{t-1}). The number of such variables is stored in
@code{M_.nfwrd}.

@item Mixed variables
@vindex M_.nboth
Those that appear at current, past and future period in the model
(@i{i.e.} at @math{t}, @math{t+1} and @math{t-1}). The number of such
variables is stored in @code{M_.nboth}.

@item Static variables
@vindex M_.nstatic
Those that appear only at current, not past and future period in the
model (@i{i.e.} only at @math{t}, not at @math{t+1} or
@math{t-1}). The number of such variables is stored in
@code{M_.nstatic}.
@end table

Note that all endogenous variables fall into one of these four
categories, since after the creation of auxiliary variables
(@pxref{Auxiliary variables}), all endogenous have at most one lead
and one lag. We therefore have the following identity:

@example
M_.npred + M_.both + M_.nfwrd + M_.nstatic = M_.endo_nbr
@end example

Internally, Dynare uses two orderings of the endogenous variables: the
order of declaration (which is reflected in @code{M_.endo_names}), and
an order based on the four types described above, which we will call
the DR-order (``DR'' stands for decision rules). Most of the time, the
declaration order is used, but for elements of the decision rules, the
DR-order is used.

The DR-order is the following: static variables appear first, then purely
backward variables, then mixed variables, and finally purely forward
variables. Inside each category, variables are arranged according to the
declaration order.

@vindex oo_.dr.order_var
@vindex oo_.dr.inv_order_var
Variable @code{oo_.dr.order_var} maps DR-order to declaration
order, and variable @code{oo_.dr.inv_order_var} contains the
inverse map. In other words, the k-th variable in the DR-order corresponds
to the endogenous variable numbered @code{oo_.dr_order_var(k)} in
declaration order. Conversely, k-th declared variable is numbered
@code{oo_.dr.inv_order_var(k)} in DR-order.

@vindex M_.nspred
@vindex M_.nsfwrd
@vindex M_.ndynamic
Finally, the state variables of the model are the purely backward variables
and the mixed variables. They are ordered in DR-order when they appear in
decision rules elements. There are @code{M_.nspred = M_.npred + M_.nboth} such
variables. Similarly, one has @code{M_.nsfwrd = M_.nfwrd + M_.nboth},
and @code{M_.ndynamic = M_.nfwrd+M_.nboth+M_.npred}.

@node First order approximation
@subsection First order approximation

The approximation has the stylized form:

@math{y_t = y^s + A y^h_{t-1} + B u_t}

where @math{y^s} is the steady state value of @math{y} and
@math{y^h_t=y_t-y^s}.

The coefficients of the decision rules are stored as follows:

@itemize

@item
@vindex oo_.dr.ys
@math{y^s} is stored in @code{oo_.dr.ys}. The vector rows
correspond to all endogenous in the declaration order.

@item
@vindex oo_.dr.ghx
A is stored in @code{oo_.dr.ghx}. The matrix rows correspond to all
endogenous in DR-order. The matrix columns correspond to state
variables in DR-order.

@item
@vindex oo_.dr.ghu
B is stored @code{oo_.dr.ghu}. The matrix rows correspond to all
endogenous in DR-order. The matrix columns correspond to exogenous
variables in declaration order.
@end itemize

Of course, the shown form of the approximation is only stylized, because it neglects the required different ordering in @math{y^s} and @math{y^h_t}. The precise form of the approximation that shows the way Dynare deals with differences between declaration and DR-order, is

@math{y_t(oo\_.dr.order\_var) = y^s(oo\_.dr.order\_var) + A \cdot y_{t-1}(oo\_.dr.order\_var(k2))-y^s(oo\_.dr.order\_var(k2)) + B\cdot u_t}

where @math{k2} selects the state variables, @math{y_t} and @math{y^s} are in declaration order and the coefficient matrices are in DR-order. Effectively, all variables on the right hand side are brought into DR order for computations and then assigned to @math{y_t} in declaration order.

@node Second order approximation
@subsection Second order approximation

The approximation has the form:

@math{y_t = y^s + 0.5 \Delta^2 +
A y^h_{t-1} + B u_t + 0.5 C
(y^h_{t-1}\otimes y^h_{t-1}) + 0.5 D
(u_t \otimes u_t) + E
(y^h_{t-1} \otimes u_t)}

where @math{y^s} is the steady state value of @math{y},
@math{y^h_t=y_t-y^s}, and @math{\Delta^2} is the shift effect of the
variance of future shocks. For the reordering required due to differences in declaration and DR order, see the first order approximation.

The coefficients of the decision rules are stored in the variables
described for first order approximation, plus the following variables:

@itemize

@item
@vindex oo_.dr.ghs2
@math{\Delta^2} is stored in @code{oo_.dr.ghs2}. The vector rows
correspond to all endogenous in DR-order.

@item
@vindex oo_.dr.ghxx
@math{C} is stored in @code{oo_.dr.ghxx}. The matrix rows
correspond to all endogenous in DR-order. The matrix columns correspond
to the Kronecker product of the vector of state variables in DR-order.

@item
@vindex oo_.dr.ghuu
@math{D} is stored in @code{oo_.dr.ghuu}. The matrix rows correspond
to all endogenous in DR-order. The matrix columns correspond to the
Kronecker product of exogenous variables in declaration order.

@item
@vindex oo_.dr.ghxu
@math{E} is stored in @code{oo_.dr.ghxu}. The matrix rows correspond
to all endogenous in DR-order. The matrix columns correspond to the
Kronecker product of the vector of state variables (in DR-order) by
the vector of exogenous variables (in declaration order).
@end itemize

@node Third order approximation
@subsection Third order approximation

The approximation has the form:

@math{y_t = y^s + G_0 +
G_1 z_t +
G_2 (z_t \otimes z_t) +
G_3 (z_t \otimes z_t \otimes z_t)}

where @math{y^s} is the steady state value of @math{y}, and @math{z_t} is a
vector consisting of the deviation from the steady state of the state
variables (in DR-order) at date @math{t-1} followed by the exogenous variables at
date @math{t} (in declaration order). The vector @math{z_t} is
therefore of size @math{n_z} = @code{M_.nspred +
M_.exo_nbr}.

The coefficients of the decision rules are stored as follows:

@itemize

@item
@vindex oo_.dr.ys
@math{y^s} is stored in @code{oo_.dr.ys}. The vector rows
correspond to all endogenous in the declaration order.

@item
@vindex oo_.dr.g_0
@math{G_0} is stored in @code{oo_.dr.g_0}. The
vector rows correspond to all endogenous in DR-order.

@item
@vindex oo_.dr.g_1
@math{G_1} is stored in @code{oo_.dr.g_1}. The matrix rows correspond
to all endogenous in DR-order. The matrix columns correspond to state
variables in DR-order, followed by exogenous in declaration order.

@item
@vindex oo_.dr.g_2
@math{G_2} is stored in @code{oo_.dr.g_2}. The matrix rows correspond
to all endogenous in DR-order. The matrix columns correspond to the
Kronecker product of state variables (in DR-order), followed by
exogenous (in declaration order). Note that the Kronecker product is
stored in a folded way, @i{i.e.} symmetric elements are stored only
once, which implies that the matrix has @math{n_z(n_z+1)/2} columns.  More
precisely, each column of this matrix corresponds to a pair @math{(i_1, i_2)}
where each index represents an element of @math{z_t} and is therefore between
@math{1} and @math{n_z}. Only non-decreasing pairs are stored, @i{i.e.} those for
which @math{i_1 \leq i_2}. The columns are arranged in the lexicographical order
of non-decreasing pairs. Also note that for those pairs where @math{i_1 \neq
i_2}, since the element is stored only once but appears two times in
the unfolded @math{G_2} matrix, it must be multiplied by 2 when computing the
decision rules.

@item
@vindex oo_.dr.g_3
@math{G_3} is stored in @code{oo_.dr.g_3}. The matrix rows correspond
to all endogenous in DR-order. The matrix columns correspond to the
third Kronecker power of state variables (in DR-order), followed by
exogenous (in declaration order). Note that the third Kronecker power
is stored in a folded way, @i{i.e.} symmetric elements are stored only
once, which implies that the matrix has @math{n_z(n_z+1)(n_z+2)/6}
columns.  More precisely, each column of this matrix corresponds to a
tuple @math{(i_1, i_2, i_3)} where each index represents an element of
@math{z_t} and is therefore between @math{1} and @math{n_z}. Only
non-decreasing tuples are stored, @i{i.e.} those for which @math{i_1
\leq i_2 \leq i_3}. The columns are arranged in the lexicographical
order of non-decreasing tuples. Also note that for tuples that have
three distinct indices (@i{i.e.} @math{i_1 \neq i_2} and @math{i_1
\neq i_3} and @math{i_2 \neq i_3}, since these elements are stored
only once but appears six times in the unfolded @math{G_3} matrix,
they must be multiplied by 6 when computing the decision
rules. Similarly, for those tuples that have two equal indices
(@i{i.e.} of the form @math{(a,a,b)} or @math{(a,b,a)} or
@math{(b,a,a)}), since these elements are stored only once but appears
three times in the unfolded @math{G_3} matrix, they must be multiplied
by 3 when computing the decision rules.
@end itemize


@node Estimation
@section Estimation

Provided that you have observations on some endogenous variables, it
is possible to use Dynare to estimate some or all parameters. Both
maximum likelihood (as in @cite{Ireland (2004)}) and Bayesian
techniques (as in @cite{Rabanal and Rubio-Ramirez (2003)},
@cite{Schorfheide (2000)} or @cite{Smets and Wouters (2003)}) are
available. Using Bayesian methods, it is possible to estimate DSGE
models, VAR models, or a combination of the two techniques called
DSGE-VAR.

Note that in order to avoid stochastic singularity, you must have at
least as many shocks or measurement errors in your model as you have
observed variables.

The estimation using a first order approximation can benefit from the block
decomposition of the model (@pxref{block}).


@deffn Command varobs @var{VARIABLE_NAME}@dots{};

@descriptionhead

This command lists the name of observed endogenous variables for the
estimation procedure. These variables must be available in the data
file (@pxref{estimation_cmd}).

Alternatively, this command is also used in conjunction with the
@code{partial_information} option of @code{stoch_simul}, for declaring
the set of observed variables when solving the model under partial
information.

Only one instance of @code{varobs} is allowed in a model file. If one
needs to declare observed variables in a loop, the macro-processor can
be used as shown in the second example below.

@customhead{Simple example}

@example
varobs C y rr;
@end example

@customhead{Example with a loop}

@example
varobs
@@#for co in countries
  GDP_@@@{co@}
@@#endfor
;
@end example

@end deffn

@deffn Block observation_trends ;

@descriptionhead

This block specifies @emph{linear} trends for observed variables as
functions of model parameters.

Each line inside of the block should be of the form:

@example
@var{VARIABLE_NAME}(@var{EXPRESSION});
@end example

In most cases, variables shouldn't be centered when
@code{observation_trends} is used.

@examplehead

@example
observation_trends;
Y (eta);
P (mu/eta);
end;
@end example

@end deffn


@anchor{estimated_params}
@deffn Block estimated_params ;

@descriptionhead

This block lists all parameters to be estimated and specifies bounds
and priors as necessary.

Each line corresponds to an estimated parameter.

In a maximum likelihood estimation, each line follows this syntax:

@example
stderr VARIABLE_NAME | corr VARIABLE_NAME_1, VARIABLE_NAME_2 | PARAMETER_NAME
, INITIAL_VALUE [, LOWER_BOUND, UPPER_BOUND ];
@end example

In a Bayesian estimation, each line follows this syntax:

@example
stderr VARIABLE_NAME | corr VARIABLE_NAME_1, VARIABLE_NAME_2 |
PARAMETER_NAME | DSGE_PRIOR_WEIGHT
[, INITIAL_VALUE [, LOWER_BOUND, UPPER_BOUND]], PRIOR_SHAPE,
PRIOR_MEAN, PRIOR_STANDARD_ERROR [, PRIOR_3RD_PARAMETER [,
PRIOR_4TH_PARAMETER [, SCALE_PARAMETER ] ] ];
@end example

The first part of the line consists of one of the three following
alternatives:

@table @code

@item stderr @var{VARIABLE_NAME}
Indicates that the standard error of the exogenous variable
@var{VARIABLE_NAME}, or of the observation error/measurement errors associated with
endogenous observed variable @var{VARIABLE_NAME}, is to be estimated

@item corr @var{VARIABLE_NAME1}, @var{VARIABLE_NAME2}
Indicates that the correlation between the exogenous variables
@var{VARIABLE_NAME1} and @var{VARIABLE_NAME2}, or the correlation of
the observation errors/measurement errors associated with endogenous observed variables
@var{VARIABLE_NAME1} and @var{VARIABLE_NAME2}, is to be estimated. Note that correlations set by previous @code{shocks}-blocks or @code{estimation}-commands are kept at their value set prior to estimation if they are not estimated again subsequently. Thus, the treatment is the same as in the case of deep parameters set during model calibration and not estimated.

@item @var{PARAMETER_NAME}
The name of a model parameter to be estimated

@item DSGE_PRIOR_WEIGHT
@dots{}

@end table

The rest of the line consists of the following fields, some of them
being optional:

@table @code

@item @var{INITIAL_VALUE}
Specifies a starting value for the posterior mode optimizer or the
maximum likelihood estimation. If unset, defaults to the prior mean.

@item @var{LOWER_BOUND}
Specifies a lower bound for the parameter value in maximum likelihood estimation

@item @var{UPPER_BOUND}
Specifies an upper bound for the parameter value in maximum likelihood estimation

@item @var{PRIOR_SHAPE}
A keyword specifying the shape of the prior density.
The possible values are: @code{beta_pdf},
@code{gamma_pdf}, @code{normal_pdf},
@code{uniform_pdf}, @code{inv_gamma_pdf},
@code{inv_gamma1_pdf}, @code{inv_gamma2_pdf}. Note
that @code{inv_gamma_pdf} is equivalent to
@code{inv_gamma1_pdf}

@item @var{PRIOR_MEAN}
The mean of the prior distribution

@item @var{PRIOR_STANDARD_ERROR}
The standard error of the prior distribution

@item @var{PRIOR_3RD_PARAMETER}
A third parameter of the prior used for generalized beta distribution,
generalized gamma and for the uniform distribution. Default: @code{0}

@item @var{PRIOR_4TH_PARAMETER}
A fourth parameter of the prior used for generalized beta distribution
and for the uniform distribution. Default: @code{1}

@item @var{SCALE_PARAMETER}
A parameter specific scale parameter for the jumping distribution's covariance matrix of the
Metropolis-Hasting algorithm
@end table

Note that @var{INITIAL_VALUE}, @var{LOWER_BOUND}, @var{UPPER_BOUND},
@var{PRIOR_MEAN}, @var{PRIOR_STANDARD_ERROR},
@var{PRIOR_3RD_PARAMETER}, @var{PRIOR_4TH_PARAMETER} and
@var{SCALE_PARAMETER} can be any valid @var{EXPRESSION}. Some of them
can be empty, in which Dynare will select a default value depending on
the context and the prior shape.

As one uses options more towards the end of the list, all previous
options must be filled: for example, if you want to specify
@var{SCALE_PARAMETER}, you must specify @var{PRIOR_3RD_PARAMETER} and
@var{PRIOR_4TH_PARAMETER}. Use empty values, if these parameters don't
apply.

@examplehead

The following line:
@example
corr eps_1, eps_2, 0.5,  ,  , beta_pdf, 0, 0.3, -1, 1;
@end example
sets a generalized beta prior for the correlation between @code{eps_1} and
@code{eps_2} with mean 0 and variance 0.3. By setting
@var{PRIOR_3RD_PARAMETER} to -1 and @var{PRIOR_4TH_PARAMETER} to 1 the
standard beta distribution with support [0,1] is changed to a
generalized beta with support [-1,1]. Note that @var{LOWER_BOUND} and
@var{UPPER_BOUND} are left empty and thus default to -1 and 1,
respectively. The initial value is set to 0.5.

Similarly, the following line:
@example
corr eps_1, eps_2, 0.5,  -0.5,  1, beta_pdf, 0, 0.3, -1, 1;
@end example
sets the same generalized beta distribution as before, but now truncates
this distribution to [-0.5,1] through the use of @var{LOWER_BOUND} and
@var{UPPER_BOUND}. Hence, the prior does not integrate to 1 anymore.

@customhead{Parameter transformation}

Sometimes, it is desirable to estimate a transformation of a parameter
appearing in the model, rather than the parameter itself. It is of
course possible to replace the original parameter by a function of the
estimated parameter everywhere is the model, but it is often
unpractical.

In such a case, it is possible to declare the parameter to be estimated
in the @code{parameters} statement and to define the transformation,
using a pound sign (#) expression (@pxref{Model declaration}).

@examplehead

@example
parameters bet;

model;
# sig = 1/bet;
c = sig*c(+1)*mpk;
end;

estimated_params;
bet, normal_pdf, 1, 0.05;
end;
@end example

@end deffn

@deffn Block estimated_params_init ;
@deffnx Block estimated_params_init (@var{OPTIONS}@dots{});

This block declares numerical initial values for the optimizer when
these ones are different from the prior mean. It should be specified after the @code{estimated_params}-block as otherwise the specified starting values are overwritten by the latter.

Each line has the following syntax:

@example
stderr VARIABLE_NAME | corr VARIABLE_NAME_1, VARIABLE_NAME_2 | PARAMETER_NAME
, INITIAL_VALUE;
@end example

@optionshead

@table @code

@item use_calibration
For not specifically initialized parameters, use the deep parameters and the elements of the covariance matrix specified in the @code{shocks} block from calibration as starting values for estimation. For components of the @code{shocks} block that were not explicitly specified during calibration or which violate the prior, the prior mean is used.
@end table

@xref{estimated_params}, for the meaning and syntax of the various components.

@end deffn

@deffn Block estimated_params_bounds ;

This block declares lower and upper bounds for parameters in maximum
likelihood estimation.

Each line has the following syntax:

@example
stderr VARIABLE_NAME | corr VARIABLE_NAME_1, VARIABLE_NAME_2 | PARAMETER_NAME
, LOWER_BOUND, UPPER_BOUND;
@end example

@xref{estimated_params}, for the meaning and syntax of the various components.

@end deffn

@anchor{estimation_cmd}
@deffn Command estimation [@var{VARIABLE_NAME}@dots{}];
@deffnx Command estimation (@var{OPTIONS}@dots{}) [@var{VARIABLE_NAME}@dots{}];

@descriptionhead

This command runs Bayesian or maximum likelihood estimation.

The following information will be displayed by the command:
@itemize

@item
results from posterior optimization (also for maximum likelihood)

@item
marginal log data density

@item
posterior mean and highest posterior density interval (shortest credible set) from posterior simulation

@item
Metropolis-Hastings convergence graphs that still need to be documented

@item
graphs with prior, posterior, and mode

@item
graphs of smoothed shocks, smoothed observation errors, smoothed and historical variables
@end itemize

Also, during  the MCMC  (Bayesian estimation with  @code{mh_replic}>0) a
(graphical or text) waiting bar is displayed showing the progress of the
Monte-Carlo and the @i{current} value of the acceptance ratio. Note that
if  the @code{load_mh_file}  option  is used  (see  below) the  reported
acceptance ratio does not take into  account the draws from the previous
MCMC. In the literature there is a general agreement for saying that the
acceptance ratio  should be close to  one third or one  quarter. If this
not the case, you can stop the MCMC (@code{Ctrl-C}) and change the value
of option @code{mh_jscale} (see below).

Note that by default Dynare generates random numbers using the algorithm
@code{mt199937ar} (@i{ie} Mersenne Twister method) with a seed set equal
to @code{0}.   Consequently the MCMCs  in Dynare are  deterministic: one
will  get  exactly  the  same   results  across  different  Dynare  runs
(@i{ceteris paribus}).  For instance, the posterior moments or posterior
densities  will be  exactly the  same. This  behaviour allows  to easily
identify the  consequences of a change  on the model, the  priors or the
estimation options. But one may also  want to check that across multiple
runs, with  different sequences of  proposals, the returned  results are
almost  identical. This  should  be  true if  the  number of  iterations
(@i{ie} the value of @code{mh_replic}) is important enough to ensure the
convergence of  the MCMC to its  ergodic distribution. In this  case the
default behaviour of the random number generators in not wanted, and the
user  should set  the  seed according  to the  system  clock before  the
estimation command using the following command:

@example
set_dynare_seed('clock');
@end example

@noindent so that the sequence of proposals will be different across different runs.

@algorithmshead

The Monte  Carlo Markov  Chain (MCMC) diagnostics  are generated  by the
estimation command if @ref{mh_replic} is  larger than 2000 and if option
@ref{nodiagnostic} is not used. If @ref{mh_nblocks} is equal to one, the
convergence diagnostics  of @cite{Geweke  (1992,1999)} is  computed.  It
uses a chi square test to compare  the means of the first and last draws
specified  by  @ref{geweke_interval}  after  discarding  the  burnin  of
@ref{mh_drop}. The test  is computed using variance  estimates under the
assumption of  no serial correlation  as well as using  tapering windows
specified in  @ref{taper_steps}.  If @ref{mh_nblocks} is  larger than 1,
the convergence diagnostics of @cite{Brooks  and Gelman (1998)} are used
instead.  As described  in section 3 of @cite{Brooks  and Gelman (1998)}
the univariate convergence diagnostics are based on comparing pooled and
within MCMC moments (Dynare displays the second and third order moments,
and the length of the  Highest Probability Density interval covering 80%
of  the  posterior distribution).   Due  to  computational reasons,  the
multivariate  convergence diagnostic  does not  follow @cite{Brooks  and
Gelman (1998)}  strictly, but rather  applies their idea  for univariate
convergence  diagnostics  to  the  range  of  the  posterior  likelihood
function instead of the individual  parameters.  The posterior kernel is
used  to  aggregate  the  parameters   into  a  scalar  statistic  whose
convergence is  then checked using  the @cite{Brooks and  Gelman (1998)}
univariate convergence diagnostic.

@optionshead

@table @code

@item datafile = @var{FILENAME}
@anchor{datafile}
The datafile: a @file{.m} file, a @file{.mat} file, a @file{.csv}
file, or a @file{.xls}/@file{.xlsx} file (under Octave, the
@uref{http://octave.sourceforge.net/io/,io} from Octave-Forge is
required for the @file{.csv}, @file{.xls} and @file{.xlsx} formats; in
addition, for the @file{.xls} and @file{.xlsx} formats, the
@uref{http://octave.sourceforge.net/java/,java} package is required,
along with a @uref{http://www.java.com/download,Java Runtime
Environment})

@item xls_sheet = @var{NAME}
@anchor{xls_sheet}
The name of the sheet with the data in an Excel file

@item xls_range = @var{RANGE}
@anchor{xls_range}
The range with the data in an Excel file

@item nobs = @var{INTEGER}
@anchor{nobs}
The number of observations to be used. Default: all observations in
the file

@item nobs = [@var{INTEGER1}:@var{INTEGER2}]
@anchor{nobs1}
Runs a recursive estimation and forecast for samples of size ranging
of @var{INTEGER1} to @var{INTEGER2}. Option @code{forecast} must
also be specified. The forecasts are stored in the
@code{RecursiveForecast} field of the results structure (@pxref{RecursiveForecast}).

@item first_obs = @var{INTEGER}
@anchor{first_obs}
The number of the first observation to be used. Default: @code{1}

@item prefilter = @var{INTEGER}
@anchor{prefilter}
A value of @code{1} means that the estimation procedure will demean
each data series by its empirical mean. Default: @code{0}, @i{i.e.} no prefiltering

@item presample = @var{INTEGER}
@anchor{presample}
The number of observations to be skipped before evaluating the
likelihood. These first observations are used as a training sample. Default: @code{0}

@item loglinear
@anchor{loglinear}
Computes a log-linear approximation of the model instead of a linear
approximation. As always in the context of estimation, the data must correspond to the definition of the
variables used in the model (see @cite{Pfeifer 2013} for more details on how to correctly specify observation equations linking model variables and the data). If you specify the loglinear option, Dynare will take the logarithm of both your model variables and of your data as it assumes the data to correspond to the original non-logged model variables. The displayed posterior results like impulse responses, smoothed variables, and moments will be for the logged variables, not the original un-logged ones. Default: computes a linear approximation

@item plot_priors = @var{INTEGER}
Control the plotting of priors:

@table @code

@item 0
No prior plot

@item 1
Prior density for each estimated parameter is plotted. It is important
to check that the actual shape of prior densities matches what you
have in mind. Ill-chosen values for the prior standard density can
result in absurd prior densities.
@end table

@noindent
Default value is @code{1}.

@item nograph
@xref{nograph}.

@item nodisplay
@xref{nodisplay}.

@item graph_format = @var{FORMAT}
@itemx graph_format = ( @var{FORMAT}, @var{FORMAT}@dots{} )
@xref{graph_format}.

@item lik_init = @var{INTEGER}
@anchor{lik_init}
Type of initialization of Kalman filter:

@table @code

@item 1
For stationary models, the initial matrix of variance of the error of
forecast is set equal to the unconditional variance of the state
variables

@item 2
For nonstationary models: a wide prior is used with an initial matrix
of variance of the error of forecast diagonal with 10 on the diagonal

@item 3
For nonstationary models: use a diffuse filter (use rather the @code{diffuse_filter} option)

@item 4
The filter is initialized with the fixed point of the Riccati equation
@end table

@noindent
Default value is @code{1}. For advanced use only.

@item lik_algo = @var{INTEGER}
For internal use and testing only.

@item conf_sig = @var{DOUBLE}
Confidence interval used for classical forecasting after estimation. See @xref{conf_sig}.

@item mh_conf_sig = @var{DOUBLE}
@anchor{mh_conf_sig} 
Confidence/HPD interval used for the computation of prior and  posterior statistics like: parameter distributions, prior/posterior moments, conditional variance decomposition, impulse response functions, Bayesian forecasting. Default: @code{0.9} 

@item mh_replic = @var{INTEGER}
@anchor{mh_replic} Number of replications for Metropolis-Hastings
algorithm. For the time being, @code{mh_replic} should be larger than
@code{1200}. Default: @code{20000}

@item sub_draws = @var{INTEGER}
@anchor{sub_draws} number of draws from the Metropolis iterations that
are used to compute posterior distribution of various objects (smoothed
variable, smoothed shocks, forecast, moments, IRF). @code{sub_draws} should be smaller than
the total number of Metropolis draws available. Default:
@code{min(1200,0.25*Total number of draws)}


@item mh_nblocks = @var{INTEGER}
@anchor{mh_nblocks} Number of parallel chains for Metropolis-Hastings algorithm. Default:
@code{2}

@item mh_drop = @var{DOUBLE}
@anchor{mh_drop}
The fraction of initially generated parameter vectors to be dropped as a burnin before using posterior simulations. Default: @code{0.5}

@item mh_jscale = @var{DOUBLE}
@anchor{mh_jscale}  The scale  parameter of  the jumping  distribution's
covariance matrix (Metropolis-Hastings algorithm).  The default value is
rarely satisfactory.  This  option must be tuned to  obtain, ideally, an
acceptance  ratio  of  25%-33%  in  the  Metropolis-Hastings  algorithm.
Basically,  the  idea  is  to  increase  the  variance  of  the  jumping
distribution if the acceptance ratio is  too high, and decrease the same
variance if the  acceptance ratio is too low. In  some situations in may
help to  consider parameter  specific values  for this  scale parameter,
this  can  be  done  in  the  @ref{estimated_params}  block. Default:
@code{0.2}

@item mh_init_scale = @var{DOUBLE}
The scale to be used for drawing the initial value of the
Metropolis-Hastings chain. Default: 2*@code{mh_scale}

@item mh_recover
@anchor{mh_recover} Attempts to recover a Metropolis-Hastings
simulation that crashed prematurely. Shouldn't be used together with
@code{load_mh_file}

@item mh_mode = @var{INTEGER}
@dots{}

@item mode_file = @var{FILENAME}
@anchor{mode_file}
Name of the file containing previous value for the mode. When
computing the mode, Dynare stores the mode (@code{xparam1}) and the
hessian (@code{hh}, only if @code{cova_compute=1}) in a file called
@file{@var{MODEL_FILENAME}_mode.mat}

@item mode_compute = @var{INTEGER} | @var{FUNCTION_NAME}
@anchor{mode_compute}
Specifies the optimizer for the mode computation:

@table @code

@item 0
The mode isn't computed. When @code{mode_file} option is specified, the
mode is simply read from that file.

When @code{mode_file} option is not
specified, Dynare reports the value of the log posterior (log likelihood)
evaluated at the initial value of the parameters.

When @code{mode_file}
option is not specified and there is no @code{estimated_params} block,
but the @code{smoother} option is used, it is a roundabout way to
compute the smoothed value of the variables of a model with calibrated parameters.

@item 1
Uses @code{fmincon} optimization routine (available under MATLAB if
the optimization toolbox is installed; not available under Octave)

@item 2
Value no longer used

@item 3
Uses @code{fminunc} optimization routine (available under MATLAB if
the optimization toolbox is installed; available under Octave if the
@uref{http://octave.sourceforge.net/optim/,optim} package from
Octave-Forge is installed)

@item 4
Uses Chris Sims's @code{csminwel}

@item 5
Uses Marco Ratto's @code{newrat}. This value is not compatible with non
linear filters or DSGE-VAR models

@item 6
Uses a Monte-Carlo based optimization routine (see
@uref{http://www.dynare.org/DynareWiki/MonteCarloOptimization,Dynare
wiki} for more details)

@item 7
Uses @code{fminsearch}, a simplex based optimization routine (available
under MATLAB if the optimization toolbox is installed; available under
Octave if the @uref{http://octave.sourceforge.net/optim/,optim}
package from Octave-Forge is installed)

@item 8
Uses Dynare implementation of the Nelder-Mead simplex based optimization
routine (generally more efficient than the MATLAB or Octave implementation
available with @code{mode_compute=7})

@item 9
Uses the CMA-ES (Covariance Matrix Adaptation Evolution Strategy) algorithm, an evolutionary algorithm for difficult non-linear non-convex optimization

@item 10
Uses the simpsa algorithm, based on the combination of the non-linear simplex and simulated annealing algorithms and proposed by
@cite{Cardoso, Salcedo and Feyo de Azevedo (1996)}.

@item @var{FUNCTION_NAME}
It is also possible to give a @var{FUNCTION_NAME} to this option,
instead of an @var{INTEGER}. In that case, Dynare takes the return
value of that function as the posterior mode.
@end table

@noindent
Default value is @code{4}.

@item mcmc_jumping_covariance = hessian|prior_variance|identity_matrix|@var{FILENAME}
Tells Dynare which covariance to use for the proposal density of the MCMC sampler. @code{mcmc_jumping_covariance} can be one of the following:

@table @code
@item hessian
Uses the Hessian matrix computed at the mode.

@item prior_variance
Uses the prior variances. No infinite prior variances are allowed in this case.

@item identity_matrix
Uses an identity matrix.

@item @var{FILENAME}
Loads an arbitrary user-specified covariance matrix from @code{@var{FILENAME}.mat}. The covariance matrix must be saved in a variable named @code{jumping_covariance}, must be square, positive definite, and have the same dimension as the number of estimated parameters.

@end table
@noindent
Note that the covariance matrices are still scaled with @ref{mh_jscale}. Default value is @code{hessian}.

@item mode_check
Tells Dynare to plot the posterior density for values around the
computed mode for each estimated parameter in turn. This is helpful to
diagnose problems with the optimizer

@item mode_check_neighbourhood_size = @var{DOUBLE}
Used in conjunction with option @code{mode_check}, gives the width of
the window around the posterior mode to be displayed on the diagnostic
plots. This width is expressed in percentage deviation. The @code{Inf}
value is allowed, and will trigger a plot over the entire domain
(see also @code{mode_check_symmetric_plots}).
Default: @code{0.5}.

@item mode_check_symmetric_plots = @var{INTEGER}
Used in conjunction with option @code{mode_check}, if set to @code{1},
tells Dynare to ensure that the check plots are symmetric around the
posterior mode. A value of @code{0} allows to have asymmetric plots,
which can be useful if the posterior mode is close to a domain
boundary, or in conjunction with @code{mode_check_neighbourhood_size =
Inf} when the domain in not the entire real line. Default: @code{1}.

@item mode_check_number_of_points = @var{INTEGER}
Number of points around the posterior mode where the posterior kernel is evaluated (for each parameter). Default is @code{20}

@item prior_trunc = @var{DOUBLE}
@anchor{prior_trunc} Probability of extreme values of the prior
density that is ignored when computing bounds for the
parameters. Default: @code{1e-32}

@item load_mh_file
@anchor{load_mh_file} Tells Dynare to add to previous
Metropolis-Hastings simulations instead of starting from
scratch. Shouldn't be used together with @code{mh_recover}

@item optim = (@var{NAME}, @var{VALUE}, ...)
A list of @var{NAME} and @var{VALUE} pairs. Can be used to set options for the optimization routines. The set of available options depends on the selected optimization routine (ie on the value of option @ref{mode_compute}):

@table @code

@item 1, 3, 7
Available options are given in the documentation of the MATLAB optimization toolbox or in Octave's documentation.

@item 4
Available options are:

@table @code

@item 'MaxIter'
Maximum number of iterations. Default: @code{1000}

@item 'NumgradAlgorithm'
Possible values are @code{2}, @code{3} and @code{5} respectively corresponding to the two, three and five points formula used to compute the gradient of the objective function (see @cite{Abramowitz and Stegun (1964)}). Values @code{13} and @code{15} are more experimental. If perturbations on the right and the left increase the value of the objective function (we minimize this function) then we force the corresponding element of the gradient to be zero. The idea is to temporarily reduce the size of the optimization problem. Default: @code{2}.

@item 'NumgradEpsilon'
Size of the perturbation used to compute numerically the gradient of the objective function. Default: @code{1e-6}

@item 'TolFun'
Stopping criteria. Default: @code{1e-7}

@item 'InitialInverseHessian'
Initial approximation for the inverse of the Hessian matrix of the posterior kernel (or likelihood). Obviously this approximation has to be a square, positive definite and symmetric matrix. Default: @code{'1e-4*eye(nx)'}, where @code{nx} is the number of parameters to be estimated.

@end table

@item 6
Available options are:

@table @code

@item 'NumberOfMh'
Number of MCMC run sequentially. Default: @code{3}

@item 'ncov-mh'
Number of iterations used for updating the covariance matrix of the jumping distribution. Default: @code{20000}

@item 'nscale-mh'
Maximum number of iterations used for adjusting the scale parameter of the jumping distribution.  @code{200000}

@item 'nclimb'
Number of iterations in the last MCMC (climbing mode).

@item 'InitialCovarianceMatrix'
Initial covariance matrix of the jumping distribution. Default is @code{'previous'} if option @code{mode_file} is used, @code{'prior'} otherwise.

@item 'AcceptanceRateTarget'
A real number between zero and one. The scale parameter of the jumping distribution is adjusted so that the effective acceptance rate matches the value of option @code{'AcceptanceRateTarget'}. Default: @code{1.0/3.0}

@end table

@item 8
Available options are:

@table @code

@item 'MaxIter'
Maximum number of iterations. Default: @code{5000}

@item 'MaxFunEvals'
Maximum number of objective function evaluations. No default.

@item 'MaxFunvEvalFactor'
Set @code{MaxFunvEvals} equal to @code{MaxFunvEvalFactor} times the number of estimated parameters. Default: @code{500}.

@item 'TolFun'
Tolerance parameter (w.r.t the objective function). Default: @code{1e-4}

@item 'TolX'
Tolerance parameter (w.r.t the instruments). Default: @code{1e-4}

@item 'InitialSimplexSize'

Initial size of the simplex, expressed as percentage deviation from the provided initial guess in each direction. Default: @code{.05}

@end table

@item 9
Available options are:

@table @code

@item 'MaxIter'
Maximum number of iterations.

@item 'MaxFunEvals'
Maximum number of objective function evaluations. Default: @code{Inf}.

@item 'TolFun'
Tolerance parameter (w.r.t the objective function). Default: @code{1e-7}

@item 'TolX'
Tolerance parameter (w.r.t the instruments). Default: @code{1e-7}

@end table

@item 10
Available options are:

@table @code

@item 'MaxIter'
Maximum number of iterations. Default: @code{5000}

@item 'MaxFunvEvals'
Maximum number of objective function evaluations. No default.

@item 'TolFun'
Tolerance parameter (w.r.t the objective function). Default: @code{1e-4}

@item 'TolX'
Tolerance parameter (w.r.t the instruments). Default: @code{1e-4}

@item 'EndTemperature'
Terminal condition w.r.t the temperature. When the temperature reaches @code{EndTemperature}, the temperature is set to zero and the algorithm falls back into a standard simplex algorithm. Default: @code{.1}

@end table

@end table

@customhead{Example 1}
To change the defaults of csminwel (@code{mode_compute=4}):

@code{estimation(..., mode_compute=4, optim=('NumgradAlgorithm',3,'TolFun',1e-5), ...);}


@item nodiagnostic
@anchor{nodiagnostic} Does not compute the convergence diagnostics for
Metropolis-Hastings. Default: diagnostics are computed and displayed

@item bayesian_irf
@anchor{bayesian_irf} Triggers the computation of the posterior
distribution of IRFs. The length of the IRFs are controlled by the
@code{irf} option. Results are stored in @code{oo_.PosteriorIRF.dsge}
(see below for a description of this variable)

@item dsge_var = @var{DOUBLE}
@anchor{dsge_var} Triggers the estimation of a DSGE-VAR model, where the
weight of  the DSGE prior  of the VAR model  is calibrated to  the value
passed (see @cite{Del  Negro and Schorfheide (2004)}). It represents ratio of dummy over actual observations. To assure that the prior is proper, the value must be bigger than @math{(k+n)/T}, where @math{k} is the number of estimated parameters, @math{n} is the number of observables, and @math{T} is the number of observations. NB:  The previous method
of   declaring  @code{dsge_prior_weight}   as  a   parameter  and   then
calibrating it is now deprecated and will be removed in a future release
of Dynare.

@item dsge_var
Triggers the  estimation of a  DSGE-VAR model,  where the weight  of the
DSGE prior of  the VAR model will  be estimated (as in  @cite{Adjemian et alii
(2008)}).    The   prior    on   the   weight   of    the   DSGE   prior,
@code{dsge_prior_weight}, must be defined in the @code{estimated_params}
section.  NB: The previous  method of declaring @code{dsge_prior_weight}
as a  parameter and  then placing it  in @code{estimated_params}  is now
deprecated and will be removed in a future release of Dynare.

@item dsge_varlag = @var{INTEGER}
@anchor{dsge_varlag} The number of lags used to estimate a DSGE-VAR
model. Default: @code{4}.

@item moments_varendo
@anchor{moments_varendo} Triggers the computation of the posterior
distribution of the theoretical moments of the endogenous
variables. Results are stored in
@code{oo_.PosteriorTheoreticalMoments} (@pxref{oo_.PosteriorTheoreticalMoments}). The number of lags in the autocorrelation function is
controlled by the @code{ar} option.

@item conditional_variance_decomposition = @var{INTEGER}
See below.

@item conditional_variance_decomposition = [@var{INTEGER1}:@var{INTEGER2}]
See below.

@item conditional_variance_decomposition = [@var{INTEGER1} @var{INTEGER2} @dots{}]
Computes the posterior distribution of the conditional variance
decomposition for the specified period(s). The periods must be strictly
positive. Conditional variances are given by @math{var(y_{t+k}|t)}. For
period 1, the conditional variance decomposition provides the
decomposition of the effects of shocks upon impact. The results are
stored in
@code{oo_.PosteriorTheoreticalMoments.dsge.ConditionalVarianceDecomposition},
but currently there is no displayed output. Note that this option requires the
option @code{moments_varendo} to be specified.

@item filtered_vars
@anchor{filtered_vars} Triggers the computation of the posterior
distribution of filtered endogenous variables/one-step ahead forecasts, i.e. @math{E_{t}{y_{t+1}}}. Results are
stored in @code{oo_.FilteredVariables} (see below for a description of
this variable)

@item smoother
@anchor{smoother} Triggers the computation of the posterior distribution
of smoothed endogenous variables and shocks, i.e. the expected value of variables and shocks given the information available in all observations up to the @emph{final} date (@math{E_{T}{y_t}}). Results are stored in
@code{oo_.SmoothedVariables}, @code{oo_.SmoothedShocks} and
@code{oo_.SmoothedMeasurementErrors}.  Also triggers the computation of
@code{oo_.UpdatedVariables}, which contains the estimation of the expected value of variables given the information available at the @emph{current} date (@math{E_{t}{y_t}}).  See below for a description of all these
variables.

@item forecast = @var{INTEGER}
@anchor{forecast} Computes the posterior distribution of a forecast on
@var{INTEGER} periods after the end of the sample used in
estimation. If no Metropolis-Hastings is computed, the result is
stored in variable @code{oo_.forecast} and corresponds to the forecast
at the posterior mode. If a Metropolis-Hastings is computed, the
distribution of forecasts is stored in variables
@code{oo_.PointForecast} and
@code{oo_.MeanForecast}. @xref{Forecasting}, for a description of
these variables.

@item tex
@anchor{tex} Requests the printing of results and graphs in @TeX{}
tables and graphics that can be later directly included in @LaTeX{}
files (not yet implemented)

@item kalman_algo = @var{INTEGER}
@anchor{kalman_algo}

@table @code

@item 0
Automatically use the Multivariate Kalman Filter for stationary models and the Multivariate Diffuse Kalman Filter for non-stationary models

@item 1
Use the Multivariate Kalman Filter

@item 2
Use the Univariate Kalman Filter

@item 3
Use the Multivariate Diffuse Kalman Filter

@item 4
Use the Univariate Diffuse Kalman Filter

@end table
@noindent
Default value is @code{0}. In case of missing observations of single or all series, Dynare treats those missing values as unobserved states and uses the Kalman filter to infer their value (see e.g. @cite{Durbin and Koopman (2012), Ch. 4.10})


@item kalman_tol = @var{DOUBLE}
@anchor{kalman_tol} Numerical tolerance for determining the singularity of the covariance matrix of the prediction errors during the Kalman filter (minimum allowed reciprocal of the matrix condition number). Default value is @code{1e-10}


@item filter_covariance
@anchor{filter_covariance} Saves the series of one step ahead error of
forecast covariance matrices.

@item filter_step_ahead = [@var{INTEGER1}:@var{INTEGER2}]
See below.

@item filter_step_ahead = [@var{INTEGER1} @var{INTEGER2}  @dots{}]
@anchor{filter_step_ahead}
Triggers the computation k-step ahead filtered values. Stores results in
@code{oo_.FilteredVariablesKStepAhead} and
@code{oo_.FilteredVariablesKStepAheadVariances}.

@item filter_decomposition
@anchor{filter_decomposition} Triggers the computation of the shock
decomposition of the above k-step ahead filtered values.

@item diffuse_filter
Uses the diffuse Kalman filter (as described in
@cite{Durbin and Koopman (2012)} and @cite{Koopman and Durbin
(2003)}) to estimate models with non-stationary observed variables.

When @code{diffuse_filter} is used the @code{lik_init} option of
@code{estimation} has no effect.

When there  are nonstationary exogenous variables in  a model, there is  no unique deterministic  steady state.  For instance,  if productivity  is a  pure random walk:

@math{a_t = a_{t-1} + e_t}

any value of  @math{\bar a} of @math{a} is a  deterministic steady state for productivity.  Consequently, the  model admits  an infinity  of steady states. In this situation, the user must help Dynare in selecting one steady state, except if zero is a trivial model's steady state, which happens when the @code{linear} option is used in the model declaration. The user can either provide the steady state to Dynare using a @code{steady_state_model} block (or writing a steady state file) if a closed form solution is available, @pxref{steady_state_model}, or specify some constraints on the steady state, @pxref{equation_tag_for_conditional_steady_state}, so that Dynare computes the steady state conditionally on some predefined levels for the non stationary variables. In both cases, the idea is to use dummy values for the steady state level of the exogenous non stationary variables.

Note that the nonstationary variables in the model must be integrated processes (their first difference or k-difference must be stationary).

@item selected_variables_only
Only run the smoother on the variables listed just after the
@code{estimation} command. Default: run the smoother on all the
declared endogenous variables.

@item cova_compute = @var{INTEGER}
When @code{0}, the covariance matrix of estimated parameters is not
computed after the computation of posterior mode (or maximum
likelihood). This increases speed of computation in large models
during development, when this information is not always necessary. Of
course, it will break all successive computations that would require
this covariance matrix. Otherwise, if this option is equal to
@code{1}, the covariance matrix is computed and stored in variable
@code{hh} of @file{@var{MODEL_FILENAME}_mode.mat}. Default is @code{1}.

@item solve_algo = @var{INTEGER}
@xref{solve_algo}.

@item order = @var{INTEGER}
Order of approximation, either @code{1} or @code{2}. When equal to
@code{2}, the likelihood is evaluated with a particle filter based on
a second order approximation of the model (see
@cite{Fernandez-Villaverde and Rubio-Ramirez (2005)}).  Default is
@code{1}, ie the likelihood of the linearized model is evaluated
using a standard Kalman filter.

@item irf = @var{INTEGER}
@xref{irf}. Only used if @ref{bayesian_irf} is passed.

@item irf_shocks = ( @var{VARIABLE_NAME} [[,] @var{VARIABLE_NAME} @dots{}] )
@xref{irf_shocks}. Only used if @ref{bayesian_irf} is passed. Cannot be used
with @ref{dsge_var}.

@item irf_plot_threshold = @var{DOUBLE}
@xref{irf_plot_threshold}. Only used if @ref{bayesian_irf} is passed.

@item aim_solver
@xref{aim_solver}.

@item sylvester = OPTION
@xref{sylvester}.

@item sylvester_fixed_point_tol = @var{DOUBLE}
@xref{sylvester_fixed_point_tol}.

@item lyapunov = @var{OPTION}
@anchor{lyapunov}
Determines the algorithm used to solve the Lyapunov equation to initialized the variance-covariance matrix of the Kalman filter using the steady-state value of state variables. Possible values for @code{@var{OPTION}} are:

@table @code

@item default
Uses the default solver for Lyapunov equations based on Bartels-Stewart algorithm.

@item fixed_point
Uses a fixed point algorithm to solve the Lyapunov equation. This method is faster than the @code{default} one for large scale models, but it could require a large amount of iterations.

@item doubling
Uses a doubling algorithm to solve the Lyapunov equation (@code{disclyap_fast}). This method is faster than the two previous one for large scale models.


@item square_root_solver
Uses a square-root solver for Lyapunov equations
(@code{dlyapchol}). This method is fast for large scale models
(available under MATLAB if the control system toolbox is installed;
available under Octave if the
@uref{http://octave.sourceforge.net/control/,control} package from
Octave-Forge is installed)

@end table

@noindent
Default value is @code{default}

@item lyapunov_fixed_point_tol = @var{DOUBLE}
@anchor{lyapunov_fixed_point_tol}
This is the convergence criterion used in the fixed point Lyapunov solver. Its default value is 1e-10.

@item lyapunov_doubling_tol = @var{DOUBLE}
@anchor{lyapunov_doubling_tol}
This is the convergence criterion used in the doubling algorithm to solve the Lyapunov equation. Its default value is 1e-16.

@item analytic_derivation
Triggers estimation with analytic gradient. The final hessian is also
computed analytically. Only works for stationary models without
missing observations.

@item ar = @var{INTEGER}
@xref{ar}. Only useful in conjunction with option @code{moments_varendo}.

@item endogenous_prior
Use endogenous priors as in @cite{Christiano, Trabandt and Walentin
(2011)}.

@item use_univariate_filters_if_singularity_is_detected = @var{INTEGER}
Decide whether Dynare should automatically switch to univariate filter
if a singularity is encountered in the likelihood computation (this is
the behaviour if the option is equal to @code{1}). Alternatively, if
the option is equal to @code{0}, Dynare will not automatically change
the filter, but rather use a penalty value for the likelihood when
such a singularity is encountered. Default: @code{1}.

@item qz_zero_threshold = @var{DOUBLE}
@xref{qz_zero_threshold}.

@item taper_steps = [@var{INTEGER1} @var{INTEGER2} @dots{}]
@anchor{taper_steps}
Percent tapering used for the spectral window in the @cite{Geweke (1992,1999)}
convergence diagnostics (requires @ref{mh_nblocks}=1). The tapering is used to
take the serial correlation of the posterior draws into account. Default: @code{[4 8 15]}.

@item geweke_interval = [@var{DOUBLE} @var{DOUBLE}]
@anchor{geweke_interval}
Percentage of MCMC draws at the beginning and end of the MCMC chain taken
to compute the @cite{Geweke (1992,1999)} convergence diagnostics (requires @ref{mh_nblocks}=1)
after discarding the first @ref{mh_drop} percent of draws as a burnin. Default: @code{[0.2 0.5]}.

@end table

@customhead{Note}

If no @code{mh_jscale} parameter is used in estimated_params, the
procedure uses @code{mh_jscale} for all parameters. If
@code{mh_jscale} option isn't set, the procedure uses @code{0.2} for
all parameters.

@outputhead

@vindex M_.params
@vindex M_.Sigma_e
After running @code{estimation}, the parameters @code{M_.params} and
the variance matrix @code{M_.Sigma_e} of the shocks are set to the
mode for maximum likelihood estimation or posterior mode computation
without Metropolis iterations.

After @code{estimation} with Metropolis iterations (option
@code{mh_replic} > 0 or option @code{load_mh_file} set) the parameters
@code{M_.params} and the variance matrix @code{M_.Sigma_e} of the
shocks are set to the posterior mean.

Depending on the options, @code{estimation} stores results in various
fields of the @code{oo_} structure, described below.

@end deffn

In the following variables, we will adopt the following shortcuts for
specific field names:

@table @var

@item MOMENT_NAME

This field can take the following values:

@table @code

@item HPDinf
Lower bound of a 90% HPD interval@footnote{See option @ref{conf_sig}
to change the size of the HPD interval}

@item HPDsup
Upper bound of a 90% HPD interval

@item Mean
Mean of the posterior distribution

@item Median
Median of the posterior distribution

@item Std
Standard deviation of the posterior distribution

@item Variance
Variance of the posterior distribution

@item deciles
Deciles of the distribution.

@item density
Non parametric estimate of the posterior density. First and second
columns are respectively abscissa and ordinate coordinates.
@end table

@item ESTIMATED_OBJECT

This field can take the following values:

@table @code

@item measurement_errors_corr
Correlation between two measurement errors

@item measurement_errors_std
Standard deviation of measurement errors

@item parameters
Parameters

@item shocks_corr
Correlation between two structural shocks

@item shocks_std
Standard deviation of structural shocks

@end table
@end table


@defvr {MATLAB/Octave variable} oo_.MarginalDensity.LaplaceApproximation
Variable set by the @code{estimation} command.
@end defvr

@defvr {MATLAB/Octave variable} oo_.MarginalDensity.ModifiedHarmonicMean
Variable set by the @code{estimation} command, if it is used with
@code{mh_replic > 0} or @code{load_mh_file} option.
@end defvr

@defvr {MATLAB/Octave variable} oo_.FilteredVariables
Variable set by the @code{estimation} command, if it is used with the
@code{filtered_vars} option.

After an estimation without Metropolis, fields are of the form:
@example
@code{oo_.FilteredVariables.@var{VARIABLE_NAME}}
@end example

After an estimation with Metropolis, fields are of the form:
@example
@code{oo_.FilteredVariables.@var{MOMENT_NAME}.@var{VARIABLE_NAME}}
@end example
@end defvr

@defvr {MATLAB/Octave variable} oo_.FilteredVariablesKStepAhead
Variable set by the @code{estimation} command, if it is used with the
@code{filter_step_ahead} option. The k-steps are stored along the rows while the columns indicate the respective variables. The third dimension of the array provides the observation for which the forecast has been made. For example, if @code{filter_step_ahead=[1 2 4]} and @code{nobs=200}, the element (3,5,204) stores the four period ahead filtered value of variable 5 computed at time t=200 for time t=204. The periods at the beginning and end of the sample for which no forecasts can be made, e.g. entries (1,5,1) and (1,5,204) in the example, are set to zero.
@end defvr

@defvr {MATLAB/Octave variable} oo_.FilteredVariablesKStepAheadVariances
Variable set by the @code{estimation} command, if it is used with the
@code{filter_step_ahead} option.
@end defvr

@defvr {MATLAB/Octave variable} oo_.Filtered_Variables_X_step_ahead
Variable set by the @code{estimation} command, if it is used with the @code{filter_step_ahead} option in the context of Bayesian estimation. Fields are of the form:
@example
@code{oo_.Filtered_Variables_X_step_ahead.@var{VARIABLE_NAME}}
@end example
The nth entry stores the k-step ahead filtered variable computed at time n for time n+k.
@end defvr



@defvr {MATLAB/Octave variable} oo_.PosteriorIRF.dsge
Variable set by the @code{estimation} command, if it is used with the
@code{bayesian_irf} option. Fields are of the form:
@example
@code{oo_.PosteriorIRF.dsge.@var{MOMENT_NAME}.@var{VARIABLE_NAME}_@var{SHOCK_NAME}}
@end example
@end defvr

@defvr {MATLAB/Octave variable} oo_.SmoothedMeasurementErrors
Variable set by the @code{estimation} command, if it is used with the
@code{smoother} option. Fields are of the form:
@example
@code{oo_.SmoothedMeasurementErrors.@var{VARIABLE_NAME}}
@end example
@end defvr

@defvr {MATLAB/Octave variable} oo_.SmoothedShocks
Variable set by the @code{estimation} command (if used with the
@code{smoother} option), or by the @code{calib_smoother} command.

After an estimation without Metropolis, or if computed by
@code{calib_smoother}, fields are of the form:
@example
@code{oo_.SmoothedShocks.@var{VARIABLE_NAME}}
@end example

After an estimation with Metropolis, fields are of the form:
@example
@code{oo_.SmoothedShocks.@var{MOMENT_NAME}.@var{VARIABLE_NAME}}
@end example

@end defvr

@defvr {MATLAB/Octave variable} oo_.SmoothedVariables
Variable set by the @code{estimation} command (if used with the
@code{smoother} option), or by the @code{calib_smoother} command.

After an estimation without Metropolis, or if computed by
@code{calib_smoother}, fields are of the form:
@example
@code{oo_.SmoothedVariables.@var{VARIABLE_NAME}}
@end example

After an estimation with Metropolis, fields are of the form:
@example
@code{oo_.SmoothedVariables.@var{MOMENT_NAME}.@var{VARIABLE_NAME}}
@end example
@end defvr

@defvr {MATLAB/Octave variable} oo_.UpdatedVariables
Variable set by the @code{estimation} command (if used with the
@code{smoother} option), or by the @code{calib_smoother} command.
Contains the estimation of the expected value of variables given the
information available at the @emph{current} date.

After an estimation without Metropolis, or if computed by
@code{calib_smoother}, fields are of the form:
@example
@code{oo_.UpdatedVariables.@var{VARIABLE_NAME}}
@end example

After an estimation with Metropolis, fields are of the form:
@example
@code{oo_.UpdatedVariables.@var{MOMENT_NAME}.@var{VARIABLE_NAME}}
@end example
@end defvr

@defvr {MATLAB/Octave variable} oo_.PosteriorTheoreticalMoments
@anchor{oo_.PosteriorTheoreticalMoments}
Variable set by the @code{estimation} command, if it is used with the
@code{moments_varendo} option. Fields are of the form:
@example
@code{oo_.PosteriorTheoreticalMoments.dsge.@var{THEORETICAL_MOMENT}.@var{ESTIMATED_OBJECT}.@var{MOMENT_NAME}.@var{VARIABLE_NAME}}
@end example
where @var{THEORETICAL_MOMENT} is one of the following:

@table @code

@item covariance
Variance-covariance of endogenous variables

@item correlation
Auto- and cross-correlation of endogenous variables. Fields are vectors with correlations from 1 up to order @code{options_.ar}


@item VarianceDecomposition
Decomposition of variance (unconditional variance, i.e. at horizon infinity)@footnote{When the shocks are correlated, it
is the decomposition of orthogonalized shocks via Cholesky
decomposition according to the order of declaration of shocks
(@pxref{Variable declarations})}

@item ConditionalVarianceDecomposition
Only if the @code{conditional_variance_decomposition} option has been
specified

@end table

@end defvr

@defvr {MATLAB/Octave variable} oo_.posterior_density
Variable set by the @code{estimation} command, if it is used with
@code{mh_replic > 0} or @code{load_mh_file} option. Fields are of the form:
@example
@code{oo_.posterior_density.@var{PARAMETER_NAME}}
@end example
@end defvr

@defvr {MATLAB/Octave variable} oo_.posterior_hpdinf
Variable set by the @code{estimation} command, if it is used with
@code{mh_replic > 0} or @code{load_mh_file} option. Fields are of the form:
@example
@code{oo_.posterior_hpdinf.@var{ESTIMATED_OBJECT}.@var{VARIABLE_NAME}}
@end example
@end defvr

@defvr {MATLAB/Octave variable} oo_.posterior_hpdsup
Variable set by the @code{estimation} command, if it is used with
@code{mh_replic > 0} or @code{load_mh_file} option. Fields are of the form:
@example
@code{oo_.posterior_hpdsup.@var{ESTIMATED_OBJECT}.@var{VARIABLE_NAME}}
@end example
@end defvr

@defvr {MATLAB/Octave variable} oo_.posterior_mean
Variable set by the @code{estimation} command, if it is used with
@code{mh_replic > 0} or @code{load_mh_file} option. Fields are of the form:
@example
@code{oo_.posterior_mean.@var{ESTIMATED_OBJECT}.@var{VARIABLE_NAME}}
@end example
@end defvr

@defvr {MATLAB/Octave variable} oo_.posterior_mode
Variable set by the @code{estimation} command, if it is used with
@code{mh_replic > 0} or @code{load_mh_file} option. Fields are of the form:
@example
@code{oo_.posterior_mode.@var{ESTIMATED_OBJECT}.@var{VARIABLE_NAME}}
@end example
@end defvr

@defvr {MATLAB/Octave variable} oo_.posterior_std
Variable set by the @code{estimation} command, if it is used with
@code{mh_replic > 0} or @code{load_mh_file} option. Fields are of the form:
@example
@code{oo_.posterior_std.@var{ESTIMATED_OBJECT}.@var{VARIABLE_NAME}}
@end example
@end defvr

Here are some examples of generated variables:

@example
oo_.posterior_mode.parameters.alp
oo_.posterior_mean.shocks_std.ex
oo_.posterior_hpdsup.measurement_errors_corr.gdp_conso
@end example

@defvr {MATLAB/Octave variable} oo_.RecursiveForecast
@anchor{RecursiveForecast}
Variable set by the @code{forecast} option of the @code{estimation} command when used with the nobs = [@var{INTEGER1}:@var{INTEGER2}] option (@pxref{nobs1,,nobs}).

Fields are of the form:
@example
@code{oo_.RecursiveForecast.@var{FORECAST_OBJECT}.@var{VARIABLE_NAME}}
@end example
where @var{FORECAST_OBJECT} is one of the following@footnote{See @ref{forecast} for more information}:

@table @code

@item Mean
Mean of the posterior forecast distribution

@item HPDinf/HPDsup
Upper/lower bound of the 90% HPD interval taking into account only parameter uncertainty

@item HPDTotalinf/HPDTotalsup
Upper/lower bound of the 90% HPD interval taking into account both parameter and future shock uncertainty

@end table

@var{VARIABLE_NAME} contains a matrix of the following size: number of time periods for which forecasts are requested using the nobs = [@var{INTEGER1}:@var{INTEGER2}] option times the number of forecast horizons requested by the @code{forecast} option. I.e., the row indicates the period at which the forecast is performed and the column the respective k-step ahead forecast. The starting periods are sorted in ascending order, not in declaration order.

@end defvr

@defvr {MATLAB/Octave variable} oo_.convergence.geweke
@anchor{convergence.geweke}
Variable set by the convergence diagnostics of the @code{estimation} command when used with @ref{mh_nblocks}=1 option (@pxref{mh_nblocks}).

Fields are of the form:
@example
@code{oo_.convergence.geweke.@var{VARIABLE_NAME}.@var{DIAGNOSTIC_OBJECT}}
@end example
where @var{DIAGNOSTIC_OBJECT} is one of the following:

@table @code

@item posteriormean
Mean of the posterior parameter distribution

@item posteriorstd
Standard deviation of the posterior parameter distribution

@item nse_iid
Numerical standard error (NSE) under the assumption of iid draws

@item rne_iid
Relative numerical efficiency (RNE) under the assumption of iid draws

@item nse_x
Numerical standard error (NSE) when using an x% taper

@item rne_x
Relative numerical efficiency (RNE) when using an x% taper

@item pooled_mean
Mean of the parameter when pooling the beginning and end parts of the chain
specified in @ref{geweke_interval} and weighting them with their relative precision.
It is a vector containing the results under the iid assumption followed by the ones
using the @ref{taper_steps} (@pxref{taper_steps}).

@item pooled_nse
NSE of the parameter when pooling the beginning and end parts of the chain and weighting them with their relative precision. See @code{pooled_mean}

@item prob_chi2_test
p-value of a chi squared test for equality of means in the beginning and the end
of the MCMC chain. See @code{pooled_mean}. A value above 0.05 indicates that
the null hypothesis of equal means and thus convergence cannot be rejected
at the 5 percent level. Differing values along the @ref{taper_steps} signal
the presence of significant autocorrelation in draws. In this case, the
estimates using a higher tapering are usually more reliable.

@end table
@end defvr

@deffn Command model_comparison @var{FILENAME}[(@var{DOUBLE})]@dots{};
@deffnx Command model_comparison (marginal_density = laplace | modifiedharmonicmean) @var{FILENAME}[(@var{DOUBLE})]@dots{};

@descriptionhead

This command computes odds ratios and estimate a posterior density
over a collection of models 
(see e.g. @cite{Koop (2003), Ch. 1}). The priors over models can be specified
as the @var{DOUBLE} values, otherwise a uniform prior over all models is assumed. 
In contrast to frequentist econometrics, the models to be compared do not need to be nested. 
However, as the computation of posterior odds ratios is a Bayesian technique, 
the comparison of models estimated with maximum likelihood is not supported.

@examplehead

@example
model_comparison my_model(0.7) alt_model(0.3);
@end example
This example attributes a 70% prior over @code{my_model} and 30% prior
over @code{alt_model}.

@end deffn

@deffn Command shock_decomposition [@var{VARIABLE_NAME}]@dots{};
@deffnx Command shock_decomposition (@var{OPTIONS}@dots{}) [@var{VARIABLE_NAME}]@dots{};

@descriptionhead

This command computes and displays shock decomposition according to
the model for a given sample.

Note that this command must come after either @code{estimation} (in case
of an estimated model) or @code{stoch_simul} (in case of a calibrated
model).

@optionshead

@table @code

@item parameter_set = @var{PARAMETER_SET}
Specify the parameter set to use for running the smoother. The
@var{PARAMETER_SET} can take one of the following five values:
@code{calibration}, @code{prior_mode}, @code{prior_mean},
@code{posterior_mode}, @code{posterior_mean},
@code{posterior_median}. Default value: @code{posterior_mean} if
Metropolis has been run, else @code{posterior_mode}.

@item datafile = @var{FILENAME}
@xref{datafile}. Useful when computing the shock decomposition on a
calibrated model.

@end table

@vindex oo_.shock_decomposition
The results are stored in the field @code{oo_.shock_decomposition}, which is a three
dimensional array. The first dimension contains the endogenous variables for
which the shock decomposition has been requested. The second dimension stores
in the first @code{M_.exo_nbr} columns the contribution of the respective shocks.
Column @code{M_.exo_nbr+1} stores the contribution of the initial conditions,
while column @code{M_.exo_nbr+2} stores the smoothed value of the respective
endogenous variable. The third dimension stores the time periods.

@end deffn


@deffn Command unit_root_vars @var{VARIABLE_NAME}@dots{};

This command is deprecated. Use @code{estimation} option @code{diffuse_filter} instead for estimating a model with non-stationary observed variables or @code{steady} option @code{nocheck} to prevent @code{steady} to check the steady state returned by your steady state file.
@end deffn

Dynare also has the ability to estimate Bayesian VARs:

@deffn Command bvar_density ;
Computes the marginal density of an estimated BVAR model, using
Minnesota priors.

See @file{bvar-a-la-sims.pdf}, which comes with Dynare distribution,
for more information on this command.
@end deffn

Dynare can also run the smoother on a calibrated model:

@deffn Command calib_smoother [@var{VARIABLE_NAME}]@dots{};
@deffnx Command calib_smoother (@var{OPTIONS}@dots{}) [@var{VARIABLE_NAME}]@dots{};

@descriptionhead

This command computes the smoothed variables (and possible the filtered
variables) on a @code{calibrated} model.

A datafile must be provided, and the observable variables declared with
@code{varobs}. The smoother is based on a first-order approximation of
the model.

By default, the command computes the smoothed variables and shocks and stores the
results in @code{oo_.SmoothedVariables} and
@code{oo_.SmoothedShocks}. It also fills @code{oo_.UpdatedVariables}.

@optionshead

@table @code

@item datafile = @var{FILENAME}
@xref{datafile}.

@item filtered_vars
Triggers the computation of filtered variables. @xref{filtered_vars}, for
more details.

@item filter_step_ahead = [@var{INTEGER1}:@var{INTEGER2}]
@xref{filter_step_ahead}.

@end table

@end deffn


@node Forecasting
@section Forecasting

On a calibrated model, forecasting is done using the @code{forecast}
command. On an estimated model, use the @code{forecast} option of
@code{estimation} command.

It is also possible to compute forecasts on a calibrated or estimated
model for a given constrained path of the future endogenous
variables. This is done, from the reduced form representation of the
DSGE model, by finding the structural shocks that are needed to match
the restricted paths. Use @code{conditional_forecast},
@code{conditional_forecast_paths} and @code{plot_conditional_forecast}
for that purpose.

Finally, it is possible to do forecasting with a Bayesian VAR using
the @code{bvar_forecast} command.

@deffn Command forecast [@var{VARIABLE_NAME}@dots{}];
@deffnx Command forecast (@var{OPTIONS}@dots{}) [@var{VARIABLE_NAME}@dots{}];

@descriptionhead

This command computes a simulation of a stochastic model from an
arbitrary initial point.

When the model also contains deterministic exogenous shocks, the
simulation is computed conditionally to the agents knowing the future
values of the deterministic exogenous variables.

@code{forecast} must be called after @code{stoch_simul}.

@code{forecast} plots the trajectory of endogenous variables. When a
list of variable names follows the command, only those variables are
plotted. A 90% confidence interval is plotted around the mean
trajectory. Use option @code{conf_sig} to change the level of the
confidence interval.

@optionshead

@table @code

@item periods = @var{INTEGER}
Number of periods of the forecast. Default: @code{5}.

@item conf_sig = @var{DOUBLE}
@anchor{conf_sig} Level of significance for confidence
interval. Default: @code{0.90}

@item nograph
@xref{nograph}.

@item nodisplay
@xref{nodisplay}.

@item graph_format = @var{FORMAT}
@itemx graph_format = ( @var{FORMAT}, @var{FORMAT}@dots{} )
@xref{graph_format}.

@end table

@customhead{Initial Values}

@code{forecast} computes the forecast taking as initial values the values specified in @code{histval} (@pxref{Initial and terminal conditions,histval}). When no @code{histval} block is present, the initial values are the one stated in @code{initval}. When @code{initval} is followed by command @code{steady}, the initial values are the steady state (@pxref{Steady state,steady}).

@outputhead

The results are stored in @code{oo_.forecast}, which is described below.

@examplehead

@example
varexo_det tau;
varexo e;

@dots{}

shocks;
var e; stderr 0.01;
var tau;
periods 1:9;
values -0.15;
end;

stoch_simul(irf=0);

forecast;
@end example

@end deffn

@defvr {MATLAB/Octave variable} oo_.forecast
Variable set by the @code{forecast} command, or by the
@code{estimation} command if used with the @code{forecast} option and
if no Metropolis-Hastings has been computed (in that case, the
forecast is computed for the posterior mode). Fields are of the form:
@example
@code{oo_.forecast.@var{FORECAST_MOMENT}.@var{VARIABLE_NAME}}
@end example
where @var{FORECAST_MOMENT} is one of the following:

@table @code

@item HPDinf
Lower bound of a 90% HPD interval@footnote{See option @ref{conf_sig}
to change the size of the HPD interval} of forecast due to parameter
uncertainty

@item HPDsup
Lower bound of a 90% HPD interval due to parameter uncertainty

@item HPDTotalinf
Lower bound of a 90% HPD interval of forecast due to parameter
uncertainty and future shocks (only with the @code{estimation} command)

@item HPDTotalsup
Lower bound of a 90% HPD interval due to parameter uncertainty and
future shocks (only with the @code{estimation} command)

@item Mean
Mean of the posterior distribution of forecasts

@item Median
Median of the posterior distribution of forecasts

@item Std
Standard deviation of the posterior distribution of forecasts
@end table

@end defvr


@defvr {MATLAB/Octave variable} oo_.PointForecast
Set by the @code{estimation} command, if it is used with the
@code{forecast} option and if either @code{mh_replic > 0} or
@code{load_mh_file} option is used.

Contains the distribution of forecasts taking into account the
uncertainty about both parameters and shocks.

Fields are of the form:
@example
@code{oo_.PointForecast.@var{MOMENT_NAME}.@var{VARIABLE_NAME}}
@end example
@end defvr

@defvr {MATLAB/Octave variable} oo_.MeanForecast
Set by the @code{estimation} command, if it is used with the
@code{forecast} option and if either @code{mh_replic > 0} or
@code{load_mh_file} option is used.

Contains the distribution of forecasts where the uncertainty about
shocks is averaged out. The distribution of forecasts therefore only
represents the uncertainty about parameters.

Fields are of the form:
@example
@code{oo_.MeanForecast.@var{MOMENT_NAME}.@var{VARIABLE_NAME}}
@end example
@end defvr


@deffn Command conditional_forecast (@var{OPTIONS}@dots{}) [@var{VARIABLE_NAME}@dots{}];

@descriptionhead

This command computes forecasts on an estimated or calibrated model for a
given constrained path of some future endogenous variables. This is done
using the reduced form first order state-space representation of the DSGE
model by finding the structural shocks that are needed to match the
restricted paths. Consider the an augmented state space representation
that stacks both predetermined and non-predetermined variables into a
vector @math{y_{t}}:

@math{y_t=Ty_{t-1}+R\varepsilon_t}

Both
@math{y_t} and @math{\varepsilon_t} are split up into controlled and
uncontrolled ones to get:

@math{y_t(contr\_vars)=Ty_{t-1}(contr\_vars)+R(contr\_vars,uncontr\_shocks)\varepsilon_t(uncontr\_shocks)
+R(contr\_vars,contr\_shocks)\varepsilon_t(contr\_shocks)}

which can be solved algebraically for @math{\varepsilon_t(contr\_shocks)}.

Using these controlled shocks, the state-space representation can be used
for forecasting. A few things need to be noted. First, it is assumed that
controlled exogenous variables are fully under control of the policy
maker for all forecast periods and not just for the periods where the
endogenous variables are controlled. For all uncontrolled periods, the
controlled exogenous variables are assumed to be 0. This implies that
there is no forecast uncertainty arising from these exogenous variables
in uncontrolled periods. Second, by making use of the first order state
space solution, even if a higher-order approximation was performed, the
conditional forecasts will be based on a first order approximation.
Third, although controlled exogenous variables are taken as instruments
perfectly under the control of the policy-maker, they are nevertheless
random and unforeseen shocks from the perspective of the households. That is,
households are in each period surprised by the realization of a shock
that keeps the controlled endogenous variables at their respective level.
Fourth, keep in mind that if the structural innovations are correlated,
because the calibrated or estimated covariance matrix has non zero off
diagonal elements, the results of the conditional forecasts will depend on
the ordering of the innovations (as declared after @code{varexo}). As in VAR
models, a Cholesky decomposition is used to factorize the covariance matrix
and identify orthogonal impulses. It is preferable to declare the correlations
in the @code{model} block (explicitly imposing the identification restrictions),
unless you are satisfied with the implicit identification restrictions implied
by the Cholesky decomposition.

This command has to be called after @code{estimation} or @code{stoch_simul}.

Use @code{conditional_forecast_paths} block to give the list of
constrained endogenous, and their constrained future path.
Option @code{controlled_varexo} is used to specify the structural shocks
which will be matched to generate the constrained path.

Use @code{plot_conditional_forecast} to graph the results.

@optionshead

@table @code

@item parameter_set = @code{calibration} | @code{prior_mode} | @code{prior_mean} | @code{posterior_mode} | @code{posterior_mean} | @code{posterior_median}
Specify the parameter set to use for the forecasting. No default
value, mandatory option.

@item controlled_varexo = (@var{VARIABLE_NAME}@dots{})
Specify the exogenous variables to use as control variables. No
default value, mandatory option.

@item periods = @var{INTEGER}
Number of periods of the forecast. Default: @code{40}.  @code{periods}
cannot be less than the number of constrained periods.

@item replic = @var{INTEGER}
Number of simulations. Default: @code{5000}.

@item conf_sig = @var{DOUBLE}
Level of significance for confidence interval. Default: @code{0.80}

@end table

@outputhead

The results are not stored in the @code{oo_} structure but in a separate structure @code{forecasts} saved to the harddisk into a file called @code{conditional_forecasts.mat}.

@defvr {MATLAB/Octave variable} forecasts.cond
Variable set by the @code{conditional_forecast} command. It stores the conditional forecasts. Fields are @code{periods+1} by 1 vectors storing the steady state (time 0) and the subsequent @code{periods} forecasts periods. Fields are of the form:
@example
@code{forecasts.cond.@var{FORECAST_MOMENT}.@var{VARIABLE_NAME}}
@end example
where @var{FORECAST_MOMENT} is one of the following:

@table @code

@item Mean
Mean of the conditional forecast distribution.

@item ci
Confidence interval of the conditional forecast distribution. The size corresponds to @code{conf_sig}.
@end table

@end defvr

@defvr {MATLAB/Octave variable} forecasts.uncond
Variable set by the @code{conditional_forecast} command. It stores the unconditional forecasts. Fields are of the form:
@example
@code{forecasts.uncond.@var{FORECAST_MOMENT}.@var{VARIABLE_NAME}}
@end example
@end defvr

@defvr {MATLAB/Octave variable} forecasts.instruments
Variable set by the @code{conditional_forecast} command. Stores the names of the exogenous instruments.
@end defvr

@defvr {MATLAB/Octave variable} forecasts.controlled_variables
Variable set by the @code{conditional_forecast} command. Stores the position of the constrained endogenous variables in declaration order.
@end defvr

@defvr {MATLAB/Octave variable} forecasts.graphs
Variable set by the @code{conditional_forecast} command. Stores the information for generating the conditional forecast plots.
@end defvr


@examplehead

@example
var y a
varexo e u;

@dots{}

estimation(@dots{});

conditional_forecast_paths;
var y;
periods 1:3, 4:5;
values 2, 5;
var a;
periods 1:5;
values 3;
end;

conditional_forecast(parameter_set = calibration, controlled_varexo = (e, u), replic = 3000);

plot_conditional_forecast(periods = 10) a y;
@end example


@end deffn

@deffn Block conditional_forecast_paths ;

Describes the path of constrained endogenous, before calling
@code{conditional_forecast}. The syntax is similar to deterministic
shocks in @code{shocks}, see @code{conditional_forecast} for an
example.

The syntax of the block is the same than the deterministic shocks in
the @code{shocks} blocks (@pxref{Shocks on exogenous variables}).


@end deffn

@deffn Command plot_conditional_forecast [@var{VARIABLE_NAME}@dots{}];
@deffnx Command plot_conditional_forecast (periods = @var{INTEGER}) [@var{VARIABLE_NAME}@dots{}];

@descriptionhead

Plots the conditional (plain lines) and unconditional (dashed lines) forecasts.

To be used after @code{conditional_forecast}.

@optionshead

@table @code

@item periods = @var{INTEGER}
Number of periods to be plotted. Default: equal to @code{periods} in
@code{conditional_forecast}. The number of periods declared in
@code{plot_conditional_forecast} cannot be greater than the one
declared in @code{conditional_forecast}.
@end table

@end deffn

@deffn Command bvar_forecast ;
This command computes (out-of-sample) forecasts for an estimated BVAR
model, using Minnesota priors.

See @file{bvar-a-la-sims.pdf}, which comes with Dynare distribution,
for more information on this command.
@end deffn

If the model contains strong non-linearities or if some perfectly expected shocks are considered, the forecasts and the conditional forecasts
can be computed using an extended path method. The forecast scenario describing the shocks and/or the constrained paths on some endogenous variables should be build.
The first step is the forecast scenario initialization using the function @code{init_plan}:

@anchor{init_plan}
@deftypefn {MATLAB/Octave command} {HANDLE =} init_plan (DATES) ;

Creates a new forecast scenario for a forecast period (indicated as a dates class, see @ref{dates class members}). This function return a handle on the new forecast scenario.

@end deftypefn

The forecast scenario can contain some simple shocks on the exogenous variables. This shocks are described using the function @code{basic_plan}:

@anchor{basic_plan}
@deftypefn {MATLAB/Octave command} {HANDLE =} basic_plan (HANDLE, 'VARIABLE_NAME', 'SHOCK_TYPE', DATES, MATLAB VECTOR OF DOUBLE |  [DOUBLE | EXPRESSION [DOUBLE | | EXPRESSION] ] ) ;

Adds to the forecast scenario a shock on the exogenous variable indicated between quotes in the second argument. The shock type has to be specified in the third argument between quotes: 'surprise' in case of an unexpected shock  or 'perfect_foresight' for a perfectly anticipated shock. The fourth argument indicates the period of the shock using a dates class (see @ref{dates class members}). The last argument is the shock path indicated as a Matlab vector of double. This function return the handle of the updated forecast scenario.

@end deftypefn

The forecast scenario can also contain a constrained path on an endogenous variable. The values of the related exogenous variable compatible with the constrained path are in this case computed. In other words, a conditional forecast is performed. This kind of shock is described with the function  @code{flip_plan}:

@anchor{flip_plan}
@deftypefn {MATLAB/Octave command} {HANDLE =} flip_plan (HANDLE, 'VARIABLE_NAME, 'VARIABLE_NAME', 'SHOCK_TYPE', DATES, MATLAB VECTOR OF DOUBLE |  [DOUBLE | EXPRESSION [DOUBLE | | EXPRESSION] ] ) ;

Adds to the forecast scenario a constrained path on the endogenous variable specified between quotes in the second argument. The associated exogenous variable provided in the third argument between quotes, is considered as an endogenous variable and its values compatible with the constrained path on the endogenous variable will be computed. The nature of the expectation on the constrained  path has to be specified in the fourth argument between quotes: 'surprise' in case of an unexpected path or 'perfect_foresight' for a perfectly anticipated path. The fifth argument indicates the period where the path of the endogenous variable is constrained using a dates class (see @ref{dates class members}). The last argument contains the constrained path as a Matlab vector of double. This function return the handle of the updated forecast scenario.

@end deftypefn

Once the forecast scenario if fully described, the forecast is computed with the command @code{det_cond_forecast}:
@anchor{det_cond_forecast}
@deftypefn {MATLAB/Octave command} {DSERIES =} det_cond_forecast (HANDLE[, DSERIES [, DATES]]) ;

Computes the forecast or the conditional forecast using an extended path method for the given forecast scenario (first argument). The past values of the endogenous and exogenous variables provided with a dseries class (see @ref{dseries class members}) can be indicated in the second argument. By default, the past values of the variables are equal to their steady-state values. The initial date of the forecast can be provided in the third argument. By default, the forecast will start at the first date indicated in the @code{init_plan} command. This function returns a dset containing the historical and forecast values for the endogenous and exogenous variables.

@end deftypefn



@examplehead
@example
/* conditional forecast using extended path method
with perfect foresight on r path*/
var y r
varexo e u;

@dots{}

smoothed = dseries('smoothed_variables.csv');

fplan = init_plan(2013Q4:2029Q4);

fplan = flip_plan(fplan, 'y', 'u', 'surprise', 2013Q4:2014Q4,  [1 1.1 1.2 1.1 ]);

fplan = flip_plan(fplan, 'r', 'e', 'perfect_foresight', 2013Q4:2014Q4,  [2 1.9 1.9 1.9 ]);

dset_forecast = det_cond_forecast(fplan, smoothed);

plot(dset_forecast.@{'y','u'@});
plot(dset_forecast.@{'r','e'@});
@end example

@node Optimal policy
@section Optimal policy

Dynare has tools to compute optimal policies for various types of
objectives. You can either solve for optimal policy under commitment
with @code{ramsey_policy}, for optimal policy under discretion with
@code{discretionary_policy} or for optimal simple rule with
@code{osr}.


@anchor{osr}

@deffn Command osr [@var{VARIABLE_NAME}@dots{}];
@deffnx Command osr (@var{OPTIONS}@dots{}) [@var{VARIABLE_NAME}@dots{}];

@descriptionhead

This command computes optimal simple policy rules for
linear-quadratic problems of the form:

@quotation
@math{\min_\gamma E(y'_tWy_t)}
@end quotation

such that:
@quotation
@math{A_1 E_ty_{t+1}+A_2 y_t+ A_3 y_{t-1}+C e_t=0}
@end quotation

where:

@itemize 
@item
@math{E} denotes the unconditional expectations operator;

@item
@math{\gamma} are parameters to be optimized. They must be elements
of the matrices @math{A_1}, @math{A_2}, @math{A_3}, i.e. be specified as
parameters in the @code{params}-command and be entered in the
@code{model}-block;

@item
@math{y} are the endogenous variables, specified in the
@code{var}-command, whose (co)-variance enters the loss function;

@item
@math{e} are the exogenous stochastic shocks, specified in the
@code{var_exo}-command;

@item
@math{W} is the weighting matrix;

@end itemize

The linear quadratic problem consists of choosing a subset of model
parameters to minimize the weighted (co)-variance of a specified subset
of endogenous variables, subject to a linear law of motion implied by the
first order conditions of the model. A few things are worth mentioning.
First, @math{y} denotes the selected endogenous variables' deviations
from their steady state, i.e. in case they are not already mean 0 the
variables entering the loss function are automatically demeaned so that
the centered second moments are minimized. Second, @code{osr} only solves
linear quadratic problems of the type resulting from combining the
specified quadratic loss function with a first order approximation to the
model's equilibrium conditions. The reason is that the first order
state-space representation is used to compute the unconditional
(co)-variances. Hence, @code{osr} will automatically select
@code{order=1}. Third, because the objective involves minimizing a
weighted sum of unconditional second moments, those second moments must
be finite. In particular, unit roots in @math{y} are not allowed.

The subset of the model parameters over which the optimal simple rule is
to be optimized, @math{\gamma}, must be listed with @code{osr_params}.

The weighting matrix @math{W} used for the quadratic objective function
is specified in the @code{optim_weights}-block. By attaching weights to
endogenous variables, the subset of endogenous variables entering the
objective function, @math{y}, is implicitly specified.

The linear quadratic problem is solved using the numerical optimizer
@code{csminwel} of Chris Sims.


@optionshead

The @code{osr} command will subsequently run @code{stoch_simul} and
accepts the same options, including restricting the endogenous variables
by listing them after the command, as @code{stoch_simul}
(@pxref{Computing the stochastic solution}) plus

@table @code

@item maxit = @var{INTEGER} Determines the maximum number of iterations
used in the non-linear solver. Default: @code{1000}

@item tolf = @var{DOUBLE} Convergence criterion for termination based on
the function value. Iteration will cease when it proves impossible to
improve the function value by more than tolf. Default: @code{1e-7}

@end table

The value of the objective is stored in the variable
@code{oo_.osr.objective_function}, which is described below.

After running @code{osr} the parameters entering the simple rule will be
set to their optimal value so that subsequent runs of @code{stoch_simul}
will be conducted at these values.

@end deffn

@anchor{osr_params}
@deffn Command osr_params @var{PARAMETER_NAME}@dots{};
This command declares parameters to be optimized by @code{osr}.
@end deffn

@anchor{optim_weights}
@deffn Block optim_weights ;

This block specifies quadratic objectives for optimal policy problems

More precisely, this block specifies the nonzero elements of the weight
matrix @math{W} used in the quadratic form of the objective function in
@code{osr}.

An element of the diagonal of the weight matrix is given by a line of the
form:
@example
@var{VARIABLE_NAME} @var{EXPRESSION};
@end example

An off-the-diagonal element of the weight matrix is given by a line of
the form:
@example
@var{VARIABLE_NAME},  @var{VARIABLE_NAME} @var{EXPRESSION};
@end example

@end deffn

@examplehead

@example
var y inflation r; 
varexo y_ inf_;

parameters delta sigma alpha kappa gammarr gammax0 gammac0 gamma_y_ gamma_inf_;

delta =  0.44;
kappa =  0.18;
alpha =  0.48;
sigma = -0.06;

gammarr = 0;
gammax0 = 0.2;
gammac0 = 1.5;
gamma_y_ = 8;
gamma_inf_ = 3;

model(linear); 
y  = delta * y(-1)  + (1-delta)*y(+1)+sigma *(r - inflation(+1)) + y_;
inflation  =   alpha * inflation(-1) + (1-alpha) * inflation(+1) + kappa*y + inf_;
r = gammax0*y(-1)+gammac0*inflation(-1)+gamma_y_*y_+gamma_inf_*inf_; 
end;

shocks; 
var y_; stderr 0.63; 
var inf_; stderr 0.4; 
end;

optim_weights; 
inflation 1; 
y 1; 
y, inflation 0.5; 
end;

osr_params gammax0 gammac0 gamma_y_ gamma_inf_; 
osr y; 
@end example

@defvr {MATLAB/Octave variable} oo_.osr.objective_function 
After an execution of the @code{osr} command, this variable contains the value of
the objective under optimal policy.
@end defvr

@anchor{Ramsey}

@deffn Command ramsey_model (@var{OPTIONS}@dots{});

@descriptionhead

This command computes the First Order Conditions for maximizing the policy maker objective function subject to the
constraints provided by the equilibrium path of the economy.

The planner objective must be declared with the @code{planner_objective} command.

This command only creates the expanded model, it doesn't perform any
computations. It needs to be followed by other instructions to actually
perfrom desired computations. Note that it is the only way to perform
perfect foresight simulation of the Ramsey policy problem.

@xref{Auxiliary
variables}, for an explanation of how Lagrange multipliers are
automatically created.

@optionshead

This command accepts the following options:

@table @code

@item planner_discount = @var{EXPRESSION}
Declares the discount factor of the central planner. Default: @code{1.0}

@item instruments = (@var{VARIABLE_NAME},@dots{})
Declares instrument variables for the computation of the steady state
under optimal policy. Requires a @code{steady_state_model} block or a
@code{@dots{}_steadystate.m} file. See below.

@end table

@customhead{Steady state}

Dynare takes advantage of the fact that the Lagrange multipliers appear
linearly in the equations of the steady state of the model under optimal
policy. Nevertheless, it is in general very difficult to compute the
steady state with simply a numerical guess in @code{initval} for the
endogenous variables.

It greatly facilitates the computation, if the user provides an
analytical solution for the steady state (in @code{steady_state_model}
block or in a @code{@dots{}_steadystate.m} file). In this case, it is
necessary to provide a steady state solution CONDITIONAL on the value
of the instruments in the optimal policy problem and declared with
option @code{instruments}. Note that choosing the instruments is
partly a matter of interpretation and you can choose instruments that
are handy from a mathematical point of view but different from the
instruments you would refer to in the analysis of the paper. A typical
example is choosing inflation or nominal interest rate as an
instrument.


@end deffn

@deffn Command ramsey_policy [@var{VARIABLE_NAME}@dots{}];
@deffnx Command ramsey_policy (@var{OPTIONS}@dots{}) [@var{VARIABLE_NAME}@dots{}];

@descriptionhead

This command computes the first order approximation of the policy that
maximizes the policy maker objective function submitted to the
constraints provided by the equilibrium path of the economy.

The planner objective must be declared with the @code{planner_objective} command.

@xref{Auxiliary
variables}, for an explanation of how this operator is handled
internally and how this affects the output.

@optionshead

This command accepts all options of @code{stoch_simul}, plus:

@table @code

@item planner_discount = @var{EXPRESSION}
Declares the discount factor of the central planner. Default: @code{1.0}

@item instruments = (@var{VARIABLE_NAME},@dots{})
Declares instrument variables for the computation of the steady state
under optimal policy. Requires a @code{steady_state_model} block or a
@code{@dots{}_steadystate.m} file. See below.

@end table

Note that only first order approximation is available (@i{i.e.}
@code{order=1} must be specified).

@outputhead

This command generates all the output variables of @code{stoch_simul}.

@vindex oo_.planner_objective_value
In addition, it stores the value of planner objective function under
Ramsey policy in @code{oo_.planner_objective_value}.

@customhead{Steady state}

Dynare takes advantage of the fact that the Lagrange multipliers appear
linearly in the equations of the steady state of the model under optimal
policy. Nevertheless, it is in general very difficult to compute the
steady state with simply a numerical guess in @code{initval} for the
endogenous variables.

It greatly facilitates the computation, if the user provides an
analytical solution for the steady state (in @code{steady_state_model}
block or in a @code{@dots{}_steadystate.m} file). In this case, it is
necessary to provide a steady state solution CONDITIONAL on the value
of the instruments in the optimal policy problem and declared with
option @code{instruments}. Note that choosing the instruments is
partly a matter of interpretation and you can choose instruments that
are handy from a mathematical point of view but different from the
instruments you would refer to in the analysis of the paper. A typical
example is choosing inflation or nominal interest rate as an
instrument.


@end deffn

@anchor{discretionary_policy}
@deffn Command discretionary_policy [@var{VARIABLE_NAME}@dots{}];
@deffnx Command discretionary_policy (@var{OPTIONS}@dots{}) [@var{VARIABLE_NAME}@dots{}];

@descriptionhead

This command computes an approximation of the optimal policy under
discretion. The algorithm implemented is essentially an LQ solver, and
is described by @cite{Dennis (2007)}.

You should ensure that your model is linear and your objective is
quadratic. Also, you should set the @code{linear} option of the
@code{model} block.

@optionshead

This command accepts the same options than @code{ramsey_policy}, plus:

@table @code

@item discretionary_tol = @var{NON-NEGATIVE DOUBLE}
Sets the tolerance level used to assess convergence of the solution
algorithm. Default: @code{1e-7}.

@item maxit = @var{INTEGER}
Maximum number of iterations. Default: @code{3000}.

@end table

@end deffn


@anchor{planner_objective}
@deffn Command planner_objective @var{MODEL_EXPRESSION};

This command declares the policy maker objective, for use with
@code{ramsey_policy} or @code{discretionary_policy}.

You need to give the one-period objective, not the discounted lifetime
objective. The discount factor is given by the @code{planner_discount}
option of @code{ramsey_policy} and @code{discretionary_policy}. The
objective function can only contain current endogenous variables and no
exogenous ones. This limitation is easily circumvented by defining an
appropriate auxiliary variable in the model.

With @code{ramsey_policy}, you are not limited to quadratic
objectives: you can give any arbitrary nonlinear expression.

With @code{discretionary_policy}, the objective function must be quadratic.
@end deffn

@node Sensitivity and identification analysis
@section Sensitivity and identification analysis

Dynare provides an interface to the global sensitivity analysis (GSA)
toolbox (developed by the Joint Research Center (JRC) of the European
Commission), which is now part of the official Dynare distribution. The
GSA toolbox can be used to answer the following questions:

@enumerate
@item
What is the domain of structural coefficients assuring the stability and determinacy
of a DSGE model?

@item
Which parameters mostly drive the fit of, @i{e.g.}, GDP and which the fit of inflation?
Is there any conflict between the optimal fit of one observed series versus another?

@item
How to represent in a direct, albeit approximated, form the relationship between
structural parameters and the reduced form of a rational expectations model?
@end enumerate

The discussion of the methodologies and their application is described in
@cite{Ratto (2008)}.

With respect to the previous version of the toolbox, in order to work
properly, the GSA toolbox no longer requires that the Dynare
estimation environment is set up.

Sensitivity analysis results are saved locally in @code{<mod_file>/GSA},
where @code{<mod_file>.mod} is the name of the DYNARE model file.

@menu
* Sampling::
* Stability Mapping::
* Reduced Form Mapping::
* RMSE::
* Screening Analysis::
* Identification Analysis::
* Performing Sensitivity and Identification Analysis::
@end menu

@node Sampling
@subsection Sampling

The following binary files are produced:
@itemize
@item
@code{<mod_file>_prior.mat}: this file stores information about the analyses
performed sampling from the prior ranges, @i{i.e.} @code{pprior=1} and @code{ppost=0};

@item
@code{<mod_file>_mc.mat}: this file stores information about the analyses performed
sampling from multivariate normal, @i{i.e.} @code{pprior=0} and @code{ppost=0};

@item
@code{<mod_file>_post.mat}: this file stores information about analyses performed
using the Metropolis posterior sample, @i{i.e.} @code{ppost=1}.
@end itemize

@node Stability Mapping
@subsection Stability Mapping

Figure files produced are of the form @code{<mod_file>_prior_*.fig} and store results
for stability mapping from prior Monte-Carlo samples:
@itemize
@item
@code{<mod_file>_prior_stab_SA_*.fig}: plots of the Smirnov test analyses
confronting the cdf of the sample fulfilling Blanchard-Kahn conditions
with the cdf of the rest of the sample;

@item
@code{<mod_file>_prior_stab_indet_SA_*.fig}: plots of the Smirnov test
analyses confronting the cdf of the sample producing indeterminacy
with the cdf of the original prior sample;

@item
@code{<mod_file>_prior_stab_unst_SA_*.fig}: plots of the Smirnov test
analyses confronting the cdf of the sample producing unstable (explosive
roots) behavior with the cdf of the original prior sample;

@item
@code{<mod_file>_prior_stable_corr_*.fig}: plots of bivariate projections
of the sample fulfilling Blanchard-Kahn conditions;

@item
@code{<mod_file>_prior_indeterm_corr_*.fig}: plots of bivariate projections
of the sample producing indeterminacy;

@item
@code{<mod_file>_prior_unstable_corr_*.fig}: plots of bivariate projections
of the sample producing instability;

@item
@code{<mod_file>_prior_unacceptable_corr_*.fig}: plots of bivariate projections
of the sample producing unacceptable solutions, @i{i.e.} either
instability or indeterminacy or the solution could not be found (@i{e.g.}
the steady state solution could not be found by the solver).
@end itemize

Similar conventions apply for @code{<mod_file>_mc_*.fig} files, obtained when
samples from multivariate normal are used.

@node Reduced Form Mapping
@subsection Reduced Form Mapping

The mapping of the reduced form solution forces the use of samples from
prior ranges or prior distributions, @i{i.e.}: @code{pprior=1} and @code{ppost=0}. It
uses 250 samples to optimize smoothing parameters and 1000 samples to compute the
fit. The rest of the sample is used for out-of-sample validation. One can also
load a previously estimated mapping with a new Monte-Carlo sample, to look at the
forecast for the new Monte-Carlo sample.

The following synthetic figures are produced:
@itemize
@item
@code{<mod_file>_redform_<endo name>_vs_lags_*.fig}: shows bar charts
of the sensitivity indices for the ten most important parameters driving
the reduced form coefficients of the selected endogenous variables
(@code{namendo}) versus lagged endogenous variables (@code{namlagendo}); suffix
@code{log} indicates the results for log-transformed entries;

@item
@code{<mod_file>_redform_<endo name>_vs_shocks_*.fig}: shows bar charts
of the sensitivity indices for the ten most important parameters driving
the reduced form coefficients of the selected endogenous variables
(@code{namendo}) versus exogenous variables (@code{namexo}); suffix @code{log}
indicates the results for log-transformed entries;

@item
@code{<mod_file>_redform_GSA(_log).fig}: shows bar chart of all sensitivity
indices for each parameter: this allows one to notice parameters that
have a minor effect for any of the reduced form coefficients.
@end itemize

Detailed results of the analyses are shown in the subfolder @code{<mod_file>/GSA/redform_stab},
where the detailed results of the estimation of the single functional relationships
between parameters @math{\theta} and reduced form coefficient are stored in separate directories
named as:

@itemize
@item
@code{<namendo>_vs_<namlagendo>}: for the entries of the transition matrix;

@item
@code{<namendo>_vs_<namexo>}: for entries of the matrix of the shocks.
@end itemize
Moreover, analyses for log-transformed entries are denoted with the following
suffixes (@math{y} denotes the generic reduced form coefficient):
@itemize
@item
@code{log}: @math{y^* = \log(y)};
@item
@code{minuslog}: @math{y^* = \log(-y)};
@item
@code{logsquared}: @math{y^* = \log(y^2)} for symmetric fat tails;
@item
@code{logskew}: @math{y^* = \log(|y + \lambda|)} for asymmetric fat tails.
@end itemize
The optimal type of transformation is automatically selected without the
need of user intervention.

@node RMSE
@subsection RMSE

The RMSE analysis can be performed with different types of sampling options:
@enumerate
@item
When @code{pprior=1} and @code{ppost=0}, the toolbox analyzes the RMSEs for
the Monte-Carlo sample obtained by sampling parameters from their prior distributions
(or prior ranges): this analysis provides some hints about
what parameter drives the fit of which observed series, prior to the full
estimation;

@item
When @code{pprior=0} and @code{ppost=0}, the toolbox analyzes the RMSEs for
a multivariate normal Monte-Carlo sample, with covariance matrix based on
the inverse Hessian at the optimum: this analysis is useful when maximum likelihood
estimation is done (@i{i.e.} no Bayesian estimation);

@item
When @code{ppost=1} the toolbox analyzes the RMSEs for the posterior sample
obtained by Dynare's Metropolis procedure.
@end enumerate

The use of cases 2 and 3 requires an estimation step beforehand. To
facilitate the sensitivity analysis after estimation, the @code{dynare_sensitivity}
command also allows you to indicate some options of the @code{estimation}
command. These are:
@itemize @bullet
@item @code{datafile}
@item @code{nobs}
@item @code{first_obs}
@item @code{prefilter}
@item @code{presample}
@item @code{nograph}
@item @code{nodisplay}
@item @code{graph_format}
@item @code{conf_sig}
@item @code{loglinear}
@item @code{mode_file}
@end itemize

Binary files produced my RMSE analysis are:
@itemize
@item
@code{<mod_file>_prior_*.mat}: these files store the filtered and smoothed
    variables for the prior Monte-Carlo sample, generated when doing RMSE analysis
    (@code{pprior=1} and @code{ppost=0});
@item
@code{<mode_file>_mc_*.mat}: these files store the filtered and smoothed variables
    for the multivariate normal Monte-Carlo sample, generated when doing
    RMSE analysis (@code{pprior=0} and @code{ppost=0}).
@end itemize

Figure files @code{<mod_file>_rmse_*.fig} store results for the RMSE analysis.

@itemize
@item
@code{<mod_file>_rmse_prior*.fig}: save results for the analysis using prior
Monte-Carlo samples;

@item
@code{<mod_file>_rmse_mc*.fig}: save results for the analysis using multivariate
normal Monte-Carlo samples;

@item
@code{<mod_file>_rmse_post*.fig}: save results for the analysis using Metropolis
posterior samples.
@end itemize

The following types of figures are saved (we show prior sample to fix ideas,
but the same conventions are used for multivariate normal and posterior):

@itemize
@item
@code{<mod_file>_rmse_prior_*.fig}: for each parameter, plots the cdfs
corresponding to the best 10% RMSEs of each observed series;

@item
@code{<mod_file>_rmse_prior_dens_*.fig}: for each parameter, plots the
pdfs corresponding to the best 10% RMESs of each observed series;

@item
@code{<mod_file>_rmse_prior_<name of observedseries>_corr_*.fig}: for
each observed series plots the bi-dimensional projections of samples
with the best 10% RMSEs, when the correlation is significant;

@item
@code{<mod_file>_rmse_prior_lnlik*.fig}: for each observed series, plots
in red the cdf of the log-likelihood corresponding to the best 10%
RMSEs, in green the cdf of the rest of the sample and in blue the
cdf of the full sample; this allows one to see the presence of some
idiosyncratic behavior;

@item
@code{<mod_file>_rmse_prior_lnpost*.fig}: for each observed series, plots
in red the cdf of the log-posterior corresponding to the best 10% RMSEs,
in green the cdf of the rest of the sample and in blue the cdf of the full
sample; this allows one to see idiosyncratic behavior;

@item
@code{<mod_file>_rmse_prior_lnprior*.fig}: for each observed series, plots
in red the cdf of the log-prior corresponding to the best 10% RMSEs,
in green the cdf of the rest of the sample and in blue the cdf of the full
sample; this allows one to see idiosyncratic behavior;

@item
@code{<mod_file>_rmse_prior_lik_SA_*.fig}: when @code{lik_only=1}, this shows
the Smirnov tests for the filtering of the best 10% log-likelihood values;

@item
@code{<mod_file>_rmse_prior_post_SA_*.fig}: when @code{lik_only=1}, this shows
the Smirnov test for the filtering of the best 10% log-posterior values.
@end itemize

@node Screening Analysis
@subsection Screening Analysis

Screening analysis does not require any additional options with respect to
those listed in @ref{Sampling Options}. The toolbox performs all the
analyses required and displays results.

The results of the screening analysis with Morris sampling design are stored
in the subfolder @code{<mod_file>/GSA/SCREEN}. The data file @code{<mod_file>_prior} stores
all the information of the analysis (Morris sample, reduced form coefficients,
etc.).

Screening analysis merely concerns reduced form coefficients. Similar
synthetic bar charts as for the reduced form analysis with Monte-Carlo samples are
saved:
@itemize
@item
@code{<mod_file>_redform_<endo name>_vs_lags_*.fig}: shows bar charts
of the elementary effect tests for the ten most important parameters
driving the reduced form coefficients of the selected endogenous variables
(@code{namendo}) versus lagged endogenous variables (@code{namlagendo});

@item
@code{<mod_file>_redform_<endo name>_vs_shocks_*.fig}: shows bar charts
of the elementary effect tests for the ten most important parameters
driving the reduced form coefficients of the selected endogenous variables
(@code{namendo}) versus exogenous variables (@code{namexo});

@item
@code{<mod_file>_redform_screen.fig}: shows bar chart of all elementary
effect tests for each parameter: this allows one to identify parameters that
have a minor effect for any of the reduced form coefficients.
@end itemize

@node Identification Analysis
@subsection Identification Analysis

Setting the option @code{identification=1}, an identification analysis based on
theoretical moments is performed. Sensitivity plots are provided that allow
to infer which parameters are most likely to be less identifiable.

Prerequisite for properly running all the identification routines, is the keyword
@code{identification}; in the Dynare model file. This keyword triggers
the computation of analytic derivatives of the model with respect to estimated
parameters and shocks. This is required for option @code{morris=2},
which implements @cite{Iskrev (2010)} identification analysis.

For example, the placing @code{identification; dynare_sensitivity(identification=1, morris=2);}
in the Dynare model file trigger identification analysis using analytic derivatives
@cite{Iskrev (2010)}, jointly with the mapping of the acceptable region.

The identification analysis with derivatives can also be triggered by the
commands @code{identification;} This does not do the mapping of
acceptable regions for the model and uses the standard random sampler of Dynare.
It completely offsets any use of the sensitivity analysis toolbox.

@node Performing Sensitivity and Identification Analysis
@subsection Performing Sensitivity and Identification Analysis

@deffn Command dynare_sensitivity ;
@deffnx Command dynare_sensitivity (@var{OPTIONS}@dots{});

@descriptionhead

This command triggers sensitivity analysis on a DSGE model.

@optionshead
@customhead{Sampling Options}
@anchor{Sampling Options}
@table @code

@item nsam = @var{INTEGER}
Size of the Monte-Carlo sample. Default: @code{2048}

@item ilptau = @var{INTEGER}
If equal to @code{1}, use @math{LP_\tau} quasi-Monte-Carlo.
If equal to @code{0}, use LHS Monte-Carlo. Default: @code{1}

@item pprior = @var{INTEGER}
If equal to @code{1}, sample from the prior distributions.
If equal to @code{0}, sample from the multivariate normal @math{N(\bar{\theta},\Sigma)},
where @math{\bar{\theta}} is the posterior mode and @math{\Sigma=H^{-1}}, @math{H}
is the Hessian at the mode. Default: @code{1}

@item prior_range = @var{INTEGER}
If equal to @code{1}, sample uniformly from prior ranges.
If equal to @code{0}, sample from prior distributions. Default: @code{1}

@item morris = @var{INTEGER}
@anchor{morris}
If equal to @code{0}, ANOVA mapping (Type I error)
If equal to @code{1}, Screening analysis (Type II error)
If equal to @code{2}, Analytic derivatives (similar to Type II error, only valid when
@code{identification=1}).Default: @code{1} when @code{identification=1}, @code{0} otherwise

@item morris_nliv = @var{INTEGER}
@anchor{morris_nliv}
Number of levels in Morris design. Default: @code{6}

@item morris_ntra = @var{INTEGER}
@anchor{morris_ntra}
Number trajectories in Morris design. Default: @code{20}

@item ppost = @var{INTEGER}
If equal to @code{1}, use Metropolis posterior sample.
If equal to @code{0}, do not use Metropolis posterior sample. NB: This
overrides any other sampling option. Default: @code{0}

@item neighborhood_width = @var{DOUBLE}
When @code{pprior=0} and @code{ppost=0}, allows for the sampling of
parameters around the value specified in the @code{mode_file}, in the range
@code{xparam1}@math{\pm\left|@code{xparam1}\times@code{neighborhood_width}\right|}. Default: @code{0}

@end table
@customhead{Stability Mapping Options}
@table @code

@item stab = @var{INTEGER}
If equal to @code{1}, perform stability mapping.
If equal to @code{0}, do not perform stability mapping. Default: @code{1}

@item load_stab = @var{INTEGER}
If equal to @code{1}, load a previously created sample.
If equal to @code{0}, generate a new sample. Default: @code{0}

@item alpha2_stab = @var{DOUBLE}
Critical value for correlations @math{\rho} in filtered samples:
plot couples of parmaters with @math{\left|\rho\right|>} @code{alpha2_stab}.
Default: @code{0.3}

@item ksstat = @var{DOUBLE}
Critical value for Smirnov statistics @math{d}: plot parameters with
@math{d>} @code{ksstat}. Default: @code{0.1}

@item pvalue_ks = @var{DOUBLE}
The threshold @math{pvalue} for significant Kolmogorov-Smirnov test (@i{i.e.} plot parameters with
@math{pvalue<} @code{pvalue_ks}). Default: @code{0.001}

@item pvalue_corr = @var{DOUBLE}
The threshold @math{pvalue} for significant correlation in filtered samples
(@i{i.e.} plot bivariate samples when @math{pvalue<} @code{pvalue_corr}). Default: @code{0.001}

@end table
@customhead{Reduced Form Mapping Options}
@table @code

@item redform = @var{INTEGER}
If equal to @code{1}, prepare Monte-Carlo sample of reduced form matrices.
If equal to @code{0}, do not prepare Monte-Carlo sample of reduced form matrices. Default: @code{0}

@item load_redform = @var{INTEGER}
If equal to @code{1}, load previously estimated mapping.
If equal to @code{0}, estimate the mapping of the reduced form model. Default: @code{0}

@item logtrans_redform = @var{INTEGER}
If equal to @code{1}, use log-transformed entries.
If equal to @code{0}, use raw entries. Default: @code{0}

@item threshold_redform = [@var{DOUBLE} @var{DOUBLE}]
The range over which the filtered Monte-Carlo entries of the reduced form coefficients
should be analyzed. The first number is the lower bound and the second is the upper bound.
An empty vector indicates that these entries will not be filtered. Default: @code{empty}

@item ksstat_redform = @var{DOUBLE}
Critical value for Smirnov statistics @math{d} when reduced form entries
are filtered. Default: @code{0.1}

@item alpha2_redform = @var{DOUBLE}
Critical value for correlations @math{\rho}  when reduced form entries
are filtered. Default: @code{0.3}

@item namendo = (@var{VARIABLE_NAME}@dots{})
List of endogenous variables. `@code{:}' indicates all endogenous variables.
Default: @code{empty}

@item namlagendo = (@var{VARIABLE_NAME}@dots{})
List of lagged endogenous variables. `@code{:}' indicates all lagged endogenous variables.
Analyze entries @code{[namendo}@math{\times}@code{namlagendo]} Default: @code{empty}

@item namexo = (@var{VARIABLE_NAME}@dots{})
List of exogenous variables. `@code{:}' indicates all exogenous variables.
Analyze entries @code{[namendo}@math{\times}@code{namexo]}. Default: @code{empty}

@end table
@customhead{RMSE Options}
@table @code

@item rmse = @var{INTEGER}
If equal to @code{1}, perform RMSE analysis.
If equal to @code{0}, do not perform RMSE analysis. Default: @code{0}

@item load_rmse = @var{INTEGER}
If equal to @code{1}, load previous RMSE analysis.
If equal to @code{0}, make a new RMSE analysis. Default: @code{0}

@item lik_only = @var{INTEGER}
If equal to @code{1}, compute only likelihood and posterior.
If equal to @code{0}, compute RMSE's for all observed series. Default: @code{0}

@item var_rmse = (@var{VARIABLE_NAME}@dots{})
List of observed series to be considered. `@code{:}' indicates all observed
variables. Default: @code{varobs}

@item pfilt_rmse = @var{DOUBLE}
Filtering threshold for RMSE's. Default: @code{0.1}

@item istart_rmse = @var{INTEGER}
Value at which to start computing RMSE's (use @code{2} to avoid big intitial
error). Default: @code{presample+1}

@item alpha_rmse = @var{DOUBLE}
Critical value for Smirnov statistics @math{d}: plot parameters with
@math{d>} @code{alpha_rmse}. Default: @code{0.002}

@item alpha2_rmse = @var{DOUBLE}
Critical value for correlation @math{\rho}: plot couples of parmaters with
@math{\left|\rho\right|=} @code{alpha2_rmse}. Default: @code{1.0}

@item datafile = @var{FILENAME}
@xref{datafile}.

@item nobs = @var{INTEGER}
@item nobs = [@var{INTEGER1}:@var{INTEGER2}]
@xref{nobs}.

@item first_obs = @var{INTEGER}
@xref{first_obs}.

@item prefilter = @var{INTEGER}
@xref{prefilter}.

@item presample = @var{INTEGER}
@xref{presample}.

@item nograph
@xref{nograph}.

@item nodisplay
@xref{nodisplay}.

@item graph_format = @var{FORMAT}
@itemx graph_format = ( @var{FORMAT}, @var{FORMAT}@dots{} )
@xref{graph_format}.

@item conf_sig = @var{DOUBLE}
@xref{conf_sig}.

@item loglinear
@xref{loglinear}.

@item mode_file = @var{FILENAME}
@xref{mode_file}.

@item kalman_algo = @var{INTEGER}
@xref{kalman_algo}.

@end table
@customhead{Identification Analysis Options}
@table @code

@item identification = @var{INTEGER}
If equal to @code{1}, performs identification anlysis (forcing @code{redform=0} and @code{morris=1})
If equal to @code{0}, no identification analysis. Default: @code{0}

@item morris = @var{INTEGER}
@xref{morris}.

@item morris_nliv = @var{INTEGER}
@xref{morris_nliv}.

@item morris_ntra = @var{INTEGER}
@xref{morris_ntra}.

@item load_ident_files = @var{INTEGER}
Loads previously performed identification analysis. Default: @code{0}

@item useautocorr = @var{INTEGER}
Use autocorrelation matrices in place of autocovariance matrices in moments
for identification analysis. Default: @code{0}

@item ar = @var{INTEGER}
Maximum number of lags for moments in identification analysis. Default: @code{1}

@item lik_init = @var{INTEGER}
@xref{lik_init}.

@end table

@end deffn

@deffn Command identification ;
@deffnx Command identification (@var{OPTIONS}@dots{});

@descriptionhead

This command triggers identification analysis.

@optionshead

@table @code

@item ar = @var{INTEGER}
Number of lags of computed autocorrelations (theoretical moments). Default: @code{1}

@item useautocorr = @var{INTEGER}
If equal to @code{1}, compute derivatives of autocorrelation. If equal
to @code{0}, compute derivatives of autocovariances. Default: @code{0}

@item load_ident_files = @var{INTEGER}
If equal to @code{1}, allow Dynare to load previously
computed analyzes. Default: @code{0}

@item prior_mc = @var{INTEGER}
Size of Monte-Carlo sample. Default: @code{1}

@item prior_range = @var{INTEGER}
Triggers uniform sample within the range implied by the prior specifications (when
@code{prior_mc>1}). Default: @code{0}

@item advanced = @var{INTEGER}
Shows a more detailed analysis, comprised of an analysis for the linearized rational
expectation model as well as the associated reduced form solution. Further performs a brute
force search of the groups of parameters best reproducing the behavior of each single parameter.
The maximum dimension of the group searched is triggered by @code{max_dim_cova_group}. Default: @code{0}

@item max_dim_cova_group = @var{INTEGER}
In the brute force search (performed when @code{advanced=1}) this option sets the maximum dimension of groups
of parameters that best reproduce the behavior of each single model parameter. Default: @code{2}

@item periods = @var{INTEGER}
When the analytic Hessian is not available (@i{i.e.} with missing values or diffuse
Kalman filter or univariate Kalman filter), this triggers the length of stochastic simulation
to compute Simulated Moments Uncertainty. Default: @code{300}

@item replic = @var{INTEGER}
When the analytic Hessian is not available, this triggers the number of replicas
to compute Simulated Moments Uncertainty. Default: @code{100}

@item gsa_sample_file = @var{INTEGER}
If equal to @code{0}, do not use sample file.
If equal to @code{1}, triggers gsa prior sample.
If equal to @code{2}, triggers gsa Monte-Carlo sample (@i{i.e.} loads a sample corresponding to
@code{pprior=0} and @code{ppost=0} in the @code{dynare_sensitivity} options). Default: @code{0}

@item gsa_sample_file = @var{FILENAME}
Uses the provided path to a specific user defined sample file. Default: @code{0}

@item parameter_set = @code{calibration} | @code{prior_mode} | @code{prior_mean} | @code{posterior_mode} | @code{posterior_mean} | @code{posterior_median}
Specify the parameter set to use. Default: @code{prior_mean}

@item lik_init = @var{INTEGER}
@xref{lik_init}.

@item kalman_algo = @var{INTEGER}
@xref{kalman_algo}.

@item nograph
@xref{nograph}.

@item nodisplay
@xref{nodisplay}.

@item graph_format = @var{FORMAT}
@itemx graph_format = ( @var{FORMAT}, @var{FORMAT}@dots{} )
@xref{graph_format}.

@end table

@end deffn

@node Markov-switching SBVAR
@section Markov-switching SBVAR

Given a list of variables, observed variables and a data file, Dynare
can be used to solve a Markov-switching SBVAR model according to
@cite{Sims, Waggoner and Zha (2008)}. Having done this, you can create
forecasts and compute the marginal data density, regime probabilities,
IRFs, and variance decomposition of the model.

The commands have been modularized, allowing for multiple calls to the
same command within a @code{<mod_file>.mod} file. The default is to use
@code{<mod_file>} to tag the input (output) files used (produced) by the
program. Thus, to call any command more than once within a
@code{<mod_file>.mod} file, you must use the @code{*_tag} options
described below.

@anchor{markov_switching}
@deffn Command markov_switching (@var{OPTIONS}@dots{});
@descriptionhead

Declares the Markov state variable information of a Markov-switching
SBVAR model.

@optionshead

@table @code

@item chain = @var{INTEGER}
@anchor{ms_chain} The Markov chain. Default: @code{none}

@item state = @var{INTEGER}
This state has duration equal to @code{duration}. Exactly one of
@code{state} and @code{number_of_states} must be passed. Default:
@code{none}

@item number_of_states = @var{INTEGER}
Total number of states. Implies that all states have the same
duration. Exactly one of @code{state} and @code{number_of_states} must
be passed. Default: @code{none}

@item duration = @var{DOUBLE} | @code{inf}
The duration of the state or states. Default: @code{none}

@end table
@end deffn


@anchor{svar}
@deffn Command svar (@var{OPTIONS}@dots{});
@descriptionhead

Each Makov chain can control the switching of a set of parameters. We
allow the parameters to be divided equation by equation and by variance
or slope and intercept.

@optionshead

@table @code

@item coefficients
Specifies that only the slope and intercept in the given equations are
controlled by the given chain.  One, but not both, of
@code{coefficients} or @code{variances} must appear. Default:
@code{none}

@item variances
Specifies that only variances in the given equations are controlled by
the given chain. One, but not both, of @code{coefficients} or
@code{variances} must appear. Default: @code{none}

@item equations
Defines the equation controlled by the given chain. If not specified,
then all equations are controlled by @code{chain}. Default: @code{none}

@item chain = @var{INTEGER}
Specifies a Markov chain defined by @ref{markov_switching}. Default:
@code{none}

@end table
@end deffn


@deffn Command sbvar (@var{OPTIONS}@dots{});
@descriptionhead

To be documented. For now, see the wiki: @uref{http://www.dynare.org/DynareWiki/SbvarOptions}

@optionshead

@table @code

@item datafile
@item freq
@item initial_year
@item initial_subperiod
@item final_year
@item final_subperiod
@item data
@item vlist
@item vlistlog
@item vlistper
@item restriction_fname
@item nlags
@item cross_restrictions
@item contemp_reduced_form
@item real_pseudo_forecast
@item no_bayesian_prior
@item dummy_obs
@item nstates
@item indxscalesstates
@item alpha
@item beta
@item gsig2_lmdm
@item q_diag
@item flat_prior
@item ncsk
@item nstd
@item ninv
@item indxparr
@item indxovr
@item aband
@item indxap
@item apband
@item indximf
@item indxfore
@item foreband
@item indxgforhat
@item indxgimfhat
@item indxestima
@item indxgdls
@item eq_ms
@item cms
@item ncms
@item eq_cms
@item tlindx
@item tlnumber
@item cnum
@item forecast
@item coefficients_prior_hyperparameters

@end table
@end deffn


@deffn Block svar_identification ;

@descriptionhead

This block is terminated by @code{end;}, and contains lines of the
form:
@example
UPPER_CHOLESKY;
LOWER_CHOLESKY;
EXCLUSION CONSTANTS;
EXCLUSION LAG @var{INTEGER}; @var{VARIABLE_NAME} [,@var{VARIABLE_NAME}@dots{}]
EXCLUSION LAG @var{INTEGER}; EQUATION @var{INTEGER}, @var{VARIABLE_NAME} [,@var{VARIABLE_NAME}@dots{}]
RESTRICTION EQUATION @var{INTEGER}, @var{EXPRESSION} = @var{EXPRESSION};
@end example

To be documented. For now, see the wiki: @uref{http://www.dynare.org/DynareWiki/MarkovSwitchingInterface}

@end deffn

@anchor{ms_estimation}
@deffn Command ms_estimation (@var{OPTIONS}@dots{});
@descriptionhead

Triggers the creation of an initialization file for, and the estimation
of, a Markov-switching SBVAR model. At the end of the run, the
@math{A^0}, @math{A^+}, @math{Q} and @math{\zeta} matrices are contained
in the @code{oo_.ms} structure.

@optionshead

@customhead{General Options}
@table @code

@item file_tag = @var{FILENAME}
The portion of the filename associated with this run. This will create
the model initialization file, @code{init_<file_tag>.dat}. Default:
@code{<mod_file>}

@item output_file_tag = @var{FILENAME}
The portion of the output filename that will be assigned to this run.
This will create, among other files,
@code{est_final_<output_file_tag>.out},
@code{est_intermediate_<output_file_tag>.out}. Default:
@code{<file_tag>}

@item no_create_init
Do not create an initialization file for the model. Passing this option
will cause the @i{Initialization Options} to be ignored. Further, the
model will be generated from the output files associated with the
previous estimation run (@i{i.e.} @code{est_final_<file_tag>.out},
@code{est_intermediate_<file_tag>.out} or @code{init_<file_tag>.dat},
searched for in sequential order). This functionality can be useful for
continuing a previous estimation run to ensure convergence was reached
or for reusing an initialization file. NB: If this option is not passed,
the files from the previous estimation run will be overwritten. Default:
@code{off} (@i{i.e.} create initialization file)

@end table
@customhead{Initialization Options}
@table @code

@item coefficients_prior_hyperparameters = [@var{DOUBLE1} @var{DOUBLE2} @var{DOUBLE3} @var{DOUBLE4} @var{DOUBLE5} @var{DOUBLE6}]
Sets the hyper parameters for the model. The six elements of the
argument vector have the following interpretations:

@table @code

@item Position
@code{Interpretation}

@item 1
Overall tightness for @math{A^0} and @math{A^+}

@item 2
Relative tightness for @math{A^+}

@item 3
Relative tightness for the constant term

@item 4
Tightness on lag decay (range: 1.2 - 1.5); a faster decay produces
better inflation process

@item 5
Weight on nvar sums of coeffs dummy observations (unit roots)

@item 6
Weight on single dummy initial observation including constant

@end table

Default: @code{[1.0 1.0 0.1 1.2 1.0 1.0]}

@item freq = @var{INTEGER} | @code{monthly} | @code{quarterly} | @code{yearly}
Frequency of the data (@i{e.g.} @code{monthly}, @code{12}). Default:
@code{4}

@item initial_year = @var{INTEGER}
The first year of data. Default: @code{none}

@item initial_subperiod = @var{INTEGER}
The first period of data (@i{i.e.} for quarterly data, an integer in
[@code{1,4}]). Default: @code{1}

@item final_year = @var{INTEGER}
The last year of data. Default: Set to encompass entire dataset.

@item final_subperiod = @var{INTEGER}
The final period of data (@i{i.e.} for monthly data, an integer in
[@code{1,12}]. Default: When final_year is also missing, set to
encompass entire dataset; when final_year is indicated, set to the
maximum number of subperiods given the frequency (@i{i.e}. 4 for
quarterly data, 12 for monthly,...).

@item datafile = @var{FILENAME}
@xref{datafile}.

@item xls_sheet = @var{NAME}
@xref{xls_sheet}.

@item xls_range = @var{RANGE}
@xref{xls_range}.

@item nlags = @var{INTEGER}
The number of lags in the model. Default: @code{1}

@item cross_restrictions
Use cross @math{A^0} and @math{A^+} restrictions. Default: @code{off}

@item contemp_reduced_form
Use contemporaneous recursive reduced form. Default: @code{off}

@item no_bayesian_prior
Do not use Bayesian prior. Default: @code{off} (@i{i.e.} use Bayesian
prior)

@item alpha = @var{INTEGER}
Alpha value for squared time-varying structural shock lambda. Default:
@code{1}

@item beta = @var{INTEGER}
Beta value for squared time-varying structural shock lambda. Default:
@code{1}

@item gsig2_lmdm = @var{INTEGER}
The variance for each independent @math{\lambda} parameter under
@code{SimsZha} restrictions. Default: @code{50^2}

@item specification = @code{sims_zha} | @code{none}
This controls how restrictions are imposed to reduce the number of
parameters. Default: @code{Random Walk}

@end table
@customhead{Estimation Options}
@table @code

@item convergence_starting_value = @var{DOUBLE}
This is the tolerance criterion for convergence and refers to changes in
the objective function value. It should be rather loose since it will
gradually be tightened during estimation. Default: @code{1e-3}

@item convergence_ending_value = @var{DOUBLE}
The convergence criterion ending value. Values much smaller than square
root machine epsilon are probably overkill. Default: @code{1e-6}

@item convergence_increment_value = @var{DOUBLE}
Determines how quickly the convergence criterion moves from the starting
value to the ending value. Default: @code{0.1}

@item max_iterations_starting_value = @var{INTEGER}
This is the maximum number of iterations allowed in the hill-climbing
optimization routine and should be rather small since it will gradually
be increased during estimation. Default: @code{50}

@item max_iterations_increment_value = @var{DOUBLE}
Determines how quickly the maximum number of iterations is
increased. Default: @code{2}

@item max_block_iterations = @var{INTEGER}
@anchor{max_block_iterations} The parameters are divided into blocks and
optimization proceeds over each block. After a set of blockwise
optimizations are performed, the convergence criterion is checked and
the blockwise optimizations are repeated if the criterion is
violated. This controls the maximum number of times the blockwise
optimization can be performed. Note that after the blockwise
optimizations have converged, a single optimization over all the
parameters is performed before updating the convergence value and
maximum number of iterations. Default: @code{100}

@item max_repeated_optimization_runs = @var{INTEGER}
The entire process described by @ref{max_block_iterations} is repeated
until improvement has stopped. This is the maximum number of times the
process is allowed to repeat. Set this to @code{0} to not allow
repetitions. Default: @code{10}

@item function_convergence_criterion = @var{DOUBLE}
The convergence criterion for the objective function when
@code{max_repeated_optimizations_runs} is positive. Default: @code{0.1}

@item parameter_convergence_criterion = @var{DOUBLE}
The convergence criterion for parameter values when
@code{max_repeated_optimizations_runs} is positive. Default: @code{0.1}

@item number_of_large_perturbations = @var{INTEGER}
The entire process described by @ref{max_block_iterations} is repeated
with random starting values drawn from the posterior. This specifies the
number of random starting values used. Set this to @code{0} to not use
random starting values. A larger number should be specified to ensure
that the entire parameter space has been covered. Default: @code{5}

@item number_of_small_perturbations = @var{INTEGER}
The number of small perturbations to make after the large perturbations
have stopped improving. Setting this number much above @code{10} is
probably overkill. Default: @code{5}

@item number_of_posterior_draws_after_perturbation = @var{INTEGER}
The number of consecutive posterior draws to make when producing a small
perturbation. Because the posterior draws are serially correlated, a
small number will result in a small perturbation. Default: @code{1}

@item max_number_of_stages = @var{INTEGER}
The small and large perturbation are repeated until improvement has
stopped. This specifics the maximum number of stages allowed. Default:
@code{20}

@item random_function_convergence_criterion = @var{DOUBLE}
The convergence criterion for the objective function when
@code{number_of_large_perturbations} is positive. Default: @code{0.1}

@item random_parameter_convergence_criterion = @var{DOUBLE}
The convergence criterion for parameter values when
@code{number_of_large_perturbations} is positive. Default: @code{0.1}

@end table
@end deffn

@examplehead

@example
ms_estimation(datafile=data, initial_year=1959, final_year=2005,
nlags=4, max_repeated_optimization_runs=1, max_number_of_stages=0);

ms_estimation(file_tag=second_run, datafile=data, initial_year=1959,
final_year=2005, nlags=4, max_repeated_optimization_runs=1,
max_number_of_stages=0);

ms_estimation(file_tag=second_run, output_file_tag=third_run,
no_create_init, max_repeated_optimization_runs=5,
number_of_large_perturbations=10);
@end example


@anchor{ms_simulation}
@deffn Command ms_simulation ;
@deffnx Command ms_simulation (@var{OPTIONS}@dots{});
@descriptionhead

Simulates a Markov-switching SBVAR model.

@optionshead

@table @code

@item file_tag = @var{FILENAME}
@anchor{file_tag} The portion of the filename associated with the
@code{ms_estimation} run. Default: @code{<mod_file>}

@item output_file_tag = @var{FILENAME}
@anchor{output_file_tag} The portion of the output filename that will be
assigned to this run. Default: @code{<file_tag>}

@item mh_replic = @var{INTEGER}
The number of draws to save. Default: @code{10,000}

@item drop = @var{INTEGER}
The number of burn-in draws. Default:
@code{0.1*mh_replic*thinning_factor}

@item thinning_factor = @var{INTEGER}
The total number of draws is equal to
@code{thinning_factor*mh_replic+drop}.  Default: @code{1}

@item adaptive_mh_draws = @var{INTEGER}
Tuning period for Metropolis-Hastings draws. Default: @code{30,000}

@item save_draws
Save all elements of @math{A^0}, @math{A^+}, @math{Q}, and
@math{\zeta}, to a file named @code{draws_<<file_tag>>.out} with each
draw on a separate line. A file that describes how these matrices are
laid out is contained in @code{draws_header_<<file_tag>>.out}. A file
called @code{load_flat_file.m} is provided to simplify loading the
saved files into the corresponding variables @code{A0}, @code{Aplus},
@code{Q}, and @code{Zeta} in your MATLAB/Octave workspace. Default:
@code{off}

@end table
@end deffn

@examplehead

@example
ms_simulation(file_tag=second_run);

ms_simulation(file_tag=third_run, mh_replic=5000, thinning_factor=3);
@end example


@anchor{ms_compute_mdd}
@deffn Command ms_compute_mdd ;
@deffnx Command ms_compute_mdd (@var{OPTIONS}@dots{});
@descriptionhead

Computes the marginal data density of a Markov-switching SBVAR model
from the posterior draws. At the end of the run, the Muller and Bridged
log marginal densities are contained in the @code{oo_.ms} structure.

@optionshead

@table @code

@item file_tag = @var{FILENAME}
@xref{file_tag}.

@item output_file_tag = @var{FILENAME}
@xref{output_file_tag}.

@item simulation_file_tag = @var{FILENAME}
@anchor{simulation_file_tag} The portion of the filename associated with
the simulation run.  Default: @code{<file_tag>}

@item proposal_type = @var{INTEGER}
The proposal type:
@table @code

@item 1
Gaussian

@item 2
Power

@item 3
Truncated Power

@item 4
Step

@item 5
Truncated Gaussian

@end table

Default: @code{3}

@item proposal_lower_bound = @var{DOUBLE}
The lower cutoff in terms of probability. Not used for
@code{proposal_type} in [@code{1,2}]. Required for all other proposal
types. Default: @code{0.1}

@item proposal_upper_bound = @var{DOUBLE}
The upper cutoff in terms of probability. Not used for
@code{proposal_type} equal to @code{1}. Required for all other proposal
types. Default: @code{0.9}

@item mdd_proposal_draws = @var{INTEGER}
The number of proposal draws. Default: @code{100,000}

@item mdd_use_mean_center
Use the posterior mean as center. Default: @code{off}

@end table

@end deffn


@anchor{ms_compute_probabilities}
@deffn Command ms_compute_probabilities ;
@deffnx Command ms_compute_probabilities (@var{OPTIONS}@dots{});
@descriptionhead

Computes smoothed regime probabilities of a Markov-switching SBVAR
model. Output @code{.eps} files are contained in
@code{<output_file_tag/Output/Probabilities>}.

@optionshead

@table @code

@item file_tag = @var{FILENAME}
@xref{file_tag}.

@item output_file_tag = @var{FILENAME}
@xref{output_file_tag}.

@item filtered_probabilities
Filtered probabilities are computed instead of smoothed. Default:
@code{off}

@item real_time_smoothed
Smoothed probabilities are computed based on time @code{t} information
for @math{0\le t\le nobs}. Default: @code{off}

@end table

@end deffn


@anchor{ms_irf}
@deffn Command ms_irf ;
@deffnx Command ms_irf (@var{OPTIONS}@dots{});
@descriptionhead

Computes impulse response functions for a Markov-switching SBVAR
model. Output @code{.eps} files are contained in
@code{<output_file_tag/Output/IRF>}, while data files are contained in
@code{<output_file_tag/IRF>}.

@optionshead

@table @code

@item file_tag = @var{FILENAME}
@xref{file_tag}.

@item output_file_tag = @var{FILENAME}
@xref{output_file_tag}.

@item simulation_file_tag = @var{FILENAME}
@xref{simulation_file_tag}.

@item horizon = @var{INTEGER}
@anchor{horizon} The forecast horizon. Default: @code{12}

@item filtered_probabilities
@anchor{filtered_probabilities} Uses filtered probabilities at the end
of the sample as initial conditions for regime probabilities. Only one
of @code{filtered_probabilities}, @code{regime} and @code{regimes} may
be passed. Default: @code{off}

@item error_band_percentiles = [@var{DOUBLE1} @dots{}]
@anchor{error_band_percentiles} The percentiles to compute. Default:
@code{[0.16 0.50 0.84]}. If @code{median} is passed, the default
is @code{[0.5]}

@item shock_draws = @var{INTEGER}
@anchor{shock_draws} The number of regime paths to draw. Default:
@code{10,000}

@item shocks_per_parameter = @var{INTEGER}
@anchor{shocks_per_parameter} The number of regime paths to draw under
parameter uncertainty. Default: @code{10}

@item thinning_factor = @var{INTEGER}
@anchor{thinning_factor} Only @math{1/@code{thinning_factor}} of the
draws in posterior draws file are used. Default: @code{1}

@item free_parameters = @var{NUMERICAL_VECTOR}
@anchor{free_parameters} A vector of free parameters to initialize theta
of the model. Default: use estimated parameters

@item parameter_uncertainty
@anchor{parameter_uncertainty} Calculate IRFs under parameter
uncertainty. Requires that @command{ms_simulation} has been
run. Default: @code{off}

@item regime = @var{INTEGER}
@anchor{regime} Given the data and model parameters, what is the ergodic
probability of being in the specified regime. Only one of
@code{filtered_probabilities}, @code{regime} and @code{regimes} may be
passed. Default: @code{off}

@item regimes
@anchor{regimes} Describes the evolution of regimes. Only one of
@code{filtered_probabilities}, @code{regime} and @code{regimes} may be
passed. Default: @code{off}

@item median
@anchor{median} A shortcut to setting
@code{error_band_percentiles=[0.5]}. Default: @code{off}

@end table

@end deffn


@anchor{ms_forecast}
@deffn Command ms_forecast ;
@deffnx Command ms_forecast (@var{OPTIONS}@dots{});
@descriptionhead

Generates forecasts for a Markov-switching SBVAR model. Output
@code{.eps} files are contained in @code{<output_file_tag/Output/Forecast>},
while data files are contained in @code{<output_file_tag/Forecast>}.

@optionshead

@table @code

@item file_tag = @var{FILENAME}
@xref{file_tag}.

@item output_file_tag = @var{FILENAME}
@xref{output_file_tag}.

@item simulation_file_tag = @var{FILENAME}
@xref{simulation_file_tag}.

@item data_obs_nbr = @var{INTEGER}
The number of data points included in the output. Default: @code{0}

@item error_band_percentiles = [@var{DOUBLE1} @dots{}]
@xref{error_band_percentiles}.

@item shock_draws = @var{INTEGER}
@xref{shock_draws}.

@item shocks_per_parameter = @var{INTEGER}
@xref{shocks_per_parameter}.

@item thinning_factor = @var{INTEGER}
@xref{thinning_factor}.

@item free_parameters = @var{NUMERICAL_VECTOR}
@xref{free_parameters}.

@item parameter_uncertainty
@xref{parameter_uncertainty}.

@item regime = @var{INTEGER}
@xref{regime}.

@item regimes

@xref{regimes}.

@item median

@xref{median}.

@end table

@end deffn


@anchor{ms_variance_decomposition}
@deffn Command ms_variance_decomposition ;
@deffnx Command ms_variance_decomposition (@var{OPTIONS}@dots{});
@descriptionhead

Computes the variance decomposition for a Markov-switching SBVAR
model. Output @code{.eps} files are contained in
@code{<output_file_tag/Output/Variance_Decomposition>}, while data files
are contained in @code{<output_file_tag/Variance_Decomposition>}.

@optionshead

@table @code

@item file_tag = @var{FILENAME}
@xref{file_tag}.

@item output_file_tag = @var{FILENAME}
@xref{output_file_tag}.

@item simulation_file_tag = @var{FILENAME}
@xref{simulation_file_tag}.

@item horizon = @var{INTEGER}
@xref{horizon}.

@item filtered_probabilities
@xref{filtered_probabilities}.

@item no_error_bands
Do not output percentile error bands (@i{i.e.} compute mean). Default:
@code{off} (@i{i.e.} output error bands)

@item error_band_percentiles = [@var{DOUBLE1} @dots{}]
@xref{error_band_percentiles}.

@item shock_draws = @var{INTEGER}
@xref{shock_draws}.

@item shocks_per_parameter = @var{INTEGER}
@xref{shocks_per_parameter}.

@item thinning_factor = @var{INTEGER}
@xref{thinning_factor}.

@item free_parameters = @var{NUMERICAL_VECTOR}
@xref{free_parameters}.

@item parameter_uncertainty
@xref{parameter_uncertainty}.

@item regime = @var{INTEGER}
@xref{regime}.

@item regimes

@xref{regimes}.

@end table

@end deffn


@node Displaying and saving results
@section Displaying and saving results

Dynare has comments to plot the results of a simulation and to save the results.

@deffn Command rplot @var{VARIABLE_NAME}@dots{};

Plots the simulated path of one or several variables, as stored in
@var{oo_.endo_simul} by either @var{simul} (@pxref{Deterministic
simulation}) or @var{stoch_simul} with
option @var{periods} (@pxref{Computing the stochastic solution}). The
variables are plotted in levels.

@end deffn


@deffn Command dynatype (@var{FILENAME}) [@var{VARIABLE_NAME}@dots{}];
This command prints the listed variables in a text file named
@var{FILENAME}. If no @var{VARIABLE_NAME} is listed, all endogenous
variables are printed.
@end deffn

@deffn Command dynasave (@var{FILENAME}) [@var{VARIABLE_NAME}@dots{}];

This command saves the listed variables in a binary file named
@var{FILENAME}. If no @var{VARIABLE_NAME} are listed, all endogenous
variables are saved.

In MATLAB or Octave, variables saved with the @code{dynasave} command
can be retrieved by the command:

@example
load -mat @var{FILENAME}
@end example

@end deffn

@node Macro-processing language
@section Macro-processing language

It is possible to use ``macro'' commands in the @file{.mod} file for
doing the following tasks: including modular source files, replicating
blocks of equations through loops, conditionally executing some code,
writing indexed sums or products inside equations@dots{}

The Dynare macro-language provides a new set of @emph{macro-commands}
which can be inserted inside @file{.mod} files. It features:

@itemize
@item
file inclusion

@item
loops (@code{for} structure)

@item
conditional inclusion (@code{if/then/else} structures)

@item
expression substitution
@end itemize

Technically, this macro language is totally independent of the basic
Dynare language, and is processed by a separate component of the
Dynare pre-processor. The macro processor transforms a @file{.mod}
file with macros into a @file{.mod} file without macros (doing
expansions/inclusions), and then feeds it to the Dynare parser. The
key point to understand is that the macro-processor only does
@emph{text substitution} (like the C preprocessor or the PHP
language).  Note that it is possible to see the output of the
macro-processor by using the @code{savemacro} option of the
@code{dynare} command (@pxref{Dynare invocation}).

The macro-processor is invoked by placing @emph{macro directives} in
the @file{.mod} file. Directives begin with an at-sign followed by a
pound sign (@code{@@#}). They produce no output, but give instructions
to the macro-processor. In most cases, directives occupy exactly one
line of text. In case of need, two anti-slashes (@code{\\}) at the end
of the line indicates that the directive is continued on the next
line. The main directives are:
@itemize
@item
@code{@@#include}, for file inclusion,
@item
@code{@@#define}, for defining a macro-processor variable,
@item
@code{@@#if}, @code{@@#ifdef}, @code{@@#ifndef}, @code{@@#else},
@code{@@#endif} for conditional statements,
@item
@code{@@#for}, @code{@@#endfor} for constructing loops.
@end itemize

The macro-processor maintains its own list of variables (distinct of
model variables and of MATLAB/Octave variables). These macro-variables
are assigned using the @code{@@#define} directive, and can be of four
types: integer, character string, array of integers, array of
strings.

@menu
* Macro expressions::
* Macro directives::
* Typical usages::
* MATLAB/Octave loops versus macro-processor loops::
@end menu

@node Macro expressions
@subsection Macro expressions

It is possible to construct macro-expressions which can be assigned to
macro-variables or used within a macro-directive. The expressions are
constructed using literals of the four basic types (integers, strings,
arrays of strings, arrays of integers), macro-variables names and
standard operators.

String literals have to be enclosed between @strong{double} quotes
(like @code{"name"}). Arrays are enclosed within brackets, and their
elements are separated by commas (like @code{[1,2,3]} or @code{["US",
"EA"]}).

Note that there is no boolean type: @emph{false} is
represented by integer zero and @emph{true} is any non-null integer.

The following operators can be used on integers:
@itemize
@item
arithmetic operators: @code{+}, @code{-}, @code{*}, @code{/}
@item
comparison operators: @code{<}, @code{>}, @code{<=}, @code{>=},
@code{==}, @code{!=}
@item
logical operators: @code{&&}, @code{||}, @code{!}
@item
integer ranges, using the following syntax:
@code{@var{INTEGER1}:@var{INTEGER2}} (for example, @code{1:4} is
equivalent to integer array @code{[1,2,3,4]})
@end itemize

The following operators can be used on strings:
@itemize
@item
comparison operators: @code{==}, @code{!=}
@item
concatenation of two strings: @code{+}
@item
extraction of substrings: if @code{@var{s}} is a string, then
@code{@var{s}[3]} is a string containing only the third character of
@code{@var{s}}, and @code{@var{s}[4:6]} contains the characters from
4th to 6th
@end itemize

The following operators can be used on arrays:
@itemize
@item
dereferencing: if @code{@var{v}} is an array, then @code{@var{v}[2]} is its 2nd element
@item
concatenation of two arrays: @code{+}
@item
difference @code{-}: returns the first operand from which the elements
of the second operand have been removed
@item
extraction of sub-arrays: @i{e.g.} @code{@var{v}[4:6]}
@item
testing membership of an array: @code{in} operator (for example:
@code{"b" in ["a", "b", "c"]} returns @code{1})
@item
getting the length of an array: @code{length} operator (for example:
@code{length(["a", "b", "c"])} returns @code{3} and, hence,
@code{1:length(["a", "b", "c"])} is equivalent to integer array
@code{[1,2,3]})
@end itemize

Macro-expressions can be used at two places:
@itemize
@item
inside macro directives, directly;
@item
in the body of the @code{.mod} file, between an at-sign and curly
braces (like @code{@@@{@var{expr}@}}): the macro processor will
substitute the expression with its value.
@end itemize

In the following, @var{MACRO_EXPRESSION} designates an expression
constructed as explained above.

@node Macro directives
@subsection Macro directives

@deffn {Macro directive} @@#include "@var{FILENAME}"
This directive simply includes the content of another file at the
place where it is inserted. It is exactly equivalent to a copy/paste
of the content of the included file. Note that it is possible to nest
includes (@i{i.e.} to include a file from an included file).

@examplehead

@example
@@#include "modelcomponent.mod"
@end example

@end deffn

@deffn {Macro directive} @@#define @var{MACRO_VARIABLE} = @var{MACRO_EXPRESSION}
Defines a macro-variable.

@customhead{Example 1}
@example
@@#define x = 5              // Integer
@@#define y = "US"           // String
@@#define v = [ 1, 2, 4 ]    // Integer array
@@#define w = [ "US", "EA" ] // String array
@@#define z = 3 + v[2]       // Equals 5
@@#define t = ("US" in w)    // Equals 1 (true)
@end example

@customhead{Example 2}

@example
@@#define x = [ "B", "C" ]
@@#define i = 2

model;
  A = @@@{x[i]@};
end;
@end example
is strictly equivalent to:
@example
model;
  A = C;
end;
@end example

@end deffn

@deffn {Macro directive} @@#if @var{MACRO_EXPRESSION}
@deffnx {Macro directive} @@#ifdef @var{MACRO_VARIABLE}
@deffnx {Macro directive} @@#ifndef @var{MACRO_VARIABLE}
@deffnx {Macro directive} @@#else
@deffnx {Macro directive} @@#endif
Conditional inclusion of some part of the @file{.mod} file.
The lines between @code{@@#if}, @code{@@#ifdef} or @code{@@#ifndef} and the next
@code{@@#else} or @code{@@#endif} is executed only if the condition
evaluates to a non-null integer. The @code{@@#else} branch is optional
and, if present, is only evaluated if the condition evaluates to
@code{0}.

@examplehead

Choose between two alternative monetary policy rules using a macro-variable:
@example
@@#define linear_mon_pol = 0 // or 1
...
model;
@@#if linear_mon_pol
  i = w*i(-1) + (1-w)*i_ss + w2*(pie-piestar);
@@#else
  i = i(-1)^w * i_ss^(1-w) * (pie/piestar)^w2;
@@#endif
...
end;
@end example

@examplehead

Choose between two alternative monetary policy rules using a
macro-variable. As @code{linear_mon_pol} was not previously defined in
this example, the second equation will be chosen:

@example
model;
@@#ifdef linear_mon_pol
  i = w*i(-1) + (1-w)*i_ss + w2*(pie-piestar);
@@#else
  i = i(-1)^w * i_ss^(1-w) * (pie/piestar)^w2;
@@#endif
...
end;
@end example

Choose between two alternative monetary policy rules using a
macro-variable. As @code{linear_mon_pol} was not previously defined in
this example, the first equation will be chosen:

@example
model;
@@#ifndef linear_mon_pol
  i = w*i(-1) + (1-w)*i_ss + w2*(pie-piestar);
@@#else
  i = i(-1)^w * i_ss^(1-w) * (pie/piestar)^w2;
@@#endif
...
end;
@end example

@end deffn

@deffn {Macro directive} @@#for @var{MACRO_VARIABLE} in @var{MACRO_EXPRESSION}
@deffnx {Macro directive} @@#endfor
Loop construction for replicating portions of the @file{.mod} file.
Note that this construct can enclose variable/parameters declaration,
computational tasks, but not a model declaration.

@examplehead
@example
model;
@@#for country in [ "home", "foreign" ]
  GDP_@@@{country@} = A * K_@@@{country@}^a * L_@@@{country@}^(1-a);
@@#endfor
end;
@end example
is equivalent to:
@example
model;
  GDP_home = A * K_home^a * L_home^(1-a);
  GDP_foreign = A * K_foreign^a * L_foreign^(1-a);
end;
@end example

@end deffn

@deffn {Macro directive} @@#echo @var{MACRO_EXPRESSION}
Asks the preprocessor to display some message on standard output. The
argument must evaluate to a string.
@end deffn

@deffn {Macro directive} @@#error @var{MACRO_EXPRESSION}
Asks the preprocessor to display some error message on standard output
and to abort. The argument must evaluate to a string.
@end deffn

@node Typical usages
@subsection Typical usages

@menu
* Modularization::
* Indexed sums or products::
* Multi-country models::
* Endogeneizing parameters::
@end menu

@node Modularization
@subsubsection Modularization

The @code{@@#include} directive can be used to split @file{.mod} files
into several modular components.

Example setup:

@table @file

@item modeldesc.mod
Contains variable declarations, model equations and shocks declarations
@item simul.mod
Includes @file{modeldesc.mod}, calibrates parameters and runs
stochastic simulations
@item estim.mod
Includes @file{modeldesc.mod}, declares priors on parameters and runs
Bayesian estimation
@end table

Dynare can be called on @file{simul.mod} and @file{estim.mod}, but it
makes no sense to run it on @file{modeldesc.mod}.

The main advantage is that it is no longer needed to manually
copy/paste the whole model (at the beginning) or changes to the model
(during development).

@node Indexed sums or products
@subsubsection Indexed sums or products

The following example shows how to construct a moving average:

@example
@@#define window = 2

var x MA_x;
...
model;
...
MA_x = 1/@@@{2*window+1@}*(
@@#for i in -window:window
        +x(@@@{i@})
@@#endfor
       );
...
end;
@end example

After macro-processing, this is equivalent to:
@example
var x MA_x;
...
model;
...
MA_x = 1/5*(
        +x(-2)
        +x(-1)
        +x(0)
        +x(1)
        +x(2)
       );
...
end;
@end example

@node Multi-country models
@subsubsection Multi-country models

Here is a skeleton example for a multi-country model:

@example
@@#define countries = [ "US", "EA", "AS", "JP", "RC" ]
@@#define nth_co = "US"

@@#for co in countries
var Y_@@@{co@} K_@@@{co@} L_@@@{co@} i_@@@{co@} E_@@@{co@} ...;
parameters a_@@@{co@} ...;
varexo ...;
@@#endfor

model;
@@#for co in countries
 Y_@@@{co@} = K_@@@{co@}^a_@@@{co@} * L_@@@{co@}^(1-a_@@@{co@});
...
@@# if co != nth_co
 (1+i_@@@{co@}) = (1+i_@@@{nth_co@}) * E_@@@{co@}(+1) / E_@@@{co@}; // UIP relation
@@# else
 E_@@@{co@} = 1;
@@# endif
@@#endfor
end;
@end example

@node Endogeneizing parameters
@subsubsection Endogeneizing parameters

When doing the steady state calibration of the model, it may be useful
to consider a parameter as an endogenous (and vice-versa).

For example, suppose production is defined by a CES function:

@math{y = \left(\alpha^{1/\xi} \ell^{1-1/\xi}+(1-\alpha)^{1/\xi}k^{1-1/\xi}\right)^{\xi/(\xi-1)}}

The labor share in GDP is defined as:

@code{lab_rat} @math{= (w \ell)/(p y)}

In the model, @math{\alpha} is a (share) parameter, and
@code{lab_rat} is an endogenous variable.

It is clear that calibrating @math{\alpha} is not straightforward; but
on the contrary, we have real world data for @code{lab_rat}, and
it is clear that these two variables are economically linked.

The solution is to use a method called @emph{variable flipping}, which
consist in changing the way of computing the steady state. During this
computation, @math{\alpha} will be made an endogenous variable and
@code{lab_rat} will be made a parameter. An economically relevant
value will be calibrated for @code{lab_rat}, and the solution
algorithm will deduce the implied value for @math{\alpha}.

An implementation could consist of the following files:

@table @file

@item modeqs.mod
This file contains variable declarations and model equations. The code
for the declaration of @math{\alpha} and @code{lab_rat} would look like:
@example
@@#if steady
 var alpha;
 parameter lab_rat;
@@#else
 parameter alpha;
 var lab_rat;
@@#endif
@end example

@item steady.mod
This file computes the steady state. It begins with:
@example
@@#define steady = 1
@@#include "modeqs.mod"
@end example
Then it initializes parameters (including @code{lab_rat}, excluding
@math{\alpha}, computes the steady state (using guess values for
endogenous, including @math{\alpha}, then saves values of parameters
and endogenous at steady state in a file, using the
@code{save_params_and_steady_state} command.

@item simul.mod
This file computes the simulation. It begins with:
@example
@@#define steady = 0
@@#include "modeqs.mod"
@end example
Then it loads values of parameters and endogenous at steady state from
file, using the @code{load_params_and_steady_state} command, and
computes the simulations.
@end table

@node MATLAB/Octave loops versus macro-processor loops
@subsection MATLAB/Octave loops versus macro-processor loops

Suppose you have a model with a parameter @math{\rho}, and you want to make
simulations for three values: @math{\rho = 0.8, 0.9, 1}. There are
several ways of doing this:

@table @asis

@item With a MATLAB/Octave loop
@example
rhos = [ 0.8, 0.9, 1];
for i = 1:length(rhos)
  rho = rhos(i);
  stoch_simul(order=1);
end
@end example
Here the loop is not unrolled, MATLAB/Octave manages the iterations.
This is interesting when there are a lot of iterations.

@item With a macro-processor loop (case 1)
@example
rhos = [ 0.8, 0.9, 1];
@@#for i in 1:3
  rho = rhos(@@@{i@});
  stoch_simul(order=1);
@@#endfor
@end example
This is very similar to previous example, except that the loop is
unrolled.  The macro-processor manages the loop index but not the data
array (@code{rhos}).

@item With a macro-processor loop (case 2)
@example
@@#for rho_val in [ "0.8", "0.9", "1"]
  rho = @@@{rho_val@};
  stoch_simul(order=1);
@@#endfor
@end example
The advantage of this method is that it uses a shorter syntax, since
list of values directly given in the loop construct. Note that values
are given as character strings (the macro-processor does not know
floating point values. The inconvenient is that you can not reuse an
array stored in a MATLAB/Octave variable.

@end table

@node Verbatim inclusion
@section Verbatim inclusion

Pass everything contained within the @code{verbatim} block to the @code{<mod_file>.m} file.

@deffn Block verbatim ;

@descriptionhead

By default, whenever Dynare encounters code that is not understood by the parser, it is directly passed to the preprocessor output.

In order to force this behavior you can use the @code{verbatim} block. This is useful when the code you want passed to the @code{<mod_file>.m} file contains tokens recognized by the Dynare preprocessor.

@examplehead

@example
verbatim;
% Anything contained in this block will be passed
% directly to the <modfile>.m file, including comments
var = 1;
end;
@end example

@end deffn

@node Misc commands
@section Misc commands

@deffn Command set_dynare_seed (@var{INTEGER})
@deffnx Command set_dynare_seed ('default')
@deffnx Command set_dynare_seed ('clock')
@deffnx Command set_dynare_seed ('reset')
@deffnx Command set_dynare_seed ('@var{ALGORITHM}', @var{INTEGER})

Sets the seed used for random number generation. It is possible to set
a given integer value, to use a default value, or to use the clock (by
using the latter, one will therefore get different results across
different Dynare runs). The @code{reset} option serves to reset the
seed to the value set by the last @code{set_dynare_seed} command. On
MATLAB 7.8 or above, it is also possible to choose a specific
algorithm for random number generation; accepted values are
@code{mcg16807}, @code{mlfg6331_64}, @code{mrg32k3a}, @code{mt19937ar}
(the default), @code{shr3cong} and @code{swb2712}.

@end deffn

@deffn Command save_params_and_steady_state (@var{FILENAME});

For all parameters, endogenous and exogenous variables, stores
their value in a text file, using a simple name/value associative table.

@itemize

@item
for parameters, the value is taken from the last parameter
initialization

@item
for exogenous, the value is taken from the last initval block

@item
for endogenous, the value is taken from the last steady state computation
(or, if no steady state has been computed, from the last initval block)
@end itemize

Note that no variable type is stored in the file, so that the values
can be reloaded with @code{load_params_and_steady_state} in a setup where
the variable types are different.

The typical usage of this function is to compute the steady-state of a
model by calibrating the steady-state value of some endogenous
variables (which implies that some parameters must be endogeneized
during the steady-state computation).

You would then write a first @file{.mod} file which computes the
steady state and saves the result of the computation at the end of the
file, using @code{save_params_and_steady_state}.

In a second file designed to perform the actual simulations, you would
use @code{load_params_and_steady_state} just after your variable
declarations, in order to load the steady state previously computed
(including the parameters which had been endogeneized during the
steady state computation).

The need for two separate @file{.mod} files arises from the fact that
the variable declarations differ between the files for steady state
calibration and for simulation (the set of endogenous and parameters
differ between the two); this leads to different @code{var} and
@code{parameters} statements.

Also note that you can take advantage of the @code{@@#include}
directive to share the model equations between the two files
(@pxref{Macro-processing language}).

@end deffn

@anchor{load_params_and_steady_state}
@deffn Command load_params_and_steady_state (@var{FILENAME});

For all parameters, endogenous and exogenous variables, loads
their value from a file created with @code{save_params_and_steady_state}.

@itemize

@item
for parameters, their value will be initialized as if they
had been calibrated in the @file{.mod} file

@item
for endogenous and exogenous, their value will be initialized
as they would have been from an initval block
@end itemize

This function is used in conjunction with
@code{save_params_and_steady_state}; see the documentation of that
function for more information.

@end deffn

@anchor{dynare_version}
@deffn {MATLAB/Octave command} dynare_version ;

Output the version of Dynare that is currently being used (@i{i.e.}
the one that is highest on the MATLAB/Octave path).

@end deffn

@deffn {MATLAB/Octave command} write_latex_definitions ;

Writes the names, @LaTeX{} names and long names of model variables to
tables in a file named @code{<<M_.fname>>_latex_definitions.tex}.

@end deffn


@node The Configuration File
@chapter The Configuration File

The configuration file is used to provide Dynare with information not
related to the model (and hence not placed in the model file). At the
moment, it is only used when using Dynare to run parallel
computations.

On Linux and Mac OS X, the default location of the configuration file
is @file{$HOME/.dynare}, while on Windows it is
@file{%APPDATA%\dynare.ini} (typically @file{C:\Documents and
Settings\@var{USERNAME}\Application Data\dynare.ini} under Windows XP,
or @file{C:\Users\@var{USERNAME}\AppData\dynare.ini} under Windows
Vista/7/8). You can specify a non standard location using the
@code{conffile} option of the @code{dynare} command (@pxref{Dynare
invocation}).

The parsing of the configuration file is case-sensitive and it should
take the following form, with each option/choice pair placed on a
newline:

@example
[command0]
option0 = choice0
option1 = choice1

[command1]
option0 = choice0
option1 = choice1
@end example

The configuration file follows a few conventions (self-explanatory
conventions such as @var{USER_NAME} have been excluded for concision):

@table @var

@item COMPUTER_NAME
Indicates the valid name of a server (@i{e.g.} @code{localhost},
@code{server.cepremap.org}) or an IP address.

@item DRIVE_NAME
Indicates a valid drive name in Windows, without the trailing colon (@i{e.g.} @code{C}).

@item PATH
Indicates a valid path in the underlying operating system (@i{e.g.}
@code{/home/user/dynare/matlab/}).

@item PATH_AND_FILE
Indicates a valid path to a file in the underlying operating system
(@i{e.g.} @code{/usr/local/MATLAB/R2010b/bin/matlab}).

@item BOOLEAN
Is @code{true} or @code{false}.
@end table

@menu
* Dynare Configuration::
* Parallel Configuration::
@end menu

@node Dynare Configuration
@section Dynare Configuration

This section explains how to configure Dynare for general
processing. Currently, there is only one option available.

@deffn {Configuration block} [hooks]

@descriptionhead

The @code{[hooks]} block can be used to specify configuration options
that will be used when running Dynare.

@optionshead

@table @code

@item GlobalInitFile = @var{PATH_AND_FILE}
The location of the global initialization file to be run at the end of
@code{global_initialization.m}

@end table

@examplehead

@example
[hooks]
GlobalInitFile = /home/usern/dynare/myInitFile.m

@end example

@end deffn

@node Parallel Configuration
@section Parallel Configuration

This section explains how to configure Dynare for parallelizing some
tasks which require very little inter-process communication.

The parallelization is done by running several MATLAB or Octave
processes, either on local or on remote machines. Communication
between master and slave processes are done through SMB on Windows and
SSH on UNIX. Input and output data, and also some short status
messages, are exchanged through network filesystems. Currently the
system works only with homogenous grids: only Windows or only Unix
machines.

The following routines are currently parallelized:

@itemize

@item
the Metropolis-Hastings algorithm;

@item
the Metropolis-Hastings diagnostics;

@item
the posterior IRFs;

@item
the prior and posterior statistics;

@item
some plotting routines.

@end itemize

Note that creating the configuration file is not enough in order to
trigger parallelization of the computations: you also need to specify
the @code{parallel} option to the @code{dynare} command. For more
details, and for other options related to the parallelization engine,
see @pxref{Dynare invocation}.

You also need to verify that the following requirements are met by
your cluster (which is composed of a master and of one or more
slaves):

@table @asis

@item For a Windows grid

@itemize

@item
a standard Windows network (SMB) must be in place;

@item
@uref{http://technet.microsoft.com/en-us/sysinternals/bb896649.aspx,
PsTools} must be installed in the path of the master Windows machine;

@item
the Windows user on the master machine has to be user of any other
slave machine in the cluster, and that user will be used for the
remote computations.

@end itemize

@item For a UNIX grid

@itemize

@item
SSH must be installed on the master and on the slave machines;

@item
SSH keys must be installed so that the SSH connection from the master
to the slaves can be done without passwords, or using an SSH agent

@end itemize

@end table

We now turn to the description of the configuration directives:

@deffn {Configuration block} [cluster]

@descriptionhead

When working in parallel, @code{[cluster]} is required to specify the
group of computers that will be used. It is required even if you are
only invoking multiple processes on one computer.

@optionshead

@table @code

@item Name = @var{CLUSTER_NAME}
The reference name of this cluster.

@item Members = @var{NODE_NAME}[(@var{WEIGHT})] @var{NODE_NAME}[(@var{WEIGHT})] @dots{}
A list of nodes that comprise the cluster with an optional computing
weight specified for that node. The computing weight indicates how
much more powerful one node is with respect to the others (@i{e.g.}
@code{n1(2) n2(1) n3(3)}, means that @code{n1} is two times more
powerful than @code{n2} whereas @code{n3} is three times more powerful
than @code{n2}). Each node is separated by at least one space and the
weights are in parenthesis with no spaces separating them from their
node.
@end table

@examplehead

@example
[cluster]
Name = c1
Members = n1 n2 n3

[cluster]
Name = c2
Members = n1(4) n2 n3
@end example

@end deffn

@deffn {Configuration block} [node]

@descriptionhead

When working in parallel, @code{[node]} is required for every computer
that will be used. The options that are required differ, depending on
the underlying operating system and whether you are working locally or
remotely.

@optionshead

@table @code

@item Name = @var{NODE_NAME}
The reference name of this node.

@item CPUnbr = @var{INTEGER} | [@var{INTEGER}:@var{INTEGER}]
If just one integer is passed, the number of processors to use. If a
range of integers is passed, the specific processors to use (processor
counting is defined to begin at one as opposed to zero). Note that
using specific processors is only possible under Windows; under Linux
and Mac OS X, if a range is passed the same number of processors will
be used but the range will be adjusted to begin at one.

@item ComputerName = @var{COMPUTER_NAME}
The name or IP address of the node. If you want to run locally, use
@code{localhost} (case-sensitive).

@item Port = @var{INTEGER}
The port number to connect to on the node. The default is empty,
meaning that the connection will be made to the default SSH port (22).

@item UserName = @var{USER_NAME}
The username used to log into a remote system. Required for remote
runs on all platforms.

@item Password = @var{PASSWORD}
The password used to log into the remote system. Required for remote
runs originating from Windows.

@item RemoteDrive = @var{DRIVE_NAME}
The drive to be used for remote computation. Required for remote runs
originating from Windows.

@item RemoteDirectory = @var{PATH}
The directory to be used for remote computation. Required for remote
runs on all platforms.

@item DynarePath = @var{PATH}
The path to the @file{matlab} subdirectory within the Dynare
installation directory. The default is the empty string.

@item MatlabOctavePath = @var{PATH_AND_FILE}
The path to the MATLAB or Octave executable. The default value is
@code{matlab}.

@item SingleCompThread = @var{BOOLEAN}
Whether or not to disable MATLAB's native multithreading. The default
value is @code{true}. Option meaningless under Octave.

@item OperatingSystem = @var{OPERATING_SYSTEM}
The operating system associated with a node. Only necessary when
creating a cluster with nodes from different operating systems.
Possible values are @code{unix} or @code{windows}. There is no default
value.
@end table

@examplehead

@example
[node]
Name = n1
ComputerName = localhost
CPUnbr = 1

[node]
Name = n2
ComputerName = dynserv.cepremap.org
CPUnbr = 5
UserName = usern
RemoteDirectory = /home/usern/Remote
DynarePath = /home/usern/dynare/matlab
MatlabOctavePath = matlab

[node]
Name = n3
ComputerName = dynserv.dynare.org
Port = 3333
CPUnbr = [2:4]
UserName = usern
RemoteDirectory = /home/usern/Remote
DynarePath = /home/usern/dynare/matlab
MatlabOctavePath = matlab
@end example

@end deffn

@node Time Series
@chapter Time Series

@menu
* Dates::
* dseries class::
@end menu


Dynare provides a  Matlab/Octave class for handling time series  data, which is
based on a class for handling dates. Dynare also provides a new type for
dates, so  that the  basic user  do not  have to  worry about  class and
methods for  dates.  Below, you  will first  find the class  and methods
used for  creating and dealing  with dates and  then the class  used for
using time series.

@node Dates
@section Dates

@menu
* dates in a mod file::
* dates class::
@end menu

@node dates in a mod file
@subsection dates in a mod file

Dynare  understands dates  in  a  mod file.  Users  can declare  annual,
quarterly, monthly or weekly dates using the following syntax:

@example
1990Y
1990Q3
1990M11
1990W49
@end example

@noindent Behind the scene, Dynare's preprocessor translates these expressions
into instantiations of the  Matlab/Octave's class @dates described
below. Basic  operations can be performed  on dates:
@table @strong

@item plus binary operator (@code{+})

An integer scalar, interpreted as a number of periods, can be added to a date. For instance, if @code{a = 1950Q1} then
@code{b = 1951Q2} and @code{b = a + 5} are identical.

@item plus unary operator (@code{+})

Increments a date by one period. @code{+1950Q1} is identical to @code{1950Q2}, @code{++++1950Q1} is identical to @code{1951Q1}.

@item minus binary operator (@code{-})

Has two functions: difference and subtraction. If the second argument
is a date, calculates the difference between the first date and the
second date (@i{e.g.} @code{1951Q2-1950Q1} is equal to @code{5}). If
the second argument is an integer @code{X}, subtracts @code{X} periods
from the date (@i{e.g.} @code{1951Q2-2} is equal to @code{1950Q4}).

@item minus unary operator (@code{-})

Subtracts one period to a date. @code{-1950Q1} is identical to @code{1949Q4}. The unary minus operator is the reciprocal of the unary plus operator, @code{+-1950Q1} is identical to @code{1950Q1}.

@item colon operator (@code{:})

Can be used to create a range of dates. For instance, @code{r = 1950Q1:1951Q1} creates a @dates object with five elements: @code{1950Q1}, @code{1950Q2}, @code{1950Q3}, @code{1950Q4} and @code{1951Q1}. By default the increment between each element is one period. This default can be changed using, for instance, the following instruction: @code{1950Q1:2:1951Q1} which will instantiate a @dates object with three elements: @code{1950Q1}, @code{1950Q3} and @code{1951Q1}.

@item horzcat operator (@code{[,]})

Concatenates @dates objects without removing repetitions. For instance @code{[1950Q1, 1950Q2]} is a a @dates object with two elements (@code{1950Q1} and @code{1950Q2}).

@item vertcat operator (@code{[;]})

Same as @code{horzcat} operator.

@item eq operator (equal, @code{==})

Tests if two @dates objects are equal. @code{+1950Q1==1950Q2} returns @code{1}, @code{1950Q1==1950Q2} returns @code{0}. If the compared objects have both @code{n>1} elements, the @code{eq} operator returns a column vector, @code{n} by @code{1}, of zeros and ones.

@item ne operator (not equal, @code{~=})

Tests if two @dates objects are not equal. @code{+1950Q1~=1950Q2}
returns @code{0} while @code{1950Q1~=1950Q2} returns @code{1}. If the
compared objects both have @code{n>1} elements, the @code{ne} operator
returns an @code{n} by @code{1} column vector of zeros and ones.

@item lt operator (less than, @code{<})

Tests if a @dates object preceeds another @dates object. For instance, @code{1950Q1<1950Q3} returns @code{1}.  If the compared objects have both @code{n>1} elements, the @code{lt} operator returns a column vector, @code{n} by @code{1}, of zeros and ones.

@item gt operator (greater than, @code{>})

Tests if a @dates object follows another @dates object. For instance, @code{1950Q1>1950Q3} returns @code{0}.  If the compared objects have both @code{n>1} elements, the @code{gt} operator returns a column vector, @code{n} by @code{1}, of zeros and ones.

@item le operator (less or equal, @code{<=})

Tests if a @dates object preceeds another @dates object or is equal to this object. For instance, @code{1950Q1<=1950Q3} returns @code{1}.  If the compared objects have both @code{n>1} elements, the @code{le} operator returns a column vector, @code{n} by @code{1}, of zeros and ones.

@item ge operator (greater or equal, @code{>=})

Tests if a @dates object follows another @dates object or is equal to this object. For instance, @code{1950Q1>=1950Q3} returns @code{0}.  If the compared objects have both @code{n>1} elements, the @code{ge} operator returns a column vector, @code{n} by @code{1}, of zeros and ones.

@end table

@noindent One can select an element, or some elements, in a @dates object as he would extract some elements from a vector in Matlab/Octave. Let @code{a = 1950Q1:1951Q1} be a @dates object, then @code{a(1)==1950Q1} returns @code{1}, @code{a(end)==1951Q1} returns @code{1} and @code{a(end-1:end)} selects the two last elements of @code{a} (by instantiating the @dates object @code{[1950Q4, 1951Q1]}).

@remarkhead
@noindent Dynare substitutes any occurrence of dates in the mod file into an instantiation of the @dates class regardless of the context. For instance, @code{d = 1950Q1;} will be translated as @code{d = dates('1950Q1');}. This automatic substitution can lead to a crash if a date is defined in a string. Typically, if the user wants to display a date:

@example
disp('Initial period is 1950Q1');
@end example

@noindent Dynare will translate this as:

@example
disp('Initial period is dates('1950Q1')');
@end example

@noindent which will lead to a crash because this expression is illegal in Matlab. For this situation, Dynare provides the @code{$} escape parameter. The following expression:

@example
disp('Initial period is $1950Q1');
@end example

@noindent will be translated as:

@example
disp('Initial period is 1950Q1');
@end example

@noindent in the generated MATLAB script.

@node dates class
@subsection dates class

The @dates class has three members:
@table @code
@anchor{dates class members}

@item freq
an integer equal to 1, 4, 12  or 52 (resp. for annual, quarterly, monthly
or weekly dates).

@item ndat
an integer scalar, the number of declared dates in the object.

@item time
a @code{ndat}*2  array of integers,  the years  are stored in  the first
column, the subperiods (1 for annual dates, 1-4 for quarterly dates, 1-12
for monthly  dates and 1-52 for  weekly dates) are stored  in the second
column.

@end table

@noindent Each member is private, one can display the content of a member but cannot change its value:

@example
>> d = dates('2009Q2');
>> d.time

ans =

        2009           2

>>
@end example

@noindent Note that it is not possible to mix frequencies in a @dates object: all the elements must have common frequency. The @dates class has five constructors:

@sp 1

@deftypefn  {dates} dates ()
@deftypefnx {dates} dates (@code{FREQ})

Returns an empty @dates object with  a given frequency (if the constructor is called with one input argument).  @code{FREQ} is a character equal to 'Y' or 'A'  for annual dates, 'Q' for quarterly dates, 'M' for monthly dates or 'W'  for weekly dates. Note that @code{FREQ} is not  case sensitive,  so that,  for instance,  'q' is  also allowed  for quarterly dates. The frequency can also be set with an integer scalar equal to 1 (annual), 4 (quarterly), 12 (monthly) or 52 (weekly). The instantiation of empty objects can be used to rename  the @dates class. For  instance, if one  only works  with quarterly dates, he can create @code{qq} as:

@example
qq = dates('Q')
@end example

@noindent and a @dates object holding the date @code{2009Q2}:

@example
d0 = qq(2009,2);
@end example

@noindent which is much simpler if @dates objects have to be defined programmatically.

@end deftypefn

@sp 1

@deftypefn {dates} dates (@code{STRING})
@deftypefnx {dates} dates (@code{STRING}, @code{STRING}, ...)

Returns a @dates object that represents a date as given by the string @code{STRING}. This string has to be interpretable as a date (only strings of the following forms are admitted: @code{'1990Y'}, @code{'1990A'}, @code{'1990Q1'}, @code{'1990M2'}, @code{'1990W5'}), the routine @code{isdate} can be used to test if a string is interpretable as a date. If more than one argument is provided, they should all be dates represented as strings, the resulting @dates object contains as many elements as arguments to the constructor.

@end deftypefn

@sp 1

@deftypefn {dates} dates (@code{DATES})
@deftypefnx {dates} dates (@code{DATES}, @code{DATES}, ...)

Returns a copy of the  @dates object @code{DATES} passed as input arguments. If more than one argument is provided, they should all be @dates objects. The number of elements in the instantiated @dates object is equal to the sum of the elements in the @dates passed as arguments to the constructor.

@end deftypefn

@sp 1

@deftypefn {dates} dates (@code{FREQ}, @code{YEAR}, @code{SUBPERIOD})

where @code{FREQ} is a single character ('Y', 'A', 'Q', 'M', 'W') or integer (1, 4, 12 or 52) specifying the frequency, @code{YEAR} and @code{SUBPERIOD} are @code{n*1} vectors of integers. Returns a @dates object with @code{n} elements. If @code{FREQ} is equal to @code{'Y', 'A'} or @code{1}, the third argument is not needed (because @code{SUBPERIOD} is necessarily a vector of ones in this case).

@end deftypefn

@sp 1

@exampleshead
@example
do1 = dates('1950Q1');
do2 = dates('1950Q2','1950Q3');
do3 = dates(do1,do2);
do4 = dates('Q',1950, 1);
@end example

@sp 1

@noindent A list of the available methods, by alphabetical order, is given below. Note that the Matlab/Octave classes do not allow in place modifications: when a method is applied to an object a new object is instantiated. For instance, to apply the method @code{multiplybytwo} to an object @code{X} we write:

@example
Y = X.multiplybytwo()
@end example

@noindent or equivalently:

@example
Y = multiplybytwo(X)
@end example

@noindent the object @code{X} is left unchanged, and the object @code{Y} is a modified copy of @code{X}.

@sp 1

@deftypefn {dates} {@var{C} = } append (@var{A}, @var{B})

Appends @dates object @var{B}, or a string that can be interpreted as a date, to the @dates object @var{A}. If @var{B} is a @dates object it is assumed that it has no more than one element.

@examplehead
@example
>> D = dates('1950Q1','1950Q2');
>> d = dates('1950Q3');
>> E = D.append(d);
>> F = D.append('1950Q3')
>> isequal(E,F)

ans =

     1
>> F
F = <dates: 1950Q1, 1950Q2, 1950Q3>
@end example

@end deftypefn

@sp 1

@deftypefn {dates} {@var{C} = } colon (@var{A}, @var{B})
@deftypefnx {dates} {@var{C} = } colon (@var{A}, @var{i}, @var{B})

Overloads the Matlab/Octave colon (:) operator. @var{A} and @var{B} are @dates objects. The optional increment @var{i} is a scalar integer (default value is @code{i=1}). This method returns a @dates object and can be used to create ranges of dates.

@examplehead
@example
>> A = dates('1950Q1');
>> B = dates('1951Q2');
>> C = A:B
C = <dates: 1950Q1, 1950Q2, 1950Q3, 1950Q4, 1951Q1>
>> D = A:2:B
D = <dates: 1950Q1, 1950Q3, 1951Q1>

@end example

@end deftypefn

@sp 1

@deftypefn{dates} {@var{B} = } double (@var{A})

Overloads the Matlab/Octave @code{double} function. @var{A} is a @dates object. The method returns a floating point representation of a @dates object, the integer and fractional parts respectively corresponding to the year and the subperiod. The fractional part is the subperiod number minus one divided by the frequency (@code{1}, @code{4}, @code{12} or @code{52}).


@examplehead
@example
>> a = dates('1950Q1'):dates('1950Q4');
>> a.double()

ans =

   1950.00
   1950.25
   1950.50
   1950.75

@end example

@end deftypefn

@sp 1

@deftypefn{dates} {@var{C} =} eq (@var{A}, @var{B})

Overloads the Matlab/Octave @code{eq} (equal, @code{==}) operator. @dates objects @var{A} and @var{B} must have the  same number of elements (say, @code{n}). The returned argument is a @code{n} by @code{1} vector of zeros and ones. The i-th element of @var{C} is equal to @code{1} if and only if the dates @code{A(i)} and @code{B(i)} are the same.

@examplehead
@example
>> A = dates('1950Q1','1951Q2');
>> B = dates('1950Q1','1950Q2');
>> A==B

ans =

     1
     0
@end example

@end deftypefn

@sp 1

@deftypefn{dates} {@var{C} =} ge (@var{A}, @var{B})

Overloads the Matlab/Octave @code{ge} (greater or equal, @code{>=}) operator. @dates objects @var{A} and @var{B} must have the  same number of elements (say, @code{n}). The returned argument is a @code{n} by @code{1} vector of zeros and ones. The i-th element of @var{C} is equal to @code{1} if and only if the date @code{A(i)} is posterior or equal to the date @code{B(i)}.

@examplehead
@example
>> A = dates('1950Q1','1951Q2');
>> B = dates('1950Q1','1950Q2');
>> A>=B

ans =

     1
     1
@end example

@end deftypefn

@sp 1

@deftypefn{dates} {@var{C} =} gt (@var{A}, @var{B})

Overloads the Matlab/Octave @code{gt} (greater than, @code{>=}) operator. @dates objects @var{A} and @var{B} must have the  same number of elements (say, @code{n}). The returned argument is a @code{n} by @code{1} vector of zeros and ones. The i-th element of @var{C} is equal to @code{1} if and only if the date @code{A(i)} is posterior to the date @code{B(i)}.

@examplehead
@example
>> A = dates('1950Q1','1951Q2');
>> B = dates('1950Q1','1950Q2');
>> A>B

ans =

     0
     1
@end example

@end deftypefn

@sp 1

@deftypefn{dates} {@var{D} =} horzcat (@var{A}, @var{B}, @var{C}, ...)

Overloads the Matlab/Octave @code{horzcat} operator. All the input arguments must be @dates objects. The returned argument is a @dates object gathering all the dates given in the input arguments (repetitions are not removed).

@examplehead
@example
>> A = dates('1950Q1');
>> B = dates('1950Q2');
>> C = [A, B];
>> C
C = <dates: 1950Q1, 1950Q2>
@end example

@end deftypefn

@sp 1

@deftypefn{dates} {@var{C} =} intersect (@var{A}, @var{B})

Overloads the Matlab/Octave @code{intersect} function. All the input arguments must be @dates objects. The returned argument is a @dates object gathering all the common dates given in the input arguments. If @var{A} and @var{B} are disjoint @dates objects, the function returns an empty @dates object. Returned dates in @dates object @var{C} are sorted by increasing order.

@examplehead
@example
>> A = dates('1950Q1'):dates('1951Q4');
>> B = dates('1951Q1'):dates('1951Q4');
>> C = intersect(A, B);
>> C
C = <dates: 1951Q1, 1951Q2, 1951Q3, 1951Q4>
@end example

@end deftypefn

@sp 1

@deftypefn{dates} {@var{C} =} setdiff (@var{A}, @var{B})

Overloads the Matlab/Octave @code{setdiff} function. All the input arguments must be @dates objects. The returned argument is a @dates object all dates present in @var{A} but not in @var{B}. If @var{A} and @var{B} are disjoint @dates objects, the function returns @var{A}. Returned dates in @dates object @var{C} are sorted by increasing order.

@examplehead
@example
>> A = dates('1950Q1'):dates('1969Q4') ;
>> B = dates('1960Q1'):dates('1969Q4') ;
>> C = dates('1970Q1'):dates('1979Q4') ;
>> d1 = setdiff(d1,d2);
>> d2 = setdiff(d1,d3);
d1 = <dates: 1950Q1, 1950Q2,  ..., 1959Q3, 1959Q4>
d2 = <dates: 1950Q1, 1950Q2,  ..., 1969Q3, 1969Q4>
@end example

@end deftypefn


@sp 1


@deftypefn{dates} {@var{B} =} isempty (@var{A})

Overloads the Matlab/Octave isempty function for @dates object.

@examplehead
@example
>> A = dates('1950Q1'):dates('1951Q4');
>> A.isempty()

ans =

     0
@end example

@end deftypefn

@sp 1

@deftypefn{dates} {@var{C} =} isequal (@var{A}, @var{B})

Overloads the Matlab/Octave @code{isequal} function for @dates objects.

@examplehead
@example
>> A = dates('1950Q1'):dates('1951Q4');
>> isequal(A,A)

ans =

     1
@end example

@end deftypefn

@sp 1

@deftypefn{dates} {@var{C} =} le (@var{A}, @var{B})

Overloads the Matlab/Octave @code{le} (less or equal, @code{<=}) operator. @dates objects @var{A} and @var{B} must have the  same number of elements (say, @code{n}). The returned argument is a @code{n} by @code{1} vector of zeros and ones. The i-th element of @var{C} is equal to @code{1} if and only if the date @code{A(i)} is not posterior to the date @code{B(i)}.

@examplehead
@example
>> A = dates('1950Q1','1951Q2');
>> B = dates('1950Q1','1950Q2');
>> A<=B

ans =

     1
     0
@end example

@end deftypefn

@sp 1

@deftypefn{dates} {@var{B} =} length (@var{A})

Overloads the Matlab/Octave @code{length}  function. Returns the number of dates in @dates object @var{A} (@var{B} is a scalar integer).

@examplehead
@example
>> A = dates('1950Q1','1951Q2');
>> A.length()

ans =

     2
@end example

@end deftypefn

@sp 1

@deftypefn{dates} {@var{C} =} lt (@var{A}, @var{B})

Overloads the Matlab/Octave @code{lt} (less than, @code{<=}) operator. @dates objects @var{A} and @var{B} must have the  same number of elements (say, @code{n}). The returned argument is a @code{n} by @code{1} vector of zeros and ones. The i-th element of @var{C} is equal to @code{1} if and only if the date @code{A(i)} preceeds the date @code{B(i)}.

@examplehead
@example
>> A = dates('1950Q1','1951Q2');
>> B = dates('1950Q1','1950Q2');
>> A<B

ans =

     0
     0
@end example

@end deftypefn

@sp 1

@deftypefn{dates} {@var{D} =} max (@var{A}, @var{B}, @var{C}, ...)

Overloads the Matlab/Octave @code{max} function. All input arguments must be @dates objects. The function returns a single element @dates object containing the greatest date.

@examplehead
@example
>> A = @{dates('1950Q2'), dates('1953Q4','1876Q2'), dates('1794Q3')@};
>> max(A@{:@})
ans = <dates: 1953Q4>
@end example

@end deftypefn

@sp 1

@deftypefn{dates} {@var{D} =} min (@var{A}, @var{B}, @var{C}, ...)

Overloads the Matlab/Octave @code{min} function. All input arguments must be @dates objects. The function returns a single element @dates object containing the smallest date.

@examplehead
@example
>> A = @{dates('1950Q2'), dates('1953Q4','1876Q2'), dates('1794Q3')@};
>> min(A@{:@})
ans = <dates: 1794Q3>
@end example

@end deftypefn

@sp 1

@deftypefn{dates} {@var{C} =} minus (@var{A}, @var{B})

Overloads the Matlab/Octave @code{minus} operator (@code{-}). If both input arguments are @dates objects, then number of periods between @var{A} and @var{B} is returned (so that @code{A+C=B}). If @var{B} is a vector of integers, the @code{minus} operator shifts the @dates object by @var{B} periods backward.

@examplehead
@example
>> d1 = dates('1950Q1','1950Q2','1960Q1');
>> d2 = dates('1950Q3','1950Q4','1960Q1');
>> ee = d2-d1

ee =

     2
     2
     0

>> d1-(-ee)
ans = <dates: 1950Q3, 1950Q4, 1960Q1>
@end example

@end deftypefn

@sp 1

@deftypefn{dates} {@var{C} =} ne (@var{A}, @var{B})

Overloads the Matlab/Octave @code{ne} (not equal, @code{~=}) operator. @dates objects @var{A} and @var{B} must have the  same number of elements (say, @code{n}) or one of the inputs must be a single element @dates object. The returned argument is a @code{n} by @code{1} vector of zeros and ones. The i-th element of @var{C} is equal to @code{1} if and only if the dates @code{A(i)} and @code{B(i)} are different.

@examplehead
@example
>> A = dates('1950Q1','1951Q2');
>> B = dates('1950Q1','1950Q2');
>> A~=B

ans =

     0
     1
@end example

@end deftypefn

@sp 1

@deftypefn{dates} {@var{C} =} plus (@var{A}, @var{B})

Overloads the Matlab/Octave @code{plus} operator (@code{+}). If both input arguments are @dates objects, then the method combines A and B without removing repetitions. If @var{B} is a vector of integers, the @code{plus} operator shifts the @dates object by @var{B} periods forward.

@examplehead
@example
>> d1 = dates('1950Q1','1950Q2')+dates('1960Q1');
>> d2 = (dates('1950Q1','1950Q2')+2)+dates('1960Q1');
>> ee = d2-d1;

ee =

     2
     2
     0

>> d1+ee
ans = <dates: 1950Q3, 1950Q4, 1960Q1>
@end example

@end deftypefn

@sp 1

@deftypefn{dates} {@var{C} =} pop (@var{A})
@deftypefnx{dates} {@var{C} =} pop (@var{A},@var{B})

Pop method for @dates class. If only one input is provided, the method removes the last element of a @dates object. If a second input argument is provided, a scalar integer between @code{1} and @code{A.length()}, the method removes element number @var{B} from @dates object @var{A}.

@examplehead
@example
>> d1 = dates('1950Q1','1950Q2');
>> d1.pop()
ans = <dates: 1950Q1>

>> d1.pop(1)
ans = <dates: 1950Q2>
@end example

@end deftypefn

@sp 1

@deftypefn{dates} {@var{B} =} sort (@var{A})

Sort method for @dates objects. Returns a @dates object with elements sorted by increasing order.

@examplehead
@example
>> dd = dates('1945Q3','1938Q4','1789Q3');
>> dd.sort()
ans = <dates: 1789Q3, 1938Q4, 1945Q3>
@end example

@end deftypefn

@sp 1

@deftypefn{dates} {@var{B} =} uminus (@var{A})

Overloads the Matlab/Octave unary minus operator. Returns a @dates object with elements shifted one period backward.

@examplehead
@example
>> dd = dates('1945Q3','1938Q4','1973Q1');
>> -dd
ans = <dates: 1945Q2, 1938Q3, 1972Q4>
@end example

@end deftypefn

@sp 1

@deftypefn{dates} {@var{D} =} union (@var{A}, @var{B}, @var{C}, ...)

Overloads the Matlab/Octave @code{union} function. Returns a @dates object with elements sorted by increasing order (repetitions are removed, to keep the repetitions use the @code{horzcat} or @code{plus} operators).

@examplehead
@example
>> d1 = dates('1945Q3','1973Q1','1938Q4');
>> d2 = dates('1973Q1','1976Q1');
>> union(d1,d2)
ans = <dates: 1938Q4, 1945Q3, 1973Q1, 1976Q1>
@end example

@end deftypefn

@sp 1

@deftypefn{dates} {@var{B} =} unique (@var{A})

Overloads the Matlab/Octave @code{unique} function. Returns a @dates object with repetitions removed (only the last occurence of a date is kept).

@examplehead
@example
>> d1 = dates('1945Q3','1973Q1','1945Q3');
>> d1.unique()
ans = <dates: 1973Q1, 1945Q3>
@end example

@end deftypefn

@sp 1

@deftypefn{dates} {@var{B} =} uplus (@var{A})

Overloads the Matlab/Octave unary plus operator. Returns a @dates object with elements shifted one period ahead.

@examplehead
@example
>> dd = dates('1945Q3','1938Q4','1973Q1');
>> +dd
ans = <dates: 1945Q4, 1939Q1, 1973Q2>
@end example

@end deftypefn


@node dseries class
@section dseries class

The Matlab/Octave @dseries class handles time series data. As any Matlab/Octave statements, this class can be used in a Dynare's mod file. A @dseries object has eight members:

@table @code
@anchor{dseries class members}

@item nobs
A scalar integer, the number of observations.

@item vobs
A scalar integer, the number of variables.

@item name
A cell of strings, the names of the variables.

@item tex
 A cell of strings, the tex names of the variables.

@item freq
A scalar integer equal to 1, 4, 12 or 52, the frequency of the dataset.

@item init
A single element @dates object, the initial date of the sample.

@item dates
A @dates object with @code{nobs} element, the dates of the sample.

@item data
A @code{nobs} by @code{vobs} array of doubles, the data.

@end table

@noindent @code{freq}, @code{nobs}, @code{vobs}, @code{data}, @code{name}, @code{tex} are private members. The following constructors are available:

@deftypefn  {dseries} dseries ()
@deftypefnx {dseries} dseries (@var{INITIAL_DATE})

Instantiates an empty @dseries object, with, if defined, an initial date given by the single element @dates object @var{INITIAL_DATE} (the frequency is then set accordingly).

@end deftypefn

@sp 1

@deftypefn {dseries} dseries (@var{FILENAME})

Instantiates and populates a @dseries object with a data file specified by @var{FILENAME}, a string passed as input. Valid file types are @file{.m} file, @file{.mat} file, @file{.csv} file, and @file{.xls} file. A typical @file{.m} file will have the following form:

@example
INIT__ = '1994Q3';
NAMES__ = @{'azert';'yuiop'@};
TEX__ = @{'azert';'yuiop'@};

azert = randn(100,1);
yuiop = randn(100,1);
@end example

If a @file{.mat} file is used instead, it should provide the same informations. Note that the @code{INIT__} variable can be either a @dates object or a string which could be used to instantiate the same @dates object.

@end deftypefn

@sp 1

@deftypefn {dseries} dseries (@var{DATA_MATRIX}[, @var{INITIAL_DATE}[, @var{LIST_OF_NAMES}[, @var{LIST_OF_TEX_NAMES}]]])

If the data is not read from a file, it can be provided via a @math{T}x@math{N} matrix as the first argument to @code{dseries}' constructor, with @math{T} representing the number of observations on @math{N} variables. The optional second argument, @var{INITIAL_DATE}, can be either a @dates object representing the period of the first observation or a string which would be used to instantiate a @dates object. Its default value is @code{dates('1Y')}. The optional third argument, @var{LIST_OF_NAMES}, is a @math{N} by @math{1} cell of strings  with one entry for each variable name. The default name associated with column @code{i} of @var{DATA_MATRIX} is @code{Variable_i}. The final argument, @var{LIST_OF_TEX_NAMES}, is a @math{N} by @math{1} cell of strings composed of the @LaTeX{} names associated with the variables. The default @LaTeX{} name associated with column @code{i} of @var{DATA_MATRIX} is @code{Variable\_i}.

@end deftypefn

@sp 1

@exampleshead

Various ways to create a @code{dseries} object:

@sp 1

@example In a mod file:
do1 = dseries(1999Q3);
do2 = dseries('filename.csv');
do3 = dseries([1; 2; 3], 1999Q3, @{'var123'@}, @{'var_@{123@}'@});
@end example

@sp 1

@example In a Matlab/Octave script:
>> do1 = dseries(dates('1999Q3'));
>> do2 = dseries('filename.csv');
>> do3 = dseries([1; 2; 3], dates('1999Q3'), @{'var123'@}, @{'var_@{123@}'@});
@end example

@sp 1

@noindent One can easily create subsamples from a @dseries object using the overloaded parenthesis operator. If @var{ds} is a @dseries object with @math{T} observations and @var{d} is a @dates object with @math{S<T} elements, such that @math{min(d)} is not smaller than the date associated to the first observation in @var{ds} and @math{max(d)} is not greater than the date associated to the last observation, then @code{ds(d)} instantiates a new @dseries object containing the subsample defined by @var{d}.

@noindent A list of the available methods, by alphabetical order, is given below.

@deftypefn {dseries} {[@var{A}, @var{B}] = } align (@var{A}, @var{B})

If @dseries objects @var{A} and @var{B} are defined on different time ranges, this function extends @var{A} and/or @var{B} with NaNs so that they are defined on the same time range. Note that both @dseries objects must have the same frequency.

@examplehead
@example
>> ts0 = dseries(rand(5,1),dates('2000Q1')); % 2000Q1 -> 2001Q1
>> ts1 = dseries(rand(3,1),dates('2000Q4')); % 2000Q4 -> 2001Q2
>> [ts0, ts1] = align(ts0, ts1);             % 2000Q1 -> 2001Q2
>> ts0

ts0 is a dseries object:

       | Variable_1
2000Q1 | 0.81472
2000Q2 | 0.90579
2000Q3 | 0.12699
2000Q4 | 0.91338
2001Q1 | 0.63236
2001Q2 | NaN

>> ts1

ts1 is a dseries object:

       | Variable_1
2000Q1 | NaN
2000Q2 | NaN
2000Q3 | NaN
2000Q4 | 0.66653
2001Q1 | 0.17813
2001Q2 | 0.12801
@end example

@end deftypefn

@sp 1

@deftypefn {dseries} {@var{B} = } baxter_king_filter (@var{A}, @var{hf}, @var{lf}, @var{K})

Implementation of the Baxter and King (1999) band pass filter for @dseries objects. This filter isolates business cycle fluctuations with a period of length ranging between @var{hf} (high frequency) to @var{lf} (low frequency) using a symmetric moving average smoother with @math{2K+1} points, so that K observations at the beginning and at the end of the  sample are lost in the computation of the filter. The default value for @var{hf} is @math{6}, for @var{lf} is @math{32}, and for @var{K} is 12.

@examplehead
@example
% Simulate a component model (stochastic trend, deterministic trend, and a
% stationary autoregressive process).
e = .2*randn(200,1);
u = randn(200,1);
stochastic_trend = cumsum(e);
deterministic_trend = .1*transpose(1:200);
x = zeros(200,1);
for i=2:200
    x(i) = .75*x(i-1) + e(i);
end
y = x + stochastic_trend + deterministic_trend;

% Instantiates time series objects.
ts0 = dseries(y,'1950Q1');
ts1 = dseries(x,'1950Q1'); % stationary component.

% Apply the Baxter-King filter.
ts2 = ts0.baxter_king_filter();

% Plot the filtered time series.
plot(ts1(ts2.dates).data,'-k'); % Plot of the stationary component.
hold on
plot(ts2.data,'--r');           % Plot of the filtered y.
hold off
axis tight
id = get(gca,'XTick');
set(gca,'XTickLabel',strings(ts.dates(id)));
@end example

@iftex
@sp 1
The previous code should produce something like:
@center
@image{dynare.plots/BaxterKingFilter,11.32cm,7cm}
@end iftex

@end deftypefn

@sp 1

@deftypefn {dseries} {[@var{error_flag}, @var{message} ] = } check (@var{A})

Sanity check of @dseries object @var{A}. Returns @math{1} if there is an error, @math{0} otherwise. The second output argument is a string giving brief informations about the error.

@end deftypefn

@sp 1

@deftypefn {dseries} {@var{B} = } cumsum (@var{A}[, @var{d}[, @var{v}]])

Overloads the Matlab/Octave @code{cumsum} function for @dseries objects. The cumulated sum cannot be computed if the variables in @dseries object @var{A} has @code{NaN}s. If a @dates object @var{d} is provided as a second argument, then the method computes the cumulated sum with the additional constraint that the variables in the @dseries object @var{B} are zero in period @var{d}. If a single observation @dseries object @var{v} is provided as a third argument, the cumulated sum in @var{B} is such that @code{B(@var{d})} matches @var{v} (@dseries objects @var{A} and @var{v} must have the same number of variables).

@examplehead
@example
>> ts1 = dseries(ones(10,1));
>> ts2 = ts1.cumsum();
>> ts2

ts2 is a dseries object:

    | cumsum(Variable_1)
1Y  | 1
2Y  | 2
3Y  | 3
4Y  | 4
5Y  | 5
6Y  | 6
7Y  | 7
8Y  | 8
9Y  | 9
10Y | 10

>> ts3 = cumsum(dates('3Y'));
>> ts3

ts3 is a dseries object:

    | cumsum(Variable_1)
1Y  | -2
2Y  | -1
3Y  | 0
4Y  | 1
5Y  | 2
6Y  | 3
7Y  | 4
8Y  | 5
9Y  | 6
10Y | 7

>> ts4 = ts1.cumsum(dates('3Y'),dseries(pi));
>> ts4

ts4 is a dseries object:

    | cumsum(Variable_1)
1Y  | 1.1416
2Y  | 2.1416
3Y  | 3.1416
4Y  | 4.1416
5Y  | 5.1416
6Y  | 6.1416
7Y  | 7.1416
8Y  | 8.1416
9Y  | 9.1416
10Y | 10.1416
@end example

@end deftypefn

@sp 1

@deftypefn{dseries} {@var{C} =} eq (@var{A}, @var{B})

Overloads the Matlab/Octave @code{eq} (equal, @code{==}) operator. @dseries objects @var{A} and @var{B} must have the  same number of observations (say, @math{T}) and variables (@math{N}). The returned argument is a @math{T} by @math{N} matrix of zeros and ones. Element @math{(i,j)} of @var{C} is equal to @code{1} if and only if observation @math{i} for variable @math{j} in @var{A} and @var{B} are the same.

@examplehead
@example
>> ts0 = dseries(2*ones(3,1));
>> ts1 = dseries([2; 0; 2]);
>> ts0==ts1

ans =

     1
     0
     1
@end example

@end deftypefn

@sp 1

@deftypefn{dseries} {@var{B} =} exp (@var{A})

Overloads the Matlab/Octave @code{exp} function for @dseries objects.
@examplehead
@example
>> ts0 = dseries(rand(10,1));
>> ts1 = ts0.exp();
@end example

@end deftypefn

@sp 1

@deftypefn{dseries} {@var{C} =} extract (@var{A}, @var{B}[, ...])

Extracts some variables from a @dseries object @var{A} and returns a @dseries object @var{C}. The input arguments following @var{A} are strings representing the variables to be selected in the new @dseries object @var{C}. To simplify the creation of sub-objects, the @dseries class overloads the curly braces (@code{D = extract (A, B, C)} is equivalent to @code{D = A@{B,C@}}) and allows implicit loops (defined between a pair of @@ symbol, see examples below) or Matlab/Octave's regular expressions (introduced by square brackets).

@exampleshead

@noindent The following selections are equivalent:
@example
>> ts0 = dseries(ones(100,10));
>> ts1 = ts0@{'Variable_1','Variable_2','Variable_3'@};
>> ts2 = ts0@{'Variable_@@1,2,3@@'@}
>> ts3 = ts0@{'Variable_[1-3]$'@}
>> isequal(ts1,ts2) && isequal(ts1,ts3)

ans =

     1
@end example

@noindent It is possible to use up to two implicit loops to select variables:
@example
names = @{'GDP_1';'GDP_2';'GDP_3'; 'GDP_4'; 'GDP_5'; 'GDP_6'; 'GDP_7'; 'GDP_8'; ...
      'GDP_9'; 'GDP_10'; 'GDP_11'; 'GDP_12'; ...
      'HICP_1';'HICP_2';'HICP_3'; 'HICP_4'; 'HICP_5'; 'HICP_6'; 'HICP_7'; 'HICP_8'; ...
      'HICP_9'; 'HICP_10'; 'HICP_11'; 'HICP_12'@};

ts0 = dseries(randn(4,24),dates('1973Q1'),names);
ts0@{'@@GDP,HICP@@_@@1,3,5@@'@}

ans is a dseries object:

       | GDP_1    | GDP_3     | GDP_5     | HICP_1   | HICP_3   | HICP_5
1973Q1 | 1.7906   | -1.6606   | -0.57716  | 0.60963  | -0.52335 | 0.26172
1973Q2 | 2.1624   | 3.0125    | 0.52563   | 0.70912  | -1.7158  | 1.7792
1973Q3 | -0.81928 | 1.5008    | 1.152     | 0.2798   | 0.88568  | 1.8927
1973Q4 | -0.03705 | -0.35899  | 0.85838   | -1.4675  | -2.1666  | -0.62032
@end example

@end deftypefn

@sp 1

@deftypefn{dseries} {@var{D} =} horzcat (@var{A}, @var{B}[, ...])

Overloads the @code{horzcat} Matlab/Octave's method for @dseries
objects. Returns a @dseries object @var{D} containing the variables
in @dseries objects passed as inputs: @var{A}, @var{B}, ... If the
inputs are not defined on the same time ranges, the method adds
@code{NaN}s to the variables so that the variables are redefined on
the smallest common time range. Note that the names in the @dseries
objects passed as inputs must be different and these objects must have
common frequency.

@examplehead
@example
>> ts0 = dseries(rand(5,2),'1950Q1',@{'nifnif';'noufnouf'@});
>> ts1 = dseries(rand(7,1),'1950Q3',@{'nafnaf'@});
>> ts2 = [ts0, ts1];
>> ts2

ts2 is a dseries object:

       | nifnif  | noufnouf | nafnaf
1950Q1 | 0.17404 | 0.71431  | NaN
1950Q2 | 0.62741 | 0.90704  | NaN
1950Q3 | 0.84189 | 0.21854  | 0.83666
1950Q4 | 0.51008 | 0.87096  | 0.8593
1951Q1 | 0.16576 | 0.21184  | 0.52338
1951Q2 | NaN     | NaN      | 0.47736
1951Q3 | NaN     | NaN      | 0.88988
1951Q4 | NaN     | NaN      | 0.065076
1952Q1 | NaN     | NaN      | 0.50946
@end example

@end deftypefn

@sp 1

@deftypefn {dseries} {@var{B} = } hpcycle (@var{A}[, @var{lambda}])

Extracts the cycle component from a @dseries @var{A} object using
Hodrick Prescott (1997) filter and returns a @dseries object, @var{B}. The
default value for @var{lambda}, the smoothing parameter, is
@math{1600}.

@examplehead
@example
% Simulate a component model (stochastic trend, deterministic trend, and a
% stationary autoregressive process).
e = .2*randn(200,1);
u = randn(200,1);
stochastic_trend = cumsum(e);
deterministic_trend = .1*transpose(1:200);
x = zeros(200,1);
for i=2:200
    x(i) = .75*x(i-1) + e(i);
end
y = x + stochastic_trend + deterministic_trend;

% Instantiates time series objects.
ts0 = dseries(y,'1950Q1');
ts1 = dseries(x,'1950Q1'); % stationary component.

% Apply the HP filter.
ts2 = ts0.hpcycle();

% Plot the filtered time series.
plot(ts1(ts2.dates).data,'-k'); % Plot of the stationary component.
hold on
plot(ts2.data,'--r');           % Plot of the filtered y.
hold off
axis tight
id = get(gca,'XTick');
set(gca,'XTickLabel',strings(ts.dates(id)));
@end example

@iftex
@sp 1
The previous code should produce something like:
@center
@image{dynare.plots/HPCycle,11.32cm,7cm}
@end iftex

@end deftypefn

@sp 1

@deftypefn {dseries} {@var{B} = } hptrend (@var{A}[, @var{lambda}])

Extracts the trend component from a @dseries @var{A} object using Hodrick Prescott (1997) filter and returns a @dseries object, @var{B}. Default value for @var{lambda}, the smoothing parameter, is  @math{1600}.

@examplehead
Using the same generating data process as in the previous example:
@example
ts1 = dseries(stochastic_trend + deterministic_trend,'1950Q1');
% Apply the HP filter.
ts2 = ts0.hptrend();

% Plot the filtered time series.
plot(ts1.data,'-k'); % Plot of the nonstationary components.
hold on
plot(ts2.data,'--r');           % Plot of the estimated trend.
hold off
axis tight
id = get(gca,'XTick');
set(gca,'XTickLabel',strings(ts0.dates(id)));
@end example

@iftex
@sp 1
The previous code should produce something like:
@center
@image{dynare.plots/HPTrend,11.32cm,7cm}
@end iftex

@end deftypefn

@sp 1

@deftypefn {dseries} {@var{C} = } insert (@var{A}, @var{B}, @var{I})

Inserts variables contained in @dseries object @var{B} in @dseries object @var{A} at positions specified by integer scalars in vector @var{I}, returns augmented @dseries object @var{C}. The integer scalars in @var{I} must take values between @code{1} and @code{A.length()+1} and refers to @var{A}'s column numbers. The @dseries objects @var{A} and @var{B} need not to be defined over the same time ranges, but it is assumed that they have common frequency.

@examplehead
@example
>> ts0 = dseries(ones(2,4),'1950Q1',@{'Sly'; 'Gobbo'; 'Sneaky'; 'Stealthy'@});
>> ts1 = dseries(pi*ones(2,1),'1950Q1',@{'Noddy'@});
>> ts2 = ts0.insert(ts1,3)

ts2 is a dseries object:

       | Sly | Gobbo | Noddy  | Sneaky | Stealthy
1950Q1 | 1   | 1     | 3.1416 | 1      | 1
1950Q2 | 1   | 1     | 3.1416 | 1      | 1

>> ts3 = dseries([pi*ones(2,1) sqrt(pi)*ones(2,1)],'1950Q1',@{'Noddy';'Tessie Bear'@});
>> ts4 = ts0.insert(ts1,[3, 4])

ts4 is a dseries object:

       | Sly | Gobbo | Noddy  | Sneaky | Tessie Bear | Stealthy
1950Q1 | 1   | 1     | 3.1416 | 1      | 1.7725      | 1
1950Q2 | 1   | 1     | 3.1416 | 1      | 1.7725      | 1
@end example

@end deftypefn

@sp 1

@deftypefn {dseries} {@var{B} = } isempty (@var{A})

Overloads the Matlab/octave's @code{isempty} function. Returns @code{1} if @dseries object @var{A} is empty, @code{0} otherwise.

@end deftypefn

@sp 1

@deftypefn {dseries} {@var{C} = } isequal (@var{A},@var{B})

Overloads the Matlab/octave's @code{isequal} function. Returns @code{1} if @dseries objects @var{A} and @code{B} are identical, @code{0} otherwise.

@end deftypefn

@sp 1

@deftypefn {dseries} {@var{B} = } lag (@var{A}[, @var{p}])

Returns lagged time series. Default value of @var{p}, the number of lags, is @code{1}.

@exampleshead

@example
>> ts0 = dseries(transpose(1:4),'1950Q1')

ts0 is a dseries object:

       | Variable_1
1950Q1 | 1
1950Q2 | 2
1950Q3 | 3
1950Q4 | 4

>> ts1 = ts0.lag()

ts1 is a dseries object:

       | lag(Variable_1,1)
1950Q1 | NaN
1950Q2 | 1
1950Q3 | 2
1950Q4 | 3

>> ts2 = ts0.lag(2)

ts2 is a dseries object:

       | lag(Variable_1,2)
1950Q1 | NaN
1950Q2 | NaN
1950Q3 | 1
1950Q4 | 2
@end example

@noindent @dseries class overloads the parenthesis so that @code{ts.lag(p)} can be written more compactly as @code{ts(-p)}. For instance:

@example
>> ts0.lag(1)

ans is a dseries object:

       | lag(Variable_1,1)
1950Q1 | NaN
1950Q2 | 1
1950Q3 | 2
1950Q4 | 3
@end example

@noindent or alternatively:

@example
>> ts0(-1)

ans is a dseries object:

       | lag(Variable_1,1)
1950Q1 | NaN
1950Q2 | 1
1950Q3 | 2
1950Q4 | 3
@end example

@end deftypefn

@sp 1

@deftypefn {dseries} {@var{B} = } lead (@var{A}[, @var{p}])

Returns leaded time series. Default value of @var{p}, the number of leads, is @code{1}. As for the @code{lag} method, the @dseries class overloads the parenthesis so that @code{ts.lead(p)} is equivalent to @code{ts(p)}.

@examplehead

@example
>> ts0 = dseries(transpose(1:4),'1950Q1');
>> ts1 = ts0.lead()

ts1 is a dseries object:

       | lead(Variable_1,1)
1950Q1 | 2
1950Q2 | 3
1950Q3 | 4
1950Q4 | NaN

>> ts2 = ts0(2)

ts2 is a dseries object:

       | lead(Variable_1,2)
1950Q1 | 3
1950Q2 | 4
1950Q3 | NaN
1950Q4 | NaN
@end example

@end deftypefn

@noindent @remarkhead

@noindent The overloading of the parenthesis for @dseries objects, allows to easily create new @dseries objects by copying/pasting equations declared in the @code{model} block. For instance, if an Euler equation is defined in the @code{model} block:

@example
model;
    ...
    1/C - beta/C(1)*(exp(A(1))*K^(alpha-1)+1-delta) ;
    ...
end;
@end example

@noindent and if variables @var{C}, @var{A} and @var{K} are defined as @dseries objects, then by writting:

@example
Residuals = 1/C - beta/C(1)*(exp(A(1))*K^(alpha-1)+1-delta) ;
@end example

@noindent outside of the @code{model} block, we create a new @dseries object, called @code{Residuals}, for the residuals of the Euler equation (the conditional expectation of the equation defined in the @code{model} block is zero, but the residuals are non zero).

@sp 1

@deftypefn{dseries} {@var{B} =} log (@var{A})

Overloads the Matlab/Octave @code{log} function for @dseries objects.
@examplehead
@example
>> ts0 = dseries(rand(10,1));
>> ts1 = ts0.log();
@end example

@end deftypefn

@sp 1

@deftypefn{dseries} {@var{C} =} merge (@var{A}, @var{B})

Merges two @dseries objects @var{A} and @var{B} in @dseries object @var{C}. Objects @var{A} and @var{B} need to have common frequency but can be defined on different time ranges. If a variable, say @code{x}, is defined both in @dseries objects @var{A} and @var{B}, then the merge will select the variable @code{x} as defined in the second input argument, @var{B}.

@examplehead
@example
>> ts0 = dseries(rand(3,2),'1950Q1',@{'A1';'A2'@})

ts0 is a dseries object:

       | A1       | A2
1950Q1 | 0.42448  | 0.92477
1950Q2 | 0.60726  | 0.64208
1950Q3 | 0.070764 | 0.1045

>> ts1 = dseries(rand(3,1),'1950Q2',@{'A1'@})

ts1 is a dseries object:

       | A1
1950Q2 | 0.70023
1950Q3 | 0.3958
1950Q4 | 0.084905

>> merge(ts0,ts1)

ans is a dseries object:

       | A1       | A2
1950Q1 | NaN      | 0.92477
1950Q2 | 0.70023  | 0.64208
1950Q3 | 0.3958   | 0.1045
1950Q4 | 0.084905 | NaN

>> merge(ts1,ts0)

ans is a dseries object:

       | A1       | A2
1950Q1 | 0.42448  | 0.92477
1950Q2 | 0.60726  | 0.64208
1950Q3 | 0.070764 | 0.1045
1950Q4 | NaN      | NaN
@end example

@end deftypefn

@sp 1

@deftypefn{dseries} {@var{C} =} minus (@var{A}, @var{B})

Overloads the @code{minus} (@code{-}) operator for @dseries objects,
element by element subtraction. If both @var{A} and @var{B}
are @dseries objects, they do not need to be defined over the same
time ranges. If @var{A} and @var{B} are @dseries objects with
@math{T_A} and @math{T_B} observations and @math{N_A} and @math{N_B}
variables, then @math{N_A} must be equal to @math{N_B} or @math{1} and
@math{N_B} must be equal to @math{N_A} or @math{1}. If @math{T_A=T_B},
@code{isequal(A.init,B.init)} returns 1 and @math{N_A=N_B}, then the
@code{minus} operator will compute for each couple @math{(t,n)}, with
@math{1\le t\le T_A} and @math{1\le n\le N_A},
@code{C.data(t,n)=A.data(t,n)-B.data(t,n)}. If @math{N_B} is equal to
@math{1} and @math{N_A>1}, the smaller @dseries object (@var{B}) is
``broadcast'' across the larger @dseries (@var{A}) so that they have
compatible shapes, the @code{minus} operator will subtract the
variable defined in @var{B} from each variable in @var{A}. If @var{B}
is a double scalar, then the method @code{minus} will subtract
@var{B} from all the observations/variables in @var{A}. If @var{B} is
a row vector of length @math{N_A}, then the @code{minus} method will
subtract @code{B(i)} from all the observations of variable @code{i},
for @math{i=1,...,N_A}. If @var{B} is a column vector of length
@math{T_A}, then the @code{minus} method will subtract @code{B} from
all the variables.

@examplehead
@example
>> ts0 = dseries(rand(3,2));
>> ts1 = ts0@{'Variable_2'@};
>> ts0-ts1

ans is a dseries object:

   | minus(Variable_1,Variable_2) | minus(Variable_2,Variable_2)
1Y | -0.48853                     | 0
2Y | -0.50535                     | 0
3Y | -0.32063                     | 0

>> ts1

ts1 is a dseries object:

   | Variable_2
1Y | 0.703
2Y | 0.75415
3Y | 0.54729

>> ts1-ts1.data(1)

ans is a dseries object:

   | minus(Variable_2,0.703)
1Y | 0
2Y | 0.051148
3Y | -0.15572

>> ts1.data(1)-ts1

ans is a dseries object:

   | minus(0.703,Variable_2)
1Y | 0
2Y | -0.051148
3Y | 0.15572
@end example

@end deftypefn

@sp 1

@deftypefn{dseries} {@var{C} =} mpower (@var{A}, @var{B})

Overloads the @code{mpower} (@code{^}) operator for @dseries objects and computes element-by-element power. @var{A} is a @dseries object with @code{N} variables and @code{T} observations. If @var{B} is a real scalar, then @code{mpower(@var{A},@var{B})} returns a @dseries object @var{C} with @code{C.data(t,n)=A.data(t,n)^C}. If @var{B} is a @dseries object with @code{N} variables and @code{T} observations then @code{mpower(@var{A},@var{B})} returns a @dseries object @var{C} with @code{C.data(t,n)=A.data(t,n)^C.data(t,n)}.

@examplehead
@example
>> ts0 = dseries(transpose(1:3));
>> ts1 = ts0^2

ts1 is a dseries object:

   | power(Variable_1,2)
1Y | 1
2Y | 4
3Y | 9

>> ts2 = ts0^ts0

ts2 is a dseries object:

   | power(Variable_1,Variable_1)
1Y | 1
2Y | 4
3Y | 27
@end example

@end deftypefn

@sp 1

@deftypefn{dseries} {@var{C} =} mrdivide (@var{A}, @var{B})

Overloads the @code{mrdivide} (@code{/}) operator for @dseries
objects, element by element division (like the @code{./} Matlab/Octave
operator). If both @var{A} and @var{B} are @dseries objects, they do
not need to be defined over the same time ranges. If @var{A} and
@var{B} are @dseries objects with @math{T_A} and @math{T_B}
observations and @math{N_A} and @math{N_B} variables, then @math{N_A}
must be equal to @math{N_B} or @math{1} and @math{N_B} must be equal
to @math{N_A} or @math{1}. If @math{T_A=T_B},
@code{isequal(A.init,B.init)} returns 1 and @math{N_A=N_B}, then the
@code{mrdivide} operator will compute for each couple @math{(t,n)},
with @math{1\le t\le T_A} and @math{1\le n\le N_A},
@code{C.data(t,n)=A.data(t,n)/B.data(t,n)}. If @math{N_B} is equal to
@math{1} and @math{N_A>1}, the smaller @dseries object (@var{B}) is
``broadcast'' across the larger @dseries (@var{A}) so that they have
compatible shapes. In this case the @code{mrdivides} operator will
divide each variable defined in @var{A} by the variable in @var{B},
observation per observation. If @var{B} is a double scalar, then
@code{mrdivide} will divide all the observations/variables in @var{A}
by @var{B}. If @var{B} is a row vector of length @math{N_A}, then
@code{mrdivide} will divide all the observations of variable @code{i}
by @code{B(i)}, for @math{i=1,...,N_A}. If @var{B} is a column vector
of length @math{T_A}, then @code{mrdivide} will perform a division of
all the variables by @code{B}, element by element.

@examplehead
@example
>> ts0 = dseries(rand(3,2))

ts0 is a dseries object:

   | Variable_1 | Variable_2
1Y | 0.72918    | 0.90307
2Y | 0.93756    | 0.21819
3Y | 0.51725    | 0.87322

>> ts1 = ts0@{'Variable_2'@};
>> ts0/ts1

ans is a dseries object:

   | divide(Variable_1,Variable_2) | divide(Variable_2,Variable_2)
1Y | 0.80745                       | 1
2Y | 4.2969                        | 1
3Y | 0.59235                       | 1
@end example

@end deftypefn

@sp 1

@deftypefn{dseries} {@var{C} =} mtimes (@var{A}, @var{B})

Overloads the @code{mtimes} (@code{*}) operator for @dseries objects
and the Hadammard product (the @code{.*} Matlab/Octave operator). If
both @var{A} and @var{B} are @dseries objects, they do not need to be
defined over the same time ranges. If @var{A} and @var{B} are @dseries
objects with @math{T_A} and @math{T_B} observations and @math{N_A} and
@math{N_B} variables, then @math{N_A} must be equal to @math{N_B} or
@math{1} and @math{N_B} must be equal to @math{N_A} or @math{1}. If
@math{T_A=T_B}, @code{isequal(A.init,B.init)} returns 1 and
@math{N_A=N_B}, then the @code{mtimes} operator will compute for each
couple @math{(t,n)}, with @math{1\le t\le T_A} and @math{1\le n\le N_A},
@code{C.data(t,n)=A.data(t,n)*B.data(t,n)}. If @math{N_B} is equal to
@math{1} and @math{N_A>1}, the smaller @dseries object (@var{B}) is
``broadcast'' across the larger @dseries (@var{A}) so that they have
compatible shapes, @code{mtimes} operator will multiply each variable
defined in @var{A} by the variable in @var{B}, observation per
observation. If @var{B} is a double scalar, then the method
@code{mtimes} will multiply all the observations/variables in @var{A}
by @var{B}. If @var{B} is a row vector of length @math{N_A}, then the
@code{mtimes} method will multiply all the observations of variable
@code{i} by @code{B(i)}, for @math{i=1,...,N_A}. If @var{B} is a
column vector of length @math{T_A}, then the @code{mtimes} method will
perform a multiplication of all the variables by @code{B}, element by
element.

@end deftypefn

@sp 1

@deftypefn{dseries} {@var{C} =} ne (@var{A}, @var{B})

Overloads the Matlab/Octave @code{ne} (equal, @code{~=}) operator. @dseries objects @var{A} and @var{B} must have the  same number of observations (say, @math{T}) and variables (@math{N}). The returned argument is a @math{T} by @math{N} matrix of zeros and ones. Element @math{(i,j)} of @var{C} is equal to @code{1} if and only if observation @math{i} for variable @math{j} in @var{A} and @var{B} are not equal.

@examplehead
@example
>> ts0 = dseries(2*ones(3,1));
>> ts1 = dseries([2; 0; 2]);
>> ts0~=ts1

ans =

     0
     1
     0
@end example

@end deftypefn

@sp 1

@deftypefn{dseries} {@var{h} =} plot (@var{A})
@deftypefnx{dseries} {@var{h} =} plot (@var{A}, @var{B})
@deftypefnx{dseries} {@var{h} =} plot (@var{A}[, ...])
@deftypefnx{dseries} {@var{h} =} plot (@var{A}, @var{B}[, ...])

Overloads Matlab/Octave's @code{plot} function for @dseries objects. Returns a Matlab/Octave plot handle, that can be used to modify the properties of the plotted time series. If only one @dseries object, @var{A}, is passed as argument, then the @code{plot} function will put the associated dates on the x-abscissa. If this @dseries object contains only one variable, additional arguments can be passed to modify the properties of the plot (as one would do with the Matlab/Octave's version of the @code{plot} function). If @dseries object @var{A} contains more than one variable, it is not possible to pass these additional arguments and the properties of the plotted time series must be modify using the returned plot handle and the Matlab/Octave @code{set} function (see example below). If two @dseries objects, @var{A} and @var{B}, are passed as input arguments, the @code{plot} function will plot the variables in @var{A} against the variables in @var{B} (the number of variables in each object must be the same otherwise an error is issued). Again, if each object contains only one variable additional arguments can be passed to modify the properties of the plotted time series, otherwise the Matlab/Octave @code{set} command has to be used.

@exampleshead

@noindent Define a @dseries object with two variables (named by default @code{Variable_1} and @code{Variable_2}):

@example
>> ts = dseries(randn(100,2),'1950Q1');
@end example

@noindent The following command will plot the first variable in @code{ts}

@example
>> plot(ts@{'Variable_1'@},'-k','linewidth',2);
@end example

@noindent The next command will draw all the variables in @code{ts} on the same figure:

@example
>> h = plot(ts);
@end example

@noindent If one wants to modify the properties of the plotted time series (line style, colours, ...), the @code{set} function can be used (see Matlab's documentation):

@example
>> set(h(1),'-k','linewidth',2);
>> set(h(2),'--r');
@end example

@noindent The follwing command will plot @code{Variable_1} against @code{exp(Variable_1)}:

@example
>> plot(ts@{'Variable_1'@},ts@{'Variable_1'@}.exp(),'ok');
@end example

@noindent Again, the properties can also be modified using the returned plot handle and the @code{set} function:

@example
>> h = plot(ts, ts.exp());
>> set(h(1),'ok');
>> set(h(2),'+r');
@end example

@end deftypefn

@sp 1

@deftypefn{dseries} {@var{C} =} plus (@var{A}, @var{B})

Overloads the @code{plus} (@code{+}) operator for @dseries objects,
element by element addition. If both @var{A} and @var{B} are @dseries
objects, they do not need to be defined over the same time ranges. If
@var{A} and @var{B} are @dseries objects with @math{T_A} and @math{T_B}
observations and @math{N_A} and @math{N_B} variables, then @math{N_A}
must be equal to @math{N_B} or @math{1} and @math{N_B} must be equal
to @math{N_A} or @math{1}. If @math{T_A=T_B},
@code{isequal(A.init,B.init)} returns 1 and @math{N_A=N_B}, then the
@code{plus} operator will compute for each couple @math{(t,n)}, with
@math{1\le t\le T_A} and @math{1\le n\le N_A},
@code{C.data(t,n)=A.data(t,n)+B.data(t,n)}. If @math{N_B} is equal to
@math{1} and @math{N_A>1}, the smaller @dseries object (@var{B}) is
``broadcast'' across the larger @dseries (@var{A}) so that they have
compatible shapes, the @code{plus} operator will add the variable
defined in @var{B} to each variable in @var{A}. If @var{B} is a double
scalar, then the method @code{plus} will add @var{B} to all the
observations/variables in @var{A}. If @var{B} is a row vector of
length @math{N_A}, then the @code{plus} method will add @code{B(i)} to
all the observations of variable @code{i}, for @math{i=1,...,N_A}. If
@var{B} is a column vector of length @math{T_A}, then the @code{plus}
method will add @code{B} to all the variables.

@end deftypefn

@sp 1

@deftypefn{dseries} {@var{C} =} pop (@var{A}[, @var{B}])

Removes variable @var{B} from @dseries object @var{A}. By default, if the second argument is not provided, the last variable is removed.

@examplehead
@example
>> ts0 = dseries(ones(3,3));
>> ts1 = ts0.pop('Variable_2');

ts1 is a dseries object:

   | Variable_1 | Variable_3
1Y | 1          | 1
2Y | 1          | 1
3Y | 1          | 1
@end example

@end deftypefn

@sp 1

@deftypefn{dseries} {@var{B} =} qdiff (@var{A})
@deftypefnx{dseries} {@var{B} =} qgrowth (@var{A})

Computes quarterly differences or growth rates.

@examplehead
@example
>> ts0 = dseries(transpose(1:4),'1950Q1');
>> ts1 = ts0.qdiff()

ts1 is a dseries object:

       | qdiff(Variable_1)
1950Q1 | NaN
1950Q2 | 1
1950Q3 | 1
1950Q4 | 1

>> ts0 = dseries(transpose(1:6),'1950M1');
>> ts1 = ts0.qdiff()

ts1 is a dseries object:

        | qdiff(Variable_1)
1950M1  | NaN
1950M2  | NaN
1950M3  | NaN
1950M4  | 3
1950M5  | 3
1950M6  | 3
@end example

@end deftypefn

@sp 1

@deftypefn{dseries} {@var{B} =} rename (@var{A},@var{oldname},@var{newname})

Rename variable @var{oldname} to @var{newname} in @dseries object
@var{A}. Returns a @dseries object.

@examplehead
@example
>> ts0 = dseries(ones(2,2));
>> ts1 = ts0.rename('Variable_1','Stinkly')

ts1 is a dseries object:

   | Stinkly | Variable_2
1Y | 1       | 1
2Y | 1       | 1
@end example

@end deftypefn

@sp 1

@deftypefn{dseries} save (@var{A}, @var{basename}[, @var{format}])

Overloads the Matlab/Octave @code{save} function and saves @dseries
object @var{A} to disk. Possible formats are @code{csv} (this is the
default), @code{m} (Matlab/Octave script), and @code{mat} (Matlab
binary data file). The name of the file without extension is specified
by @var{basename}.

@examplehead
@example
>> ts0 = dseries(ones(2,2));
>> ts0.save('ts0');
@end example

@noindent The last command will create a file @code{ts0.csv} with the following content:

@example
,Variable_1,Variable_2
1Y,               1,               1
2Y,               1,               1
@end example

@noindent To create a Matlab/octave script, the following command:

@example
>> ts0.save('ts0','m');
@end example

@noindent will produce a file @code{ts0.m} with the following content:

@example
% File created on 14-Nov-2013 12:08:52.

FREQ__ = 1;
INIT__ = ' 1Y';

NAMES__ = @{'Variable_1'; 'Variable_2'@};
TEX__ = @{'Variable_@{1@}'; 'Variable_@{2@}'@};

Variable_1 = [
              1
              1];

Variable_2 = [
              1
              1];
@end example

@noindent The generated (@code{csv}, @code{m}, or @code{mat}) files can be loaded when instantiating a @dseries object as explained above.

@end deftypefn

@sp 1

@deftypefn{dseries} {@var{B} =} set_names (@var{A}, @var{s1}, @var{s2}, ...)

Renames variables in @dseries object @var{A} and returns a @dseries
object @var{B} with new names @var{s1}, @var{s2}, @var{s3}, ... The
number of input arguments after the first one (@dseries object
@var{A}) must be equal to @code{A.vobs} (the number of variables in
@var{A}). @var{s1} will be the name of the first variable in @var{B},
@var{s2} the name of the second variable in @var{B}, and so on.

@examplehead
@example
>> ts0 = dseries(ones(1,3));
>> ts1 = ts0.set_names('Barbibul',[],'Barbouille')

ts1 is a dseries object:

   | Barbibul | Variable_2 | Barbouille
1Y | 1        | 1          | 1
@end example

@end deftypefn

@sp 1

@deftypefn{dseries} {[@var{T}, @var{N} ] = } size (@var{A}[, @var{dim}])

Overloads the Matlab/Octave's @code{size} function. Returns the number of observations in @dseries object @var{A} (@emph{ie} @code{A.nobs}) and the number of variables (@emph{ie} @code{A.vobs}). If a second input argument is passed, the @code{size} function returns the number of observations if @code{dim=1} or the number of variables if @code{dim=2} (for all other values of @var{dim} an error is issued).

@examplehead
@example
>> ts0 = dseries(ones(1,3));
>> ts0.size()

ans =

     1     3
@end example

@end deftypefn

@sp 1

@deftypefn{dseries} {@var{B} =} tex_rename (@var{A}, @var{name}, @var{newtexname})

Redefines the tex name of variable @var{name} to @var{newtexname}
in @dseries object @var{A}. Returns a @dseries object.

@end deftypefn

@sp 1

@deftypefn{dseries} {@var{B} =} uminus (@var{A})

Overloads @code{uminus} (@code{-}, unary minus) for @dseries object.

@examplehead
@example
>> ts0 = dseries(1)

ts0 is a dseries object:

   | Variable_1
1Y | 1

>> ts1 = -ts0

ts1 is a dseries object:

   | -Variable_1
1Y | -1
@end example

@end deftypefn

@sp 1

@deftypefn{dseries} {@var{D} =} vertcat (@var{A}, @var{B}[, ...])

Overloads the @code{vertcat} Matlab/Octave method for @dseries
objects. This method is used to append more observations to a @dseries
object. Returns a @dseries object @var{D} containing the variables
in @dseries objects passed as inputs. All the input arguments must
be @dseries objects with the same variables defined on @emph{different
time ranges}.

@examplehead
@example
>> ts0 = dseries(rand(2,2),'1950Q1',@{'nifnif';'noufnouf'@});
>> ts1 = dseries(rand(2,2),'1950Q3',@{'nifnif';'noufnouf'@});
>> ts2 = [ts0; ts1]

ts2 is a dseries object:

       | nifnif   | noufnouf
1950Q1 | 0.82558  | 0.31852
1950Q2 | 0.78996  | 0.53406
1950Q3 | 0.089951 | 0.13629
1950Q4 | 0.11171  | 0.67865
@end example

@end deftypefn

@deftypefn{dseries} {@var{B} =} ydiff (@var{A})
@deftypefnx{dseries} {@var{B} =} ygrowth (@var{A})

Computes yearly differences or growth rates.

@end deftypefn

@sp 1

@node Reporting
@chapter Reporting

Dynare provides a simple interface for creating @LaTeX{} reports,
comprised of @LaTeX{} tables and TikZ graphs. You can use the report as
created through Dynare or pick out the pieces you want for inclusion
in your own paper.

Reports are created and modified by calling methods on class
objects. The objects are hierarchical, with the following order (from
highest to lowest): @code{Report, Page, Section, Graph/Table/Vspace,
Series}. For simplicity of syntax, we abstract away from these
classes, allowing you to operate directly on a @code{Report} object,
while maintaining the names of these classes in the @code{Report}
Class methods you will use.

The report is created sequentially, command by command, hence the
order of the commands matters. When an object of a certain hierarchy
is inserted, all methods will function on that object until an object
of equal or greater hierarchy is added. Hence, once you add a
@code{Page} to the report, every time you add a @code{Section} object,
it will be added to this @code{Page} until another @code{Page} is
added to the report (via @ref{addPage}). This will become more clear
with the example at the end of the section.

Options to the methods are passed differently than those to Dynare
commands. They take the form of named options to Matlab functions
where the arguments come in pairs (@i{e.g.}
@code{function_name('option_1_name', `option_1_value',
'option_2_name', 'option_2_value', ...)}, where @code{option_X_name}
is the name of the option while @code{option_X_value} is the value
assigned to that option). The ordering of the option pairs matters
only in the unusual case when an option is provided twice (probably
erroneously). In this case, the last value passed is the one that is
used.

Below, you will see a list of methods available for the Report class and
a clarifying example.

@defmethod Report report compiler, showDate, filename, margin, marginUnit, orientation, paper, title
Instantiates a @code{Report} object.
@optionshead
@table @code
@anchor{compiler}
@item compiler, @var{FILENAME}
The full path to the @LaTeX{} compiler on your system. If this option
is not provided, Dynare will try to find the appropriate program to
compile @LaTeX{} on your system. Default is system dependent: Windows:
the result of @code{findtexmf --file-type=exe pdflatex}, Mac OS X and
Linux: the result of @code{which pdflatex}

@item showDate, @code{BOOLEAN}
Display the date and time when the report was compiled. Default:
@code{true}

@anchor{filename}
@item filename, @var{FILENAME}
The filename to use when saving this report. Default:
@code{report.tex}

@item margin, @var{DOUBLE}
The margin size. Default: @code{2.5}

@item marginUnit, `cm' | `in'
Units associated with the margin. Default: @code{`cm'}

@anchor{orientation}
@item orientation, `landscape' | `portrait'
Paper orientation: Default: @code{`portrait'}

@anchor{paper}
@item paper, `a4' | `letter'
Paper size. Default: @code{`a4'}

@item title, @code{STRING}
Report Title. Default: @code{none}
@end table
@end defmethod

@anchor{addPage}
@defmethod Report addPage footnote, orientation, paper, title, titleFormat
Adds a @code{Page} to the @code{Report}.
@optionshead
@table @code
@item footnote, @code{STRING}
A footnote to be included at the bottom of this page. Default: @code{none}

@item orientation, `landscape' | `portrait'
@xref{orientation}.

@item paper, `a4' | `letter'
@xref{paper}.

@anchor{title}
@item title, @code{STRING} | @code{CELL_ARRAY_STRINGS}
With one entry (a @code{STRING}), the title of the page. With more
than one entry (a @code{CELL_ARRAY_STRINGS}), the title and subtitle(s)
of the page. Default: @code{none}

@anchor{titleFormat}
@item titleFormat, @code{STRING} | @code{CELL_ARRAY_STRINGS}
A string representing the @LaTeX{} markup to use on the
@ref{title}. The number of cell array entries must be equal to that of
the @ref{title} option. Default: @code{none}

@end table
@end defmethod

@defmethod Report addSection cols, height
Adds a @code{Section} to a @code{Page}.
@optionshead
@table @code
@item cols, @code{INTEGER}
The number of columns in the section. Default: @code{1}

@item height, @code{STRING}
A string to be used with the @code{\sectionheight} @LaTeX{}
command. Default: @code{`!'}
@end table
@end defmethod

@defmethod Report addGraph data, figname, figDirName, graphSize, showGrid, showLegend, showLegendBox, legendLocation, legendOrientation, legendFontSize, seriesToUse, shade, shadeColor, shadeOpacity, title, xlabel, ylabel, xrange, xTicks, xTickLabels, yrange, showZeroline
Adds a @code{Graph} to a @code{Section}.
@optionshead
@table @code
@anchor{data}
@item data, @code{dseries}
The @code{dseries} that provides the data for the graph. Default:
@code{none}

@item figname, @code{STRING}
The name to use when saving this figure. Default: @code{[tempname
`.tex']}

@item figDirName, @code{STRING}
The name of the folder in which to store this figure. Default:
@code{tmpFigDir}

@item graphSize, @code{NUMERICAL_VECTOR}
The width and height to be passed to the third and fourth elements of
the array passed to the @code{`Position'} option of Matlab's
@code{figure} command, passed as a vector of size @math{2}. Default:
Matlab sets width and height

@item showGrid, @code{BOOLEAN}
Whether or not to display the minor grid on the graph. Default:
@code{true}

@item showLegend, @code{BOOLEAN}
Whether or not to display the legend. Default: @code{false}

@item showLegendBox, @code{BOOLEAN}
Whether or not to display a box around the legend. Default:
@code{false}

@item legendLocation, `North' | `South' | `East' | `West' | `NorthEast' | `SouthEast' | `NorthWest' | `SouthWest' | `NorthOutside' | `SouthOutside' | `EastOutside' | `WestOutside' | `NorthEastOutside' | `SouthEastOutside' | `NorthWestOutside' | `SouthWestOutside' | `Best' | `BestOutside'
Where to place the legend in the graph. NB: some of these are not
available under Octave. Default: @code{`SouthEast'}

@item legendOrientation, `vertical' | `horizontal'
Orientation of the legend. Default: @code{`horizontal'}

@item legendFontSize, @code{DOUBLE}
The font size for legend entries. Default: @code{8}

@anchor{seriesToUse}
@item seriesToUse, @code{CELL_ARRAY_STRINGS}
The names of the series contained in the @code{dseries} provided to
the @ref{data} option. If empty, use all series provided to
@ref{data} option. Default: @code{empty}

@item shade, @code{dates}
The date range showing the portion of the graph that should be
shaded. Default: @code{none}

@item shadeColor, @code{MATLAB_COLOR_NAME}
The color to use in the shaded portion of the graph. Default:
@code{`green'}

@item shadeOpacity, @code{DOUBLE}
The opacity of the shaded area, must be in @math{[0,1]}. Default: @code{.2}

@item title, @code{STRING}
Title for the graph. Default: @code{none}

@item xlabel, @code{STRING}
The x-axis label. Default: @code{none}

@item ylabel, @code{STRING}
The y-axis label. Default: @code{none}

@item xrange, @code{dates}
The boundary on the x-axis to display in the graph. Default: all

@anchor{xTicks}
@item xTicks, @code{NUMERICAL_VECTOR}
Used only in conjunction with @ref{xTickLabels}, this option denotes
the numerical position of the label along the x-axis. The positions
begin at @math{1}. Default: set by Matlab/Octave.

@anchor{xTickLabels}
@item xTickLabels, @code{CELL_ARRAY_STRINGS}
The labels to be mapped to the ticks provided by
@ref{xTicks}. Default: the dates of the @code{dseries}

@item yrange, @code{NUMERICAL_VECTOR}
The boundary on the y-axis to display in the graph, represented as a
@code{NUMERICAL_VECTOR} of size @math{2}, with the first entry less
than the second entry. Default: all

@item showZeroline, @code{BOOLEAN}
Display a solid black line at @math{y = 0}. Default: @code{false}

@end table
@end defmethod

@defmethod Report addTable data, showHlines, precision, range, seriesToUse, title, titleSize, vlineAfter, vlineAfterEndOfPeriod, showVlines
Adds a @code{Table} to a @code{Section}.
@optionshead
@table @code

@item data, @code{dseries}
@xref{data}.

@item showHlines, @code{BOOLEAN}
Whether or not to show horizontal lines separating the rows. Default: @code{false}

@item precision, @code{INTEGER}
The number of decimal places to report in the table data. Default: @code{1}

@item range, @code{dates}
The date range of the data to be displayed. Default: @code{all}

@item seriesToUse, @code{CELL_ARRAY_STRINGS}
@xref{seriesToUse}.

@item title, @code{STRING}
Title for the table. Default: @code{none}

@item titleSize, @code{STRING}
@LaTeX{} string representing the size of the table title. Default: @code{large}

@item vlineAfter, @code{dates} | @code{CELL_ARRAY_DATES}
Show a vertical line after the specified date (or dates if a cell
array of dates is passed). Default: @code{empty}

@item vlineAfterEndOfPeriod, @code{BOOLEAN}
Show a vertical line after the end of every period (@i{i.e.} after
every year, after the fourth quarter, etc.). Default: @code{false}

@item showVlines, @code{BOOLEAN}
Whether or not to show vertical lines separating the columns. Default: @code{false}
@end table
@end defmethod

@anchor{addSeries}
@defmethod Report addSeries data, graphLineColor, graphLineStyle, graphLineWidth, graphMarker, graphMarkerEdgeColor, graphMarkerFaceColor, graphMarkerSize, tableDataRhs, tableRowColor, tableShowMarkers, tableAlignRight, tableNegColor, tablePosColor, tableSubSectionHeader, zerotol
Adds a @code{Series} to a @code{Graph} or a @code{Table}.
@optionshead
@table @code

@item data, @code{dseries}
@xref{data}.

@item graphLineColor, @code{MATLAB_COLOR}
Color to use for the series in a graph. Default: @code{`k'}

@item graphLineStyle, @code{`none'} | @code{`-'} | @code{`--'} | @code{`:'} | @code{`-.'}
Line style for this series in a graph. Default: @code{'-'}

@item graphLineWidth @code{DOUBLE}
Line width for this series in a graph. Default: @code{0.5}

@item graphMarker, @code{`+'} | @code{`o'} | @code{`*'} | @code{`.'} | @code{`x'} | @code{`s'} | @code{`square'} | @code{`d'} | @code{`diamond'} | @code{`^'} | @code{`v'} | @code{`>'} | @code{`<'} | @code{`p'} | @code{`pentagram'} | @code{`h'} | @code{`hexagram'} | @code{`none'}
The Marker to use on this series in a graph. Default: @code{none}

@item graphMarkerEdgeColor, @code{MATLAB_COLOR}
The edge color of the graph marker. Default: @code{`auto'}

@item graphMarkerFaceColor, @code{MATLAB_COLOR}
The face color of the graph marker. Default: @code{`auto'}

@item graphMarkerSize, @code{DOUBLE}
The size of the graph marker. Default: @code{6}

@item tableDataRhs, @code{dseries}
A series to be added to the right of the current series. Usefull for
displaying aggregate data for a series. @i{e.g} if the series is
quarterly @code{tableDataRhs} could point to the yearly averages of
the quarterly series. This would cause quarterly data to be displayed
followed by annual data. Default: @code{empty}

@item tableRowColor, @code{STRING}
The color that you want the row to be. Predefined values include
@code{LightCyan} and @code{Gray}. Default: @code{white}.

@item tableShowMarkers, @code{BOOLEAN}
In a Table, if @code{true}, surround each cell with brackets and color
it according to @ref{tableNegColor} and @ref{tablePosColor}. No effect
for graphs. Default: @code{false}

@item tableAlignRight, @code{BOOLEAN}
Whether or not to align the series name to the right of the
cell. Default: @code{false}

@item tableMarkerLimit, @code{DOUBLE}
For values less than @math{-1*@code{tableMarkerLimit}}, mark the cell
with the color denoted by @ref{tableNegColor}. For those greater than
@code{tableMarkerLimit}, mark the cell with the color denoted by
@ref{tablePosColor}. Default: @code{1e-4}

@anchor{tableNegColor}
@item tableNegColor, @code{LATEX_COLOR}
The color to use when marking Table data that is less than
zero. Default: @code{`red'}

@anchor{tablePosColor}
@item tablePosColor, @code{LATEX_COLOR}
The color to use when marking Table data that is greater than
zero. Default: @code{`blue'}

@item tableSubSectionHeader, @code{STRING}
A header for a subsection of the table. No data will be associated
with it. It is equivalent to adding an empty series with a
name. Default: @code{''}

@item zerotol, @code{DOUBLE}
The zero tolerance. Anything smaller than @code{zerotol} and larger
than @code{-zerotol} will be set to zero before being
graphed. Default: @math{1e-6}

@end table
@end defmethod

@defmethod Report addVspace hline, number
Adds a @code{Vspace} (vertical space) to a @code{Section}.
@optionshead
@table @code
@item hline, @code{INTEGER}
The number of horizontal lines to be inserted. Default: @code{0}

@item number, @code{INTEGER}
The number of new lines to be inserted. Default: @code{1}
@end table
@end defmethod

@anchor{write}
@defmethod Report write
Writes the @LaTeX{} representation of this @code{Report}, saving it to
the file specified by @ref{filename}.
@end defmethod

@defmethod Report compile compiler
Compiles the report written by @ref{write} into a @code{pdf} file. If
the report has not already been written (determined by the existence
of the file specified by @ref{filename}, @ref{write} is called.
optionshead
@table @code
@item compiler, @code{FILENAME}
Like @ref{compiler}, except will not overwrite the value of
@code{compiler} contained in the report object. Hence, passing the
value here is useful for using different @LaTeX{} compilers or just
for passing the value at the last minute.
@end table
@end defmethod

@examplehead

The following code creates a one page report. The first part of the
page contains two graphs displayed across two columns and one
row. The bottom of the page displays a centered table.
@example
%% Create dseries
dsq = dseries(`quarterly.csv');
dsa = dseries(`annual.csv');
dsca = dseries(`annual_control.csv');

%% Report
rep = report();

%% Page 1
rep = rep.addPage(`title', `My Page Title', `titleFormat', `\large\bfseries');

% Section 1
rep = rep.addSection(`cols', 2);
rep = rep.addGraph(`title', `Graph (1,1)', `showLegend', true, ...
                   `xrange', dates(`2007q1'):dates(`2013q4'), ...
                   `shade', dates(`2012q2'):dates(`2013q4'));
rep = rep.addSeries(`data', dsq@{`SERIES1'@}, `color', `b', ...
                    `graphLineWidth', 1);
rep = rep.addSeries(`data', dsq@{`SERIES2'@}, `color', `g', ...
                    `graphLineStyle', '--', `graphLineWidth', 1.5);
rep = rep.addGraph(`title', `Graph (1,2)', `showLegend', true, ...
                   `xrange', dates(`2007q1'):dates(`2013q4'), ...
                   `shade', dates(`2012q2'):dates(`2013q4'));
rep = rep.addSeries(`data', dsq@{`SERIES3'@}, `color', `b', ...
                    `graphLineWidth', 1);
rep = rep.addSeries(`data', dsq@{`SERIES4'@}, `color', `g', ...
                    `graphLineStyle', '--', `graphLineWidth', 1.5);

% Section 2
rep = rep.addSection();
rep = rep.addTable(`title', `Table 1', ...
                   `range', dates(`2012Y'):dates(`2014Y'));
shortNames = @{`US', `EU'@};
longNames  = @{`United States', `Euro Area'@};
for i=1:length(shortNames)
    rep = rep.addSeries(`data', dsa@{[`GDP_' shortNames@{i@}]@});
    delta = dsa@{[`GDP_' shortNames@{i@}]@}-dsca@{[`GDP_' shortNames@{i@}]@};
    delta = delta.tex_rename(`$\Delta$');
    rep = rep.addSeries(`data', delta, ...
                        `tableShowMarkers', true, ...
                        `tableAlignRight', true);
end

%% Write & Compile Report
rep.write();
rep.compile();
@end example


@node Examples
@chapter Examples

Dynare comes with a database of example @file{.mod} files, which are
designed to show a broad range of Dynare features, and are taken from
academic papers for most of them. You should have these files in the
@file{examples} subdirectory of your distribution.

Here is a short list of the examples included. For a more complete
description, please refer to the comments inside the files themselves.

@table @file

@item ramst.mod
An elementary real business cycle (RBC) model, simulated in a
deterministic setup.

@item example1.mod
@itemx example2.mod
Two examples of a small RBC model in a stochastic setup, presented in
@cite{Collard (2001)} (see the file @file{guide.pdf} which comes with
Dynare).

@item example3.mod
A small RBC model in a stochastic setup, presented in
@cite{Collard (2001)}. The steady state is solved analytically using the  @code{steady_state_model} block (@pxref{steady_state_model}).

@item fs2000.mod
A cash in advance model, estimated by @cite{Schorfheide (2000)}. The file shows how to use Dynare for estimation.

@item fs2000_nonstationary.mod
The same model than @file{fs2000.mod}, but written in non-stationary
form. Detrending of the equations is done by Dynare.

@item bkk.mod
Multi-country RBC model with time to build, presented in @cite{Backus,
Kehoe and Kydland (1992)}. The file shows how to use Dynare's macro-processor.

@item agtrend.mod
Small open economy RBC model with shocks to the growth trend, presented
in @cite{Aguiar and Gopinath (2004)}.

@item NK_baseline.mod
Baseline New Keynesian Model estimated in @cite{Fernández-Villaverde (2010)}. It demonstrates how to use an explicit steady state file to update parameters and call a numerical solver.

@end table

@node Dynare misc commands
@chapter Dynare misc commands

@anchor{internals}
@deffn {MATLAB/Octave command} internals @var{FLAG} @var{ROUTINENAME}[.m]|@var{MODFILENAME}

Depending on the value of @var{FLAG}, the @code{internals} command can be used to run unitary tests specific to a Matlab/Octave routine (if available), to display documentation about a Matlab/Octave routine, or to extract some informations about the state of Dynare.

@flagshead

@table @code

@item --test
Performs the unitary test associated to  @var{ROUTINENAME} (if this routine exists and if the matalab/octave @code{m}
file has unitary test sections).
@examplehead
@example
>> internals --test ROUTINENAME
@end example
if @code{routine.m} is  not in the current directory, the  full path has
to be given:
@example
>> internals --test ../matlab/fr/ROUTINENAME
@end example

@item --info
Prints  on screen  the internal  documentation of  @var{ROUTINENAME} (if
this  routine  exists  and  if  this  routine  has  a  texinfo  internal
documentation header). The path to @var{ROUTINENAME} has to be provided,
if the routine is not in the current directory.
@examplehead
@example
>> internals --doc ../matlab/fr/ROUTINENAME
@end example
At this time, will work properly for only a small number of routines. At
the top of the (available)  Matlab/Octave routines a commented block for
the internal documentation  is written in the  GNU texinfo documentation
format.   This   block   is    processed   by   calling   texinfo   from
MATLAB. Consequently, texinfo has to be installed on your machine.

@item --display-mh-history
Displays information about the previously saved MCMC draws generated by a mod file named @var{MODFILENAME}. This file must be in the current directory.
@examplehead
@example
>> internals --display-mh-history MODFILENAME
@end example

@item --load-mh-history
Loads into the Matlab/Octave's workspace informations  about the previously saved MCMC draws generated by a mod file named @var{MODFILENAME}.
@examplehead
@example
>> internals --load-mh-history MODFILENAME
@end example
This will create a structure called @code{mcmc_informations} (in the workspace) with the following fields:
@table @code
@item Nblck
The number of MCMC chains.
@item InitialParameters
A @code{Nblck*n}, where @code{n} is the number of estimated parameters, array of doubles. Initial state of the MCMC.
@item LastParameters
A @code{Nblck*n}, where @code{n} is the number of estimated parameters, array of doubles. Current state of the MCMC.
@item InitialLogPost
A @code{Nblck*1} array of doubles. Initial value of the posterior kernel.
@item LastLogPost
A @code{Nblck*1} array of doubles. Current value of the posterior kernel.
@item InitialSeeds
A @code{1*Nblck} structure array. Initial state of the random number generator.
@item LastSeeds
A @code{1*Nblck} structure array. Current  state of the random number generator.
@item AcceptanceRatio
A @code{1*Nblck} array of doubles. Current acceptance ratios.
@end table

@end table

@end deffn


@node Bibliography
@chapter Bibliography

@itemize

@item
Abramowitz, Milton and Irene A. Stegun (1964): ``Handbook of Mathematical Functions'', Courier Dover Publications

@item
Adjemian, Stéphane, Matthieu Darracq Parriès and Stéphane Moyen (2008): ``Towards a monetary policy evaluation framework'',
@i{European Central Bank Working Paper}, 942

@item
Aguiar, Mark and Gopinath, Gita (2004): ``Emerging Market Business
Cycles: The Cycle is the Trend,'' @i{NBER Working Paper}, 10734

@item
Andreasen, Martin M., Jesús Fernández-Villaverde, and Juan Rubio-Ramírez (2013): ``The Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical Applications,'' @i{NBER Working Paper}, 18983

@item
Backus, David K., Patrick J. Kehoe, and Finn E. Kydland (1992):
``International Real Business Cycles,'' @i{Journal of Political
Economy}, 100(4), 745--775

@item
Boucekkine, Raouf (1995): ``An alternative methodology for solving
nonlinear forward-looking models,'' @i{Journal of Economic Dynamics
and Control}, 19, 711--734

@item
Brooks,  Stephen P.,  and Andrew  Gelman (1998):  ``General methods  for
monitoring  convergence   of  iterative  simulations,''   @i{Journal  of
computational and graphical statistics}, 7, pp. 434--455

@item
Cardoso, Margarida F., R. L. Salcedo and S. Feyo de Azevedo (1996): ``The simplex simulated annealing approach to continuous non-linear optimization,'' @i{Computers chem. Engng}, 20(9), 1065-1080

@item
Collard, Fabrice (2001): ``Stochastic simulations with Dynare: A practical guide''

@item
Collard, Fabrice and Michel Juillard (2001a): ``Accuracy of stochastic
perturbation methods: The case of asset pricing models,'' @i{Journal
of Economic Dynamics and Control}, 25, 979--999

@item
Collard, Fabrice and Michel Juillard (2001b): ``A Higher-Order Taylor
Expansion Approach to Simulation of Stochastic Forward-Looking Models
with an Application to a Non-Linear Phillips Curve,'' @i{Computational
Economics}, 17, 125--139

@item
Christiano, Lawrence J., Mathias Trabandt and Karl Walentin (2011):
``Introducing financial frictions and unemployment into a small open
economy model,'' @i{Journal of Economic Dynamics and Control}, 35(12),
1999--2041

@item
Del Negro, Marco and Franck Schorfheide (2004): ``Priors from General Equilibrium Models for VARS'',
@i{International Economic Review}, 45(2), 643--673

@item
Dennis, Richard (2007): ``Optimal Policy In Rational Expectations
Models: New Solution Algorithms,'' @i{Macroeconomic Dynamics}, 11(1),
31--55

@item
Durbin, J. and S. J. Koopman (2012), @i{Time Series Analysis by State
Space Methods}, Second Revised Edition, Oxford University Press

@item
Fair, Ray and John Taylor (1983): ``Solution and Maximum Likelihood
Estimation of Dynamic Nonlinear Rational Expectation Models,''
@i{Econometrica}, 51, 1169--1185

@item
Fernández-Villaverde, Jesús and Juan Rubio-Ramírez (2004): ``Comparing
Dynamic Equilibrium Economies to Data: A Bayesian Approach,''
@i{Journal of Econometrics}, 123, 153--187

@item
Fernández-Villaverde, Jesús and Juan Rubio-Ramírez (2005): ``Estimating
Dynamic Equilibrium Economies: Linear versus Nonlinear Likelihood,''
@i{Journal of Applied Econometrics}, 20, 891--910

@item
Fernández-Villaverde, Jesús (2010): ``The econometrics of DSGE models,''
@i{SERIEs}, 1, 3--49

@item
Geweke, John (1992): ``Evaluating the accuracy of sampling-based approaches
to the calculation of posterior moments,'' in J.O. Berger, J.M. Bernardo,
A.P. Dawid, and A.F.M. Smith (eds.) Proceedings of the Fourth Valencia
International Meeting on Bayesian Statistics, pp. 169--194, Oxford University Press

@item
Geweke, John (1999): ``Using simulation methods for Bayesian econometric models:
Inference, development and communication,'' @i{Econometric Reviews}, 18(1), 1--73

@item
Ireland, Peter (2004): ``A Method for Taking Models to the Data,''
@i{Journal of Economic Dynamics and Control}, 28, 1205--26

@item
Iskrev, Nikolay (2010): ``Local identification in DSGE models,''
@i{Journal of Monetary Economics}, 57(2), 189--202

@item
Judd, Kenneth (1996): ``Approximation, Perturbation, and Projection
Methods in Economic Analysis'', in @i{Handbook of Computational
Economics}, ed. by Hans Amman, David Kendrick, and John Rust, North
Holland Press, 511--585

@item
Juillard, Michel (1996): ``Dynare: A program for the resolution and
simulation of dynamic models with forward variables through the use of
a relaxation algorithm,'' CEPREMAP, @i{Couverture Orange}, 9602

@item
Kim, Jinill, Sunghyun Kim, Ernst Schaumburg, and Christopher A. Sims
(2008): ``Calculating and using second-order accurate solutions of
discrete time dynamic equilibrium models,'' @i{Journal of Economic
Dynamics and Control}, 32(11), 3397--3414

@item
Koop, Gary (2003), @i{Bayesian Econometrics}, John Wiley & Sons

@item
Koopman, S. J. and J. Durbin (2003): ``Filtering and Smoothing of
State Vector for Diffuse State Space Models,'' @i{Journal of Time
Series Analysis}, 24(1), 85--98

@item
Laffargue, Jean-Pierre (1990): ``Résolution d'un modèle
macroéconomique avec anticipations rationnelles'', @i{Annales
d'Économie et Statistique}, 17, 97--119

@item
Lubik, Thomas and Frank Schorfheide (2007): ``Do Central Banks Respond
to Exchange Rate Movements? A Structural Investigation,'' @i{Journal
of Monetary Economics}, 54(4), 1069--1087

@item
Mancini-Griffoli, Tommaso (2007): ``Dynare User Guide: An introduction
to the solution and estimation of DSGE models''

@item
Pearlman, Joseph, David Currie, and Paul Levine (1986): ``Rational
expectations models with partial information,'' @i{Economic
Modelling}, 3(2), 90--105

@item
Pfeifer, Johannes (2013): ``A Guide to Specifying Observation Equations for the Estimation of DSGE Models''

@item
Rabanal, Pau and Juan Rubio-Ramirez (2003): ``Comparing New Keynesian
Models of the Business Cycle: A Bayesian Approach,'' Federal Reserve
of Atlanta, @i{Working Paper Series}, 2003-30.

@item
Ratto, Marco (2008): ``Analysing DSGE models with global sensitivity
analysis'', @i{Computational Economics}, 31, 115--139

@item
Schorfheide, Frank (2000): ``Loss Function-based evaluation of DSGE
models,'' @i{Journal of Applied Econometrics}, 15(6), 645--670

@item
Schmitt-Grohé, Stephanie and Martin Uríbe (2004): ``Solving Dynamic
General Equilibrium Models Using a Second-Order Approximation to the
Policy Function,'' @i{Journal of Economic Dynamics and Control},
28(4), 755--775

@item
Sims, Christopher A., Daniel F. Waggoner and Tao Zha (2008): ``Methods for
inference in large multiple-equation Markov-switching models,''
@i{Journal of Econometrics}, 146, 255--274

@item
Smets, Frank and Rafael Wouters (2003): ``An Estimated Dynamic
Stochastic General Equilibrium Model of the Euro Area,'' @i{Journal of
the European Economic Association}, 1(5), 1123--1175

@item
Villemot, Sébastien (2011): ``Solving rational expectations models at
first order: what Dynare does,'' @i{Dynare Working Papers}, 2,
CEPREMAP

@end itemize

@node Command and Function Index
@unnumbered Command and Function Index

@printindex fn

@node Variable Index
@unnumbered Variable Index

@printindex vr

@bye