File: preprocessor.tex

package info (click to toggle)
dynare 4.4.3-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 41,356 kB
  • ctags: 15,842
  • sloc: cpp: 77,029; ansic: 29,056; pascal: 13,241; sh: 4,811; objc: 3,061; yacc: 3,013; makefile: 1,479; lex: 1,258; python: 162; lisp: 54; xml: 8
file content (1165 lines) | stat: -rw-r--r-- 45,907 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
\documentclass{beamer}
%\documentclass[draft]{beamer}
%\documentclass[handout]{beamer}


\mode<handout>
{
  \usepackage{pgfpages}
  \pgfpagesuselayout{4 on 1}[a4paper,border shrink=3mm,landscape]
  \usetheme{Madrid}
  \usecolortheme{seagull}
}

\mode<beamer>
{
  \usetheme{Madrid}
  \setbeamercovered{transparent}
}


\usepackage[english]{babel}
\usepackage[utf8]{inputenc}

\usepackage{times}


\title{The Dynare Preprocessor}

\author[S. Villemot]{Sébastien Villemot}

\institute{CEPREMAP}

\date{October 19, 2007}

\AtBeginSection[]
{
  \begin{frame}{Outline}
    \tableofcontents[currentsection]
  \end{frame}
}

\begin{document}

\begin{frame}
  \titlepage
\end{frame}

\begin{frame}
  \frametitle{General overview}
  \begin{center}
    \includegraphics[width=11cm]{overview.png}
  \end{center}
\end{frame}

\begin{frame}{Outline}
  \tableofcontents
\end{frame}

\section{Introduction to object-oriented programming in C++}

\begin{frame}
  \frametitle{Object-oriented programming (OOP)}
  \begin{itemize}
  \item Traditional way of programming: a program is a list of instructions (organized in functions) which manipulate data
  \item OOP is an alternative programming paradigm that uses \alert{objects} and their interactions to design programs
    \pause
  \item With OOP, programming becomes a kind of modelization: each object of the program should modelize a real world object, or a mathematical object (\textit{e.g.} a matrix, an equation, a model...)
  \item Each object can be viewed as an independent little machine with a distinct role or responsibility
  \item Each object is capable of receiving messages, processing data, and sending messages to other objects
    \pause
  \item Main advantage of OOP is \alert{modularity}, which leads to greater reusability, flexibility and maintainability
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{Object}
  \framesubtitle{Definition and example}
  \begin{itemize}
  \item An \alert{object} is the bundle of:
    \begin{itemize} 
    \item several variables (called its \alert{attributes}), which modelize the characteristics (or the state) of the object
    \item several functions (called its \alert{methods}) which operate on the attributes, and which modelize the behaviour of the object (the actions it can perform)
    \end{itemize}
    \pause
  \item Example: suppose we want to modelize a coffee machine
    \begin{itemize}
    \item The coffee machine (in real life) is a box, with an internal counter for the credit balance, a slot to put coins in, and a button to get a coffee
    \item The corresponding object will have one attribute (the current credit balance) and two methods (one which modelizes the introduction of money, and the other the making of a coffee)
    \end{itemize}
  \end{itemize}
\end{frame}

\begin{frame}[fragile]
  \frametitle{A coffee machine}
  \framesubtitle{Class definition}
  \begin{block}{C++ header file (\texttt{CoffeeMachine.hh})}
    \begin{scriptsize}
\begin{verbatim}
class CoffeeMachine {
public:
  int credit;
  CoffeeMachine();
  void put_coin(int coin_value);
  void get_coffee();
};
\end{verbatim}
      \end{scriptsize}
  \end{block}
  \begin{itemize}
  \item A \alert{class} is a template (or a blueprint) of an object
  \item Collectively, the attributes and methods defined by a class are called \alert{members}
  \item A class definition creates a new \alert{type} (\texttt{CoffeeMachine}) that can be used like other C++ types (\textit{e.g.} \texttt{int}, \texttt{string}, ...)
  \item In C++, class definitions are put in header files (\texttt{.hh} extension)
  \end{itemize}
\end{frame}

\begin{frame}[fragile]
  \frametitle{A coffee machine}
  \framesubtitle{Method bodies}
  \begin{block}{C++ source file (\texttt{CoffeeMachine.cc})}
    \begin{scriptsize}
\begin{verbatim}
void CoffeeMachine::put_coin(int coin_value)
{
  credit += coin_value;
  cout << "Credit is now " << credit << endl;
}

void CoffeeMachine::get_coffee()
{
  if (credit == 0)
    cout << "No credit!" << endl;
  else {
      credit--;
      cout << "Your coffee is ready, credit is now " << credit << endl;
  }
}
\end{verbatim}
    \end{scriptsize}
  \end{block}
  \begin{itemize}
  \item Methods can refer to other members (here the two methods modify the \texttt{credit} attribute)
  \item Method bodies are put in source files (\texttt{.cc} extension)
  \end{itemize}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Constructors and destructors}
  \begin{itemize}
  \item In our class header, there is a special method called \texttt{CoffeeMachine()} (same name than the class)
  \item It is a \alert{constructor}: called when the object is created, used to initalize the attributes of the class
  \end{itemize}
  \begin{block}{C++ source file (\texttt{CoffeeMachine.cc}, continued)}
    \begin{scriptsize}
\begin{verbatim}
CoffeeMachine::CoffeeMachine()
{
  credit = 0;
}
\end{verbatim}
    \end{scriptsize}   
  \end{block}
  \begin{itemize}
  \item It is possible to create constructors with arguments
  \item It is also possible to define a \alert{destructor} (method name is the class name prepended by a tilde, like \texttt{$\sim$CoffeeMachine}): called when the object is destroyed, used to do cleaning tasks (\textit{e.g.} freeing memory)
  \end{itemize}
\end{frame}


\begin{frame}[fragile]
  \frametitle{Instantiation and method invocation}
  \begin{block}{Program main function}
    \begin{scriptsize}
\begin{verbatim}
#include "CoffeeMachine.hh"

int main()
{
  CoffeeMachine A, B;

  A.put_coin(2);
  A.get_coffee();

  B.put_coin(1);
  B.get_coffee();
  B.get_coffee();
}
\end{verbatim}
    \end{scriptsize}
  \end{block}
  \begin{itemize}
  \item Creates two machines: at the end, \texttt{A} has 1 credit, \texttt{B} has no credit and refused last coffee
  \item \texttt{A} and \texttt{B} are called \alert{instances} of class \texttt{CoffeeMachine}
  \item Methods are invoked by appending a dot and the method name to the instance variable name
  \end{itemize}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Dynamic instantiation with \texttt{new}}
  \begin{block}{Program main function}
    \begin{scriptsize}
\begin{verbatim}
#include "CoffeeMachine.hh"

void main()
{
  CoffeeMachine *A;

  A = new CoffeeMachine();

  A->put_coin(2);
  A->get_coffee();

  delete A;
}
\end{verbatim}
    \end{scriptsize}
  \end{block}
  \begin{itemize}
  \item Here \texttt{A} is a pointer to an instance of class \texttt{CoffeeMachine}
  \item Dynamic creation of instances is done with \texttt{new}, dynamic deletion with \texttt{delete} (analogous to \texttt{malloc} and \texttt{free})
  \item Since \texttt{A} is a pointer, methods are called with \texttt{->} instead of a dot
  \end{itemize}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Access modifiers}
  \begin{itemize}
  \item In our coffee machine example, all attributes and methods were marked as \texttt{public}
  \item Means that those attributes and methods can be accessed from anywhere in the program
  \item Here, one can gain credit without putting money in the machine, with something like \texttt{A.credit = 1000;}
  \item The solution is to declare it \alert{private}: such members can only be accessed from methods within the class
  \end{itemize}
  \begin{block}{C++ header file (\texttt{CoffeeMachine.hh})}
    \begin{scriptsize}
\begin{verbatim}
class CoffeeMachine {
private:
  int credit;
public:
  CoffeeMachine();
  void put_coin(int coin_value);
  void get_coffee();
};
\end{verbatim}
      \end{scriptsize}
  \end{block}
\end{frame}

\begin{frame}
  \frametitle{Interface}
  \begin{itemize}
  \item The public members of a class form its \alert{interface}: they describe how the class interacts with its environment
  \item Seen from outside, an object is a ``black box'', receiving and sending messages through its interface
  \item Particular attention should be given to the interface design: an external programmer should be able to work with an class by only studying its interface, but not its internals
  \item A good design pratice is to limit the set of public members to the strict minimum:
    \begin{itemize}
    \item enhances code understandability by making clear the interface
    \item limits the risk that an internal change in the object requires a change in the rest of the program: \alert{loose coupling}
    \item prevents the disruption of the coherence of the object by an external action: principle of \alert{isolation}
    \end{itemize}
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{Why isolation is important}
  \begin{itemize}
  \item Consider a class \texttt{Circle} with the following attributes:
    \begin{itemize}
    \item coordinates of the center
    \item radius
    \item surface
    \end{itemize}
  \item If all members are public, it is possible to modify the radius but not the surface, therefore disrupting internal coherence
  \item The solution is to make radius and surface private, and to create a public method \texttt{changeRadius} which modifies both simultaneously
  \item \textit{Conclusion:} Creating a clear interface and isolating the rest diminishes the risk of introducing bugs
  \end{itemize}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Inheritance (1/2)}

  \begin{block}{Matrices and positive definite matrices}
    \begin{scriptsize}
      \begin{columns}[t]
        \begin{column}{4.8cm}
\begin{verbatim}
class Matrix
{
protected:
  int height, width;
  double[] elements;
public:
  Matrix(int n, int p,
         double[] e);
  virtual ~Matrix();
  double det();
};
\end{verbatim}
        \end{column}
        \begin{column}{6cm}
\begin{verbatim}
class PositDefMatrix : public Matrix
{
public:
  PositDefMatrix(int n, int p,
                 double[] e);
  Matrix cholesky();
};
\end{verbatim}
        \end{column}
      \end{columns}
    \end{scriptsize}
    
  \end{block}
  \begin{itemize}
  \item \texttt{PositDefMatrix} is a \alert{subclass} (or \alert{derived class}) of \texttt{Matrix}
  \item Conversely \texttt{Matrix} is the \alert{superclass} of \texttt{PositDefMatrix}
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{Inheritance (2/2)}
  \begin{itemize}
  \item \texttt{PositDefMatrix} inherits \texttt{width}, \texttt{height}, \texttt{elements} and \texttt{det} from \texttt{Matrix}
  \item Method \texttt{cholesky} can be called on an instance of \texttt{PositDefMatrix}, but not of \texttt{Matrix}
  \item The keyword \texttt{protected} means: public for subclasses, but private for other classes
  \item \alert{Type casts} are legal when going upward in the derivation tree:
    \begin{itemize}
    \item a pointer to \texttt{PositDefMatrix} can be safely cast to a \texttt{Matrix*}
    \item the converse is faulty and leads to unpredictable results
    \end{itemize}
  \end{itemize}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Constructors and destructors (bis)}
  \begin{block}{C++ code snippet}
    \begin{scriptsize}
\begin{verbatim}
Matrix::Matrix(int n, int p, double[] e) : height(n), width(p)
{
  elements = new double[n*p];
  memcpy(elements, e, n*p*sizeof(double));
}

Matrix::~Matrix()
{
  delete[] elements;
}

PositDefMatrix::PositDefMatrix(int n, int p, double[] e) :
  Matrix(n, p, e)
{
  // Check that matrix is really positive definite
}
\end{verbatim}
    \end{scriptsize}
  \end{block}
  \begin{itemize}
  \item Constructor of \texttt{PositDefMatrix} calls constructor of \texttt{Matrix}
  \item Note the abbreviated syntax with colon
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{Possible derivation tree for real matrices}
  \framesubtitle{Arrow means \textit{...is a subclass of...}}
  \begin{center}
    \includegraphics[width=10cm]{matrices.png}
  \end{center}
\end{frame}

\begin{frame}
  \frametitle{Polymorphism (1/3)}
  \begin{itemize}
  \item In previous example, determinant computation method uses the same algorithm for both classes
  \item But for positive definite matrices, a faster algorithm exists (using the cholesky)
  \item \alert{Polymorphism} offers an elegant solution:
    \begin{itemize}
    \item declare \texttt{det} as a \alert{virtual method} in class \texttt{Matrix}
    \item \alert{override} it in \texttt{PositDefMatrix}, and provide the corresponding implementation
    \end{itemize}
  \item When method \texttt{det} will be invoked, the correct implementation will be selected, depending on the type of the instance (this is done through a runtime type test)
  \end{itemize}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Polymorphism (2/3)}

  \begin{block}{Class headers}
    \begin{scriptsize}
      \begin{columns}[t]
        \begin{column}{4.8cm}
\begin{verbatim}
class Matrix
{
protected:
  int height, width;
  double[] elements;
public:
  Matrix(int n, int p,
         double[] e);
  virtual ~Matrix();
  virtual double det();
  bool is_invertible();
};
\end{verbatim}
        \end{column}
        \begin{column}{6cm}
\begin{verbatim}
class PositDefMatrix : public Matrix
{
public:
  PositDefMatrix(int n, int p,
                 double[] e);
  Matrix cholesky();
  virtual double det();
};
\end{verbatim}
        \end{column}
      \end{columns}
    \end{scriptsize}
    
  \end{block}
  \begin{itemize}
  \item Note the \texttt{virtual} keyword
  \item A method has been added to determine if matrix is invertible
  \end{itemize}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Polymorphism (3/3)}
  \begin{block}{C++ code snippet}
    \begin{scriptsize}
\begin{verbatim}
bool Matrix::is_invertible()
{
  return(det() != 0);
}

double PositDefMatrix::det()
{
  // Square product of diagonal terms of cholesky decomposition
}
\end{verbatim}
    \end{scriptsize}
  \end{block}
  \begin{itemize}
  \item A call to \texttt{is\_invertible} on a instance of \texttt{Matrix} will use the generic determinant computation
  \item The same call on an instance of \texttt{PositDefMatrix} will call the specialized determinant computation
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{Abstract classes}
  \begin{itemize}
  \item It is possible to create classes which don't provide an implementation for some virtual methods
  \item Syntax in the header: \\
    \texttt{virtual int method\_name() = 0;}
  \item As a consequence, such classes can never be instantiated
  \item Generally used as the root of a derivation tree, when classes of the tree share behaviours but not implementations
  \item Such classes are called \alert{abstract classes}
  \end{itemize}
\end{frame}


\begin{frame}
  \frametitle{Some programming rules (1/2)}
  \begin{itemize}
  \item Don't repeat yourself (DRY): if several functions contain similar portions of code, \alert{factorize} that code into a new function
    \begin{itemize}
    \item makes code shorter
    \item reduces the risk of introducing inconsistencies
    \item makes easier the propagation of enhancements and bug corrections
    \end{itemize}
  \item Make short functions
    \begin{itemize}
    \item often difficult to grasp what a long function does
    \item structuring the code by dividing it into short functions makes the logical structure more apparent
    \item enhances code readability and maintainability
    \end{itemize}
  \item Use explicit variable names (except for loop indexes)
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{Some programming rules (2/2)}
  \begin{itemize}
  \item Global variables are evil
    \begin{itemize}
    \item a global variable can be modified from anywhere in the code (nonlocality problem)
    \item creates a potentially unlimited number of dependencies between all portions of the code
    \item makes bugs difficult to localize (any part of the code could have created the trouble)
    \item to summarize, goes against the principle of modularity
    \item in addition, global variables are not thread safe (unless used with locks/mutexes)
    \end{itemize}
  \item Document your code when it doesn't speak by itself
    \begin{itemize}
    \item Dynare preprocessor code is documented using Doxygen
    \item done through special comments beginning with an exclamation mark
    \item run \texttt{doxygen} from the source directory to create a bunch of HTML files documenting the code
    \end{itemize}
  \end{itemize}
\end{frame}

\section{Parsing}

\begin{frame}
\frametitle{Parsing overview}
\begin{itemize}
\item Parsing is the action of transforming an input text (a \texttt{mod} file in our case) into a data structure suitable for computation
\item The parser consists of three components:
  \begin{itemize}
  \item the \alert{lexical analyzer}, which recognizes the ``words'' of the \texttt{mod} file (analog to the \textit{vocabulary} of a language)
  \item the \alert{syntax analyzer}, which recognizes the ``sentences'' of the \texttt{mod} file (analog to the \textit{grammar} of a language)
  \item the \alert{parsing driver}, which coordinates the whole process and constructs the data structure using the results of the lexical and syntax analyses
  \end{itemize}
\end{itemize}
\end{frame}

\begin{frame}
\frametitle{Lexical analysis}
\begin{itemize}
\item The lexical analyzer recognizes the ``words'' (or \alert{lexemes}) of the language
\item Lexical analyzer is described in \texttt{DynareFlex.ll}. This file is transformed into C++ source code by the program \texttt{flex}
\item This file gives the list of the known lexemes (described by regular expressions), and gives the associated \alert{token} for each of them
\item For punctuation (semicolon, parentheses, ...), operators (+, -, ...) or fixed keywords (\textit{e.g.} \texttt{model}, \texttt{varexo}, ...), the token is simply an integer uniquely identifying the lexeme
\item For variable names or numbers, the token also contains the associated string for further processing
%\item \textit{Note:} the list of tokens can be found at the beginning of \texttt{DynareBison.yy}
\item When invoked, the lexical analyzer reads the next characters of the input, tries to recognize a lexeme, and either produces an error or returns the associated token
\end{itemize}
\end{frame}

\begin{frame}[fragile]
\frametitle{Lexical analysis}
\framesubtitle{An example}
\begin{itemize}
\item Suppose the \texttt{mod} file contains the following:
\begin{verbatim}
model;
x = log(3.5);
end;
\end{verbatim}
\item Before lexical analysis, it is only a sequence of characters
\item The lexical analysis produces the following stream of tokens:

\begin{footnotesize}
\begin{verbatim}
MODEL
SEMICOLON
NAME "x"
EQUAL
LOG
LEFT_PARENTHESIS
FLOAT_NUMBER "3.5"
RIGHT_PARENTHESIS
SEMICOLON
END
SEMICOLON
\end{verbatim}
\end{footnotesize}
\end{itemize}
\end{frame}

\begin{frame}[fragile]
\frametitle{Syntax analysis}
Using the list of tokens produced by lexical analysis, the syntax analyzer determines which ``sentences'' are valid in the language, according to a \alert{grammar} composed of \alert{rules}.
\begin{block}{A grammar for lists of additive and multiplicative expressions}
\begin{footnotesize}
\begin{verbatim}
%start expression_list;

expression_list := expression SEMICOLON
                 | expression_list expression SEMICOLON;

expression := expression PLUS expression
            | expression TIMES expression
            | LEFT_PAREN expression RIGHT_PAREN
            | INT_NUMBER;
\end{verbatim}
\end{footnotesize}
\end{block}
\begin{itemize}
\item \texttt{(1+3)*2; 4+5;} will pass the syntax analysis without error
\item \texttt{1++2;} will fail the syntax analysis, even though it has passed the lexical analysis
\end{itemize}
\end{frame}

\begin{frame}
\frametitle{Syntax analysis}
\framesubtitle{In Dynare}
\begin{itemize}
\item The \texttt{mod} file grammar is described in \texttt{DynareBison.yy}
\item The grammar is transformed into C++ source code by the program \texttt{bison}
\item The grammar tells a story which looks like:
  \begin{itemize}
  \item A \texttt{mod} file is a list of statements
  \item A statement can be a \texttt{var} statement, a \texttt{varexo} statement, a \texttt{model} block, an \texttt{initval} block, ...
  \item A \texttt{var} statement begins with the token \texttt{VAR}, then a list of \texttt{NAME}s, then a semicolon
  \item A \texttt{model} block begins with the token \texttt{MODEL}, then a semicolon, then a list of equations separated by semicolons, then an \texttt{END} token
  \item An equation can be either an expression, or an expression followed by an \texttt{EQUAL} token and another expression
  \item An expression can be a \texttt{NAME}, or a \texttt{FLOAT\_NUMBER}, or an expression followed by a \texttt{PLUS} and another expression, ...
  \end{itemize}
\end{itemize}
\end{frame}


\begin{frame}
\frametitle{Semantic actions}
\begin{itemize}
\item So far we have only described how to accept valid \texttt{mod} files and to reject others
\item But validating is not enough: one need to do something about what has been parsed
\item Each rule of the grammar can have a \alert{semantic action} associated to it: C/C++ code enclosed in curly braces
\item Each rule can return a semantic value (referenced to by \texttt{\$\$} in the action)
\item In the action, it is possible to refer to semantic values returned by components of the rule (using \texttt{\$1}, \texttt{\$2}, ...)
\end{itemize}
\end{frame}

\begin{frame}[fragile]
\frametitle{Semantic actions}
\framesubtitle{An example}
\begin{block}{A simple calculator which prints its results}
\begin{footnotesize}
\begin{verbatim}
%start expression_list
%type <int> expression

expression_list := expression SEMICOLON
                   { cout << $1; }
                 | expression_list expression SEMICOLON
                   { cout << $2; };

expression := expression PLUS expression
              { $$ = $1 + $3; }
            | expression TIMES expression
              { $$ = $1 * $3; }
            | LEFT_PAREN expression RIGHT_PAREN
              { $$ = $2; }
            | INT_NUMBER
              { $$ = $1; };
\end{verbatim}
\end{footnotesize}
\end{block}
\end{frame}

\begin{frame}
\frametitle{Parsing driver}

The class \texttt{ParsingDriver} has the following roles:
\begin{itemize}
\item Given the \texttt{mod} filename, it opens the file and launches the lexical and syntaxic analyzers on it
\item It implements most of the semantic actions of the grammar
\item By doing so, it creates an object of type \texttt{ModFile}, which is the data structure representing the \texttt{mod} file
\item Or, if there is a parsing error (unknown keyword, undeclared symbol, syntax error), it displays the line and column numbers where the error occurred, and exits
\end{itemize}
\end{frame}

\section{Data structure representing a \texttt{mod} file}

\begin{frame}
  \frametitle{The \texttt{ModFile} class}
  \begin{itemize}
  \item This class is the internal data structure used to store all the informations contained in a \texttt{mod} file
  \item One instance of the class represents one \texttt{mod} file
  \item The class contains the following elements (as class members):
    \begin{itemize}
    \item a symbol table
    \item a numerical constants table
    \item two trees of expressions: one for the model, and one for the expressions outside the model
    \item the list of the statements (parameter initializations, shocks block, \texttt{check}, \texttt{steady}, \texttt{simul}, ...)
    \item an evaluation context
    \end{itemize}
  \item An instance of \texttt{ModFile} is the output of the parsing process (return value of \texttt{ParsingDriver::parse()})
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{The symbol table (1/3)}
  \begin{itemize}
  \item A \alert{symbol} is simply the name of a variable, of a parameter or of a function unknown to the preprocessor: actually everything that is not recognized as a Dynare keyword
  \item The \alert{symbol table} is a simple structure used to maintain the list of the symbols used in the \texttt{mod} file
  \item For each symbol, stores:
    \begin{itemize}
    \item its name (a string)
    \item its type (an integer)
    \item a unique integer identifier (unique for a given type, but not across types)
    \end{itemize}
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{The symbol table (2/3)}
  Existing types of symbols:
  \begin{itemize}
  \item Endogenous variables
  \item Exogenous variables
  \item Exogenous deterministic variables
  \item Parameters
  \item Local variables inside model: declared with a pound sign (\#) construction
  \item Local variables outside model: no declaration needed, not interpreted by the preprocessor (\textit{e.g.} Matlab loop indexes)
  \item Names of functions unknown to the preprocessor: no declaration needed, not interpreted by the preprocessor, only allowed outside model (until we create an interface for providing custom functions with their derivatives)
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{The symbol table (2/3)}
  \begin{itemize}
  \item Symbol table filled in:
    \begin{itemize}
    \item using the \texttt{var}, \texttt{varexo}, \texttt{varexo\_det}, \texttt{parameter} declarations
    \item using pound sign (\#) constructions in the model block
    \item on the fly during parsing: local variables outside models or unknown functions when an undeclared symbol is encountered
    \end{itemize}
  \item Roles of the symbol table:
    \begin{itemize}
    \item permits parcimonious and more efficient representation of expressions (no need to duplicate or compare strings, only handle a pair of integers)
    \item ensures that a given symbol is used with only one type
    \end{itemize}
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{Expression trees (1/2)}
  \begin{itemize}
  \item The data structure used to store expressions is essentially a \alert{tree}
  \item Graphically, the tree representation of $(1+z)*\log(y)$ is:
    \begin{center}
      \includegraphics[width=4cm]{expr.png}
    \end{center}
  \item No need to store parentheses
  \item Each circle represents a \alert{node}
  \item A node has at most one parent and at most two children
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{Expression trees (2/2)}
  \begin{itemize}
  \item In Dynare preprocessor, a tree node is a represented by an instance of the abstract class \texttt{ExprNode}
  \item This class has 5 sub-classes, corresponding to the 5 types of nodes:
    \begin{itemize}
    \item \texttt{NumConstNode} for constant nodes: contains the identifier of the numerical constants it represents
    \item \texttt{VariableNode} for variable/parameters nodes: contains the identifier of the variable or parameter it represents
    \item \texttt{UnaryOpNode} for unary operators (\textit{e.g.} unary minus, $\log$, $\sin$): contains an integer representing the operator, and a pointer to its child
    \item \texttt{BinaryOpNode} for binary operators (\textit{e.g.} $+$, $*$, pow): contains an integer representing the operator, and pointers to its two children
    \item \texttt{UnknownFunctionNode} for functions unknown to the parser (\textit{e.g.} user defined functions): contains the identifier of the function name, and a vector containing an arbitrary number of children (the function arguments)
    \end{itemize}
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{Classes \texttt{DataTree} and \texttt{ModelTree}}
  \begin{itemize}
  \item Class \texttt{DataTree} is a container for storing a set of expression trees
  \item Class \texttt{ModelTree} is a sub-class of \texttt{DataTree}, specialized for storing a set of model equations (among other things, contains symbolic derivation algorithm)
  \item Class \texttt{ModFile} contains:
    \begin{itemize}
    \item one instance of \texttt{ModelTree} for storing the equations of model block
    \item one instance of \texttt{DataTree} for storing all expressions outside model block
    \end{itemize}
  \item Expression storage is optimized through three mechanisms:
    \begin{itemize}
    \item pre-computing of numerical constants
    \item symbolic simplification rules
    \item sub-expression sharing
    \end{itemize}
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{Constructing expression trees}
  \begin{itemize}
  \item Class \texttt{DataTree} contains a set of methods for constructing expression trees
  \item Construction is done bottom-up, node by node:
    \begin{itemize}
    \item one method for adding a constant node (\texttt{AddPossiblyNegativeConstant(double)})
    \item one method for a log node (\texttt{AddLog(arg)})
    \item one method for a plus node (\texttt{AddPlus(arg1, arg2)})
    \end{itemize}
  \item These methods take pointers to \texttt{ExprNode}, allocate the memory for the node, construct it, and return its pointer
  \item These methods are called:
    \begin{itemize}
    \item from \texttt{ParsingDriver} in the semantic actions associated to the parsing of expressions
    \item during symbolic derivation, to create derivatives expressions
    \end{itemize}
  \item Note that \texttt{NodeID} is an alias (typedef) for \texttt{ExprNode*}
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{Reduction of constants and symbolic simplifications}
  \begin{itemize}
  \item The construction methods compute constants whenever it is possible
    \begin{itemize}
    \item Suppose you ask to construct the node $1+1$
    \item The \texttt{AddPlus()} method will return a pointer to a constant node containing 2
    \end{itemize}
  \item The construction methods also apply a set of simplification rules, such as:
    \begin{itemize}
    \item $0+0=0$
    \item $x+0 = x$
    \item $0-x = -x$
    \item $-(-x) = x$
    \item $x*0 = 0$
    \item $x/1 = x$
    \item $x^0 = 1$
    \end{itemize}
  \item When a simplification rule applies, no new node is created
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{Sub-expression sharing (1/2)}
  \begin{itemize}
  \item Consider the two following expressions: $(1+z)*\log(y)$ and $2^{(1+z)}$
  \item Expressions share a common sub-expression: $1+z$
  \item The internal representation of these expressions is:
    \begin{center}
      \includegraphics[width=6cm]{expr-sharing.png}
    \end{center}
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{Sub-expression sharing (2/2)}
  \begin{itemize}
  \item Construction methods implement a simple algorithm which achieves maximal expression sharing
  \item Algorithm uses the fact that each node has a unique memory address (pointer to the corresponding instance of \texttt{ExprNode})
  \item It maintains 5 tables which keep track of the already constructed nodes: one table by type of node (constants, variables, unary ops, binary ops, unknown functions)
  \item Suppose you want to create the node $e_1+e_2$ (where $e_1$ and $e_2$ are sub-expressions):
    \begin{itemize}
    \item the algorithm searches the binary ops table for the tuple equal to (address of $e_1$, address of $e_2$, op code of +) (it is the \alert{search key})
    \item if the tuple is found in the table, the node already exists, and its memory address is returned
    \item otherwise, the node is created, and is added to the table with its search key
    \end{itemize}
  \item Maximum sharing is achieved, because expression trees are constructed bottom-up
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{Final remarks about expressions}
  \begin{itemize}
  \item Storage of negative constants
    \begin{itemize}
    \item class \texttt{NumConstNode} only accepts positive constants
    \item a negative constant is stored as a unary minus applied to a positive constant
    \item this is a kind of identification constraint to avoid having two ways of representing negative constants: $(-2)$ and $-(2)$
    \end{itemize}
  \item Widely used constants
    \begin{itemize}
    \item class \texttt{DataTree} has attributes containing pointers to one, zero, and minus one constants
    \item these constants are used in many places (in simplification rules, in derivation algorithm...)
    \item sub-expression sharing algorithm ensures that those constants will never be duplicated
    \end{itemize}
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{List of statements}
  \begin{itemize}
  \item A statement is represented by an instance of a subclass of the abstract class \texttt{Statement}
  \item Three groups of statements:
    \begin{itemize}
    \item initialization statements (parameter initialization with $p = \ldots$, \texttt{initval}, \texttt{histval} or \texttt{endval} block)
    \item shocks blocks
    \item computing tasks (\texttt{check}, \texttt{simul}, ...)
    \end{itemize}
  \item Each type of statement has its own class (\textit{e.g.} \texttt{InitValStatement}, \texttt{SimulStatement}, ...)
  \item The class \texttt{ModFile} stores a list of pointers of type \texttt{Statement*}, corresponding to the statements of the \texttt{mod} file, in their order of declaration
  \item Heavy use of polymorphism in the check pass, computing pass, and when writing outputs: abstract class \texttt{Statement} provides a virtual method for these 3 actions
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{Evaluation context}
  \begin{itemize}
  \item The \texttt{ModFile} class contains an \alert{evaluation context}
  \item It is a map associating a numerical value to some symbols
  \item Filled in with \texttt{initval} block, and with parameters initializations
  \item Used during equation normalization (in the block decomposition), for finding non-zero entries in the jacobian
  \end{itemize}
\end{frame}

\section{Check pass}

\begin{frame}
  \frametitle{Error checking during parsing}
  \begin{itemize}
  \item Some errors in the \texttt{mod} file can be detected during the parsing:
    \begin{itemize}
    \item syntax errors
    \item use of undeclared symbol in model block, initval block...
    \item use of a symbol incompatible with its type (\textit{e.g.} parameter in initval, local variable used both in model and outside model)
    \item multiple shocks declaration for the same variable
    \end{itemize}
  \item But some other checks can only be done when parsing is completed
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{Check pass}
  \begin{itemize}
  \item The check pass is implemented through method \texttt{ModFile::checkPass()}
  \item Does the following checks:
    \begin{itemize}
    \item check there is at least one equation in the model (except if doing a standalone BVAR estimation)
    \item check there is not both a \texttt{simul} and a \texttt{stoch\_simul} (or another command triggering local approximation)
    \end{itemize}
  \item Other checks could be added in the future, for example:
    \begin{itemize}
    \item check that every endogenous variable is used at least once in current period
    \item check there is a single \texttt{initval} (or \texttt{histval}, \texttt{endval}) block
    \item check that \texttt{varobs} is used if there is an estimation
    \end{itemize}
  \end{itemize}
\end{frame}

\section{Computing pass}

\begin{frame}
  \frametitle{Overview of the computing pass}
  \begin{itemize}
  \item Computing pass implemented in \texttt{ModFile::computingPass()}
  \item Begins with a determination of which derivatives to compute
  \item Then, calls \texttt{ModelTree::computingPass()}, which computes:
    \begin{itemize}
    \item leag/lag variable incidence matrix
    \item symbolic derivatives
    \item equation normalization + block decomposition (only in \texttt{sparse\_dll} mode)
    \item temporary terms
    \item symbolic gaussian elimination (only in \texttt{sparse\_dll} mode) \textit{(actually this is done in the output writing pass, but should be moved to the computing pass)}
    \end{itemize}
  \item Finally, calls \texttt{Statement::computingPass()} on all statements
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{The variable table}
  \begin{itemize}
  \item In the context of class \texttt{ModelTree}, a \alert{variable} is a pair (symbol, lead/lag)
  \item The symbol must correspond to an endogenous or exogenous variable (in the sense of the model)
  \item The class \texttt{VariableTable} keeps track of those pairs
  \item An instance of \texttt{ModelTree} contains an instance of \texttt{VariableTable}
  \item Each pair (\texttt{symbol\_id}, lead/lag) is given a unique \texttt{variable\_id}
  \item After the computing pass, the class \texttt{VariableTable} writes the leag/lag incidence matrix:
    \begin{itemize}
    \item endogenous symbols in row
    \item leads/lags in column
    \item elements of the matrix are either 0 or correspond to a variable ID, depending on whether the pair (symbol, lead/lag) is used or not in the model
    \end{itemize}
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{Static versus dynamic model}
  \begin{itemize}
  \item The static model is simply the (dynamic) model from which the leads/lags have been omitted
  \item Static model used to characterize the steady state
  \item The jacobian of the static model is used in the (Matlab) solver for determining the steady state
  \item No need to derive static and dynamic models independently: \\
    static derivatives can be easily deduced from dynamic derivatives
  \end{itemize}
  \begin{block}{Example}
    \begin{itemize}
    \item suppose dynamic model is $2x \cdot x_{-1} = 0$
    \item static model is $2x^2 = 0$, whose derivative w.r. to $x$ is $4x$
    \item dynamic derivative w.r. to $x$ is $2x_{-1}$, and w.r. to $x_{-1}$ is $2x$
    \item removing leads/lags from dynamic derivatives and summing over the two partial derivatives w.r. to $x$ and $x_{-1}$ gives $4x$
    \end{itemize}
  \end{block}
\end{frame}

\begin{frame}
  \frametitle{Which derivatives to compute ?}
  \begin{itemize}
  \item In deterministic mode:
    \begin{itemize}
    \item static jacobian (w.r. to endogenous variables only)
    \item dynamic jacobian (w.r. to endogenous variables only)
    \end{itemize}
  \item In stochastic mode:
    \begin{itemize}
    \item static jacobian (w.r. to endogenous variables only)
    \item dynamic jacobian (w.r. to all variables)
    \item possibly dynamic hessian (if \texttt{order} option $\geq 2$)
    \item possibly dynamic 3rd derivatives (if \texttt{order} option $\geq 3$)
    \end{itemize}
  \item For ramsey policy: the same as above, but with one further order of derivation than declared by the user with \texttt{order} option (the derivation order is determined in the check pass, see \texttt{RamseyPolicyStatement::checkPass()})
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{Derivation algorithm (1/2)}
  \begin{itemize}
  \item Derivation of the model implemented in \texttt{ModelTree::derive()}
  \item Simply calls \texttt{ExprNode::getDerivative(varID)} on each equation node
  \item Use of polymorphism:
    \begin{itemize}
    \item for a constant or variable node, derivative is straightforward (0 or 1)
    \item for a unary or binary op node, recursively calls method \texttt{getDerivative()} on children to construct derivative of parent, using usual derivation rules, such as:
      \begin{itemize}
      \item $(log(e))' = \frac{e'}{e}$
      \item $(e_1 + e_2)' = e'_1 + e'_2$
      \item $(e_1 \cdot e_2)' = e'_1\cdot e_2 + e_1\cdot e'_2$
      \item $\ldots$
      \end{itemize}
    \end{itemize}
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{Derivation algorithm (2/2)}
  \framesubtitle{Optimizations}
  \begin{itemize}
  \item Caching of derivation results
    \begin{itemize}
    \item method \texttt{ExprNode::getDerivative(varID)} memorizes its result in a member attribute the first time it is called
    \item so that the second time it is called (with the same argument), simply returns the cached value without recomputation
    \item caching is useful because of sub-expression sharing
    \end{itemize}
    \pause
  \item Symbolic \textit{a priori}
    \begin{itemize}
    \item consider the expression $x+y^2$
    \item without any computation, you know its derivative w.r. to $z$ is zero
    \item each node stores in an attribute the set of variables which appear in the expression it represents ($\{x,y\}$ in the example)
    \item that set is computed in the constructor (straigthforwardly for a variable or a constant, recursively for other nodes, using the sets of the children)
    \item when \texttt{getDerivative(varID)} is called, immediately returns zero if \texttt{varID} is not in that set
    \end{itemize}
  \end{itemize}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Temporary terms (1/2)}
  \begin{itemize}
  \item When the preprocessor writes equations and derivatives in its outputs, it takes advantage of sub-expression sharing
  \item In Matlab static and dynamic output files, equations are preceded by a list of \alert{temporary terms}
  \item Those terms are temporary variables containing expressions shared by several equations or derivatives
  \item Doing so greatly enhances the computing speed of model residual, jacobian or hessian
  \end{itemize}
  \begin{block}{Example}
    \begin{columns}[t]
      \begin{column}{6cm}
        The equations:
\begin{verbatim}
residual(0)=x+y^2-z^3;
residual(1)=3*(x+y^2)+1;
\end{verbatim}
      \end{column}
      \begin{column}{4.8cm}
        Can be optimized in:
\begin{verbatim}
T01=x+y^2;
residual(0)=T01-z^3;
residual(1)=3*T01+1;
\end{verbatim}
      \end{column}
    \end{columns}
  \end{block}
\end{frame}

\begin{frame}
  \frametitle{Temporary terms (2/2)}
  \begin{itemize}
  \item Expression storage in the preprocessor implements maximal sharing...
  \item ...but it is not optimal for the Matlab output files, because creating a temporary variable also has a cost (in terms of CPU and of memory)
  \item Computation of temporary terms implements a trade-off between:
    \begin{itemize}
    \item cost of duplicating sub-expressions
    \item cost of creating new variables
    \end{itemize}
  \item Algorithm uses a recursive cost calculation, which marks some nodes as being ``temporary''
  \item \textit{Problem}: redundant with optimizations done by the C/C++ compiler (when Dynare is in DLL mode) $\Rightarrow$ compilation very slow on big models
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{The special case of Ramsey policy}
  \begin{itemize}
  \item For most statements, the method \texttt{computingPass()} is a no-op...
  \item ...except for \texttt{planner\_objective} statement, which serves to declare planner objective when doing optimal policy under commitment
  \item Class \texttt{PlannerObjectiveStatement} contains an instance of \texttt{ModelTree}: used to store the objective (only one equation in the tree)
  \item During the computing pass, triggers the computation of the first and second order (static) derivatives of the objective
  \end{itemize}
\end{frame}

\section{Writing outputs}

\begin{frame}
  \frametitle{Output overview}
  \begin{itemize}
  \item Implemented in \texttt{ModFile::writeOutputFiles()}
  \item If \texttt{mod} file is \texttt{model.mod}, all created filenames will begin with \texttt{model}
  \item Main output file is \texttt{model.m}, containing:
    \begin{itemize}
    \item general initialization commands
    \item symbol table output (from \texttt{SymbolTable::writeOutput()})
    \item lead/lag incidence matrix (from \texttt{ModelTree::writeOutput()})
    \item call to Matlab functions corresponding to the statements of the \texttt{mod} file (written by calling \texttt{Statement::writeOutput()} on all statements through polymorphism)
    \end{itemize}
  \item Subsidiary output files:
    \begin{itemize}
    \item one for the static model
    \item one for the dynamic model
    \item and one for the planner objective (if relevant)
    \item written through \texttt{ModelTree} methods: \texttt{writeStaticFile()} and \texttt{writeDynamicFile()}
    \end{itemize}
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{Model output files}
  Three possibles modes for \texttt{ModelTree} (see \texttt{mode} attribute):
  \begin{itemize}
  \item Standard mode: static and dynamic files in Matlab
  \item DLL mode:
    \begin{itemize}
    \item static and dynamic files in C++ source code (with corresponding headers)
    \item compiled through \texttt{mex} to allow execution from within Matlab
    \end{itemize}
  \item Sparse DLL mode:
    \begin{itemize}
    \item static file in Matlab
    \item two possibilities for dynamic file:
      \begin{itemize}
      \item by default, a C++ source file (with header) and a binary file, to be read from the C++ code
      \item or, with \texttt{no\_compiler} option, a binary file in custom format, executed from Matlab through \texttt{simulate} DLL
      \item the second option serves to bypass compilation of C++ file which can be very slow
      \end{itemize}
    \end{itemize}
  \end{itemize}
\end{frame}

\section{Conclusion}

\begin{frame}
  \frametitle{Future work (1/2)}
  \framesubtitle{Enhancements, optimizations}
  \begin{itemize}
  \item Refactor and reorganize some portions of the code
  \item Create a testsuite (with unitary tests)
  \item Separate computation of temporary terms between static and dynamic outputs
  \item Enhance sub-expression sharing algorithm (using associativity, commutativity and factorization rules)
  \item Add many checks on the structure of the \texttt{mod} file
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{Future work (2/2)}
  \framesubtitle{Features}
  \begin{itemize}
  \item Add precompiler macros (\#include, \#define, \#if)
  \item Add handling for several (sub-)models
  \item Add indexed variables and control statements (if, loops) both in models and command language
  \item Add sum, diff, prod operators
  \item For unknown functions in the model: let user provide a derivative, or trigger numerical derivation
  \item Generalize binary code output
  \item Generalize block decomposition ?
  \end{itemize}
\end{frame}



\end{document}