File: tree.cpp

package info (click to toggle)
dynare 4.4.3-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 41,356 kB
  • ctags: 15,842
  • sloc: cpp: 77,029; ansic: 29,056; pascal: 13,241; sh: 4,811; objc: 3,061; yacc: 3,013; makefile: 1,479; lex: 1,258; python: 162; lisp: 54; xml: 8
file content (909 lines) | stat: -rw-r--r-- 21,830 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
// Copyright (C) 2005-2011, Ondra Kamenik

#include "utils/cc/exception.h"

#include "tree.h"

#include <cstdlib>

#include <cmath>
#include <limits>

using namespace ogp;


/** Here we just implement complementary error function without
 * declaring it for uses from outside this unit. The implementation is taken from "Numerical Recipes in C" 2nd ed. 1992 p. 221, */
double erffc(double x)
{
	double z = std::abs(x);
	double t = 1/(1+0.5*z);
	double r = t*exp(-z*z-1.26551223+t*(1.00002368+t*(0.37409196+t*(0.09678418+t*(-0.18628806+t*(0.27886807+t*(-1.13520398+t*(1.48851587+t*(-0.82215223+t*0.17087277)))))))));
	return x >= 0 ? r : 2-r;
}

/** Here we initialize OperationTree to contain only zero, one, nan
 * and two_over_pi terms. */
OperationTree::OperationTree()
{
	last_nulary = -1;
	// allocate space for the constants
	for (int i = 0; i < num_constants; i++)
		add_nulary();
}

int OperationTree::add_nulary()
{
	int op = terms.size();
	Operation nulary;
	terms.push_back(nulary);
	_Tintset s;
	s.insert(op);
	nul_incidence.push_back(s);
	_Tderivmap empty;
	derivatives.push_back(empty);
	last_nulary = op;
	return op;
}

int OperationTree::add_unary(code_t code, int op)
{
	if (op == zero &&
		(code == UMINUS ||
		 code == SIN ||
		 code == TAN ||
		 code == SQRT ||
		 code == ERF))
		return zero;
	if (op == zero && code == LOG || op == nan)
		return nan;
	if (op == zero && (code == EXP ||
					   code == COS ||
					   code == ERFC))
		return one;

	Operation unary(code, op);
	_Topmap::const_iterator i = ((const _Topmap&)opmap).find(unary);
	if (i == opmap.end()) {
		int newop = terms.size();
		// add to the terms
		terms.push_back(unary);
		// copy incidence of the operand
		nul_incidence.push_back(nul_incidence[op]);
		// insert it to opmap
		opmap.insert(_Topval(unary, newop));
		// add empty map of derivatives
		_Tderivmap empty;
		derivatives.push_back(empty);
		return newop;
	}
	return (*i).second;
}

int OperationTree::add_binary(code_t code, int op1, int op2)
{
	// quick exits for special values
	if (op1 == nan || op2 == nan)
		return nan;
	// for plus
	if (code == PLUS)
		if (op1 == zero && op2 == zero)
			return zero;
		else if (op1 == zero)
			return op2;
		else if (op2 == zero)
			return op1;
	// for minus
	if (code == MINUS)
		if (op1 == zero && op2 == zero)
			return zero;
		else if (op1 == zero)
			return add_unary(UMINUS, op2);
		else if (op2 == zero)
			return op1;
	// for times
	if (code == TIMES)
		if (op1 == zero || op2 == zero)
			return zero;
		else if (op1 == one)
			return op2;
		else if (op2 == one)
			return op1;
	// for divide
	if (code == DIVIDE)
		if (op1 == op2)
			return one;
		else if (op1 == zero)
			return zero;
		else if (op2 == zero)
			return nan;
	// for power
	if (code == POWER)
		if (op1 == zero && op2 == zero)
			return nan;
		else if (op1 == zero)
			return zero;
		else if (op2 == zero)
			return one;
		else if (op1 == one)
			return one;
		else if (op2 == one)
			return op1;

	// order operands of commutative operations
	if (code == TIMES || code == PLUS)
		if (op1 > op2) {
			int tmp = op1;
			op1 = op2;
			op2 = tmp;
		}

	// construct operation and check/add it
	Operation binary(code, op1, op2);
	_Topmap::const_iterator i = ((const _Topmap&)opmap).find(binary);
	if (i == opmap.end()) {
		int newop = terms.size();
		terms.push_back(binary);
		// sum both sets of incidenting nulary operations
		nul_incidence.push_back(nul_incidence[op1]);
		nul_incidence.back().insert(nul_incidence[op2].begin(), nul_incidence[op2].end());
		// add to opmap
		opmap.insert(_Topval(binary, newop));
		// add empty map of derivatives
		_Tderivmap empty;
		derivatives.push_back(empty);
		return newop;
	}
	return (*i).second;
}

int OperationTree::add_derivative(int t, int v)
{
	if (t < 0 || t >= (int) terms.size())
		throw ogu::Exception(__FILE__,__LINE__,
							 "Wrong value for tree index in OperationTree::add_derivative");

	// quick returns for nulary terms or empty incidence
	if (terms[t].nary() == 0 && t != v) {
		return zero;
	}
	if (terms[t].nary() == 0 && t == v) {
		return one;
	}
	if (nul_incidence[t].end() == nul_incidence[t].find(v)) {
		return zero;
	}

	// quick return if the derivative has been registered
	_Tderivmap::const_iterator i = derivatives[t].find(v);
	if (i != derivatives[t].end())
		return (*i).second;

	int res = -1;
	switch (terms[t].getCode()) {

	case UMINUS:
	{
		int tmp = add_derivative(terms[t].getOp1(), v);
		res = add_unary(UMINUS, tmp);
		break;
	}
	case LOG:
	{
		int tmp = add_derivative(terms[t].getOp1(), v);
		res = add_binary(DIVIDE, tmp, terms[t].getOp1());
		break;
	}
	case EXP:
	{
		int tmp = add_derivative(terms[t].getOp1(), v);
		res = add_binary(TIMES, t, tmp);
		break;
	}
	case SIN:
	{
		int tmp = add_derivative(terms[t].getOp1(), v);
		res = add_binary(TIMES, add_unary(COS, terms[t].getOp1()), tmp);
		break;
	}
	case COS:
	{
		int tmp = add_derivative(terms[t].getOp1(), v);
		res = add_unary(UMINUS, add_binary(TIMES, add_unary(SIN, terms[t].getOp1()), tmp));
		break;
	}
	case TAN:
	{
		int tmp = add_derivative(terms[t].getOp1(), v);
		int tmp2 = add_unary(COS, terms[t].getOp1());
		res = add_binary(DIVIDE, tmp, add_binary(TIMES, tmp2, tmp2));
		break;
	}
	case SQRT:
	{
		int tmp = add_derivative(terms[t].getOp1(), v);
		res = add_binary(DIVIDE, tmp,
						 add_binary(PLUS, t, t));
		break;
	}
	case ERF:
	{
		int tmp = add_binary(TIMES, terms[t].getOp1(), terms[t].getOp1());
		tmp = add_unary(UMINUS, tmp);
		tmp = add_unary(EXP, tmp);
		int der = add_derivative(terms[t].getOp1(), v);
		tmp = add_binary(TIMES, tmp, der);
		res = add_binary(TIMES, two_over_pi, tmp);
		break;
	}
	case ERFC:
	{
		int tmp = add_binary(TIMES, terms[t].getOp1(), terms[t].getOp1());
		tmp = add_unary(UMINUS, tmp);
		tmp = add_unary(EXP, tmp);
		int der = add_derivative(terms[t].getOp1(), v);
		tmp = add_binary(TIMES, tmp, der);
		tmp = add_binary(TIMES, two_over_pi, tmp);
		res = add_unary(UMINUS, tmp);
		break;
	}
	case PLUS:
	{
		int tmp1 = add_derivative(terms[t].getOp1(), v);
		int tmp2 = add_derivative(terms[t].getOp2(), v);
		res = add_binary(PLUS, tmp1, tmp2);
		break;
	}
	case MINUS:
	{
		int tmp1 = add_derivative(terms[t].getOp1(), v);
		int tmp2 = add_derivative(terms[t].getOp2(), v);
		res = add_binary(MINUS, tmp1, tmp2);
		break;
	}
	case TIMES:
	{
		int tmp1 = add_derivative(terms[t].getOp1(), v);
		int tmp2 = add_derivative(terms[t].getOp2(), v);
		int res1 = add_binary(TIMES, terms[t].getOp1(), tmp2);
		int	res2 = add_binary(TIMES, tmp1, terms[t].getOp2());
		res = add_binary(PLUS, res1, res2);
		break;
	}
	case DIVIDE:
	{
		int tmp1 = add_derivative(terms[t].getOp1(), v);
		int tmp2 = add_derivative(terms[t].getOp2(), v);
		if (tmp2 == zero)
			res = add_binary(DIVIDE, tmp1, terms[t].getOp2());
		else {
			int nom = add_binary(MINUS,
								 add_binary(TIMES, tmp1, terms[t].getOp2()),
								 add_binary(TIMES, tmp2, terms[t].getOp1()));
			int den = add_binary(TIMES, terms[t].getOp2(), terms[t].getOp2());
			res = add_binary(DIVIDE, nom, den);
		}
		break;
	}
	case POWER:
	{
		int tmp1 = add_derivative(terms[t].getOp1(), v);
		int tmp2 = add_derivative(terms[t].getOp2(), v);
		int s1 = add_binary(TIMES, tmp2,
							add_binary(TIMES, t,
									   add_unary(LOG, terms[t].getOp1())));
		int s2 = add_binary(TIMES, tmp1,
							add_binary(TIMES, terms[t].getOp2(),
									   add_binary(POWER, terms[t].getOp1(),
												  add_binary(MINUS, terms[t].getOp2(), one))));
		res = add_binary(PLUS, s1, s2);
		break;
	}
	case NONE:
		break;
	}

	if (res == -1)
		throw ogu::Exception(__FILE__,__LINE__,
							 "Unknown operation code.");

	register_derivative(t, v, res);

	return res;
}

int OperationTree::add_substitution(int t, const map<int,int>& subst)
{
	return add_substitution(t, subst, *this); 
}

int OperationTree::add_substitution(int t, const map<int,int>& subst,
									const OperationTree& otree)
{
	// return substitution of t if it is in the map
	map<int,int>::const_iterator it = subst.find(t);
	if (subst.end() != it)
		return (*it).second;

	int nary = otree.terms[t].nary();
	if (nary == 2) {
		// return the binary operation of the substituted terms
		int t1 = add_substitution(otree.terms[t].getOp1(), subst, otree);
		int t2 = add_substitution(otree.terms[t].getOp2(), subst, otree);
		return add_binary(otree.terms[t].getCode(), t1, t2);
	} else if (nary == 1) {
		// return the unary operation of the substituted term
		int t1 = add_substitution(otree.terms[t].getOp1(), subst, otree);
		return add_unary(otree.terms[t].getCode(), t1);
	} else {
		// if t is not the first num_constants, and otree is not this
		// tree, then raise and exception. Otherwise return t, since
		// it is either a special term (having the same semantics in
		// both trees), or the trees are the same, hence t has the
		// same semantics
		if (t < num_constants || this == &otree)
			return t;
		else {
			throw ogu::Exception(__FILE__,__LINE__,
								 "Incomplete substitution map in OperationTree::add_substitution");
			return -1;
		}
	}
}


void OperationTree::nularify(int t)
{
	// remove the original operation from opmap
	_Topmap::iterator it = opmap.find(terms[t]);
	if (it != opmap.end())
		opmap.erase(it);
	// turn the operation to nulary
	Operation nulary_op;
	terms[t] = nulary_op;
	// update last nulary
	if (last_nulary < t)
		last_nulary = t;
	// update nul_incidence information for all terms including t
	update_nul_incidence_after_nularify(t);
}

void OperationTree::register_derivative(int t, int v, int tder)
{
	// todo: might check that the insert inserts a new pair
	derivatives[t].insert(_Tderivmap::value_type(v, tder));
}

unordered_set<int> OperationTree::select_terms(int t, const opselector& sel) const
{
	unordered_set<int> subterms;
	select_terms(t, sel, subterms);
	return subterms;
}

void OperationTree::select_terms(int t, const opselector& sel, unordered_set<int>& subterms) const
{
	const Operation& op = terms[t];

	if (sel(t))
		subterms.insert(t);
	else
		if (op.nary() == 2) {
			select_terms(op.getOp1(), sel, subterms);
			select_terms(op.getOp2(), sel, subterms);
		} else if (op.nary() == 1) {
			select_terms(op.getOp1(), sel, subterms);
		}
}

unordered_set<int> OperationTree::select_terms_inv(int t, const opselector& sel) const
{
	unordered_set<int> subterms;
	select_terms_inv(t, sel, subterms);
	return subterms;
}

bool OperationTree::select_terms_inv(int t, const opselector& sel, unordered_set<int>& subterms) const
{
	const Operation& op = terms[t];

	if (op.nary() == 2) {
		bool a1 = select_terms_inv(op.getOp1(), sel, subterms);
		bool a2 = select_terms_inv(op.getOp2(), sel, subterms);
		if (a1 && a2 && sel(t)) {
			subterms.insert(t);
			return true;
		}
	} else if (op.nary() == 1) {
		bool a1 = select_terms_inv(op.getOp1(), sel, subterms);
		if (a1 && sel(t)) {
			subterms.insert(t);
			return true;
		}
	} else {
		if (sel(t)) {
			subterms.insert(t);
			return true;
		}
	}

	return false;
}

void OperationTree::forget_derivative_maps()
{
	for (unsigned int i = 0; i < derivatives.size(); i++)
		derivatives[i].clear();
}


void OperationTree::print_operation_tree(int t, FILE* fd, OperationFormatter& f) const
{
	f.format(terms[t], t, fd);
}

void OperationTree::print_operation(int t) const
{
	DefaultOperationFormatter dof(*this);
	print_operation_tree(t, stdout, dof);
}

void OperationTree::update_nul_incidence_after_nularify(int t)
{
	unordered_set<int> updated;
	for (int tnode = num_constants; tnode < (int)terms.size(); tnode++) {
		const Operation& op = terms[tnode];
		if (op.nary() == 2) {
			int op1 = op.getOp1();
			int op2 = op.getOp2();
			if (op1 >= tnode || op2 >= tnode)
				throw ogu::Exception(__FILE__,__LINE__,
									 "Tree disorder asserted");
			bool updated1 = (updated.end() != updated.find(op1));
			bool updated2 = (updated.end() != updated.find(op2));
			if (updated1 || updated2) {
				nul_incidence[tnode] = nul_incidence[op1];
				nul_incidence[tnode].insert(nul_incidence[op2].begin(), nul_incidence[op2].end());
				updated.insert(tnode);
			}
		} else if (op.nary() == 1) {
			int op1 = op.getOp1();
			if (op1 >= tnode)
				throw ogu::Exception(__FILE__,__LINE__,
									 "Tree disorder asserted");
			bool updated1 = (updated.end() != updated.find(op1));
			if (updated1) {
				nul_incidence[tnode] = nul_incidence[op1];
				updated.insert(tnode);
			}
		} else if (op.nary() == 0) {
			if (tnode == t) {
				nul_incidence[tnode].clear();
				nul_incidence[tnode].insert(tnode);
				updated.insert(tnode);
			}
		}
	}
}


EvalTree::EvalTree(const OperationTree& ot, int last)
	: otree(ot),
	  values(new double[(last==-1)? ot.terms.size() : last+1]),
	  flags(new bool[(last==-1)? ot.terms.size() : last+1]),
	  last_operation((last==-1)? ot.terms.size()-1 : last)
{
	if (last_operation < OperationTree::num_constants-1 ||
		last_operation > (int)ot.terms.size()-1)
		throw ogu::Exception(__FILE__,__LINE__,
							 "Wrong last in EvalTree constructor.");

	values[0] = 0.0;
	flags[0] = true;
	values[1] = 1.0;
	flags[1] = true;
	values[2] = std::numeric_limits<double>::quiet_NaN();
	flags[2] = true;
	values[3] = 2.0/sqrt(M_PI);
	flags[3] = true;
	// this sets from num_constants on
	reset_all();
}

void EvalTree::reset_all()
{
	for (int i = OperationTree::num_constants; i <= last_operation; i++)
		flags[i] = false;
}

void EvalTree::set_nulary(int t, double val)
{
	if (t < 0 || t > last_operation)
		throw ogu::Exception(__FILE__,__LINE__,
							 "The tree index out of bounds in EvalTree::set_nulary");
	if (t < OperationTree::num_constants || otree.terms[t].nary() != 0)
		throw ogu::Exception(__FILE__,__LINE__,
							 "The term is not nulary assignable in EvalTree::set_nulary");

	values[t] = val;
	flags[t] = true;
}

double EvalTree::eval(int t)
{
	if (t < 0 || t > last_operation)
		throw ogu::Exception(__FILE__,__LINE__,
							 "The tree index out of bounds in EvalTree::eval");
	if (otree.terms[t].nary() == 0 && flags[t] == false)
		throw ogu::Exception(__FILE__,__LINE__,
							 "Nulary term has not been assigned a value in EvalTree::eval");

	if (! flags[t]) {
		const Operation& op = otree.terms[t];
		if (op.nary() == 1) {
			double r1 = eval(op.getOp1());
			double res;
			if (op.getCode() == UMINUS)
				res = -r1;
			else if (op.getCode() == LOG)
				res = log(r1);
			else if (op.getCode() == EXP)
				res = exp(r1);
			else if (op.getCode() == SIN)
				res = sin(r1);
			else if (op.getCode() == COS)
				res = cos(r1);
			else if (op.getCode() == TAN)
				res = tan(r1);
			else if (op.getCode() == SQRT)
				res = sqrt(r1);
			else if (op.getCode() == ERF)
				res = 1-erffc(r1);
			else if (op.getCode() == ERFC)
				res = erffc(r1);
			else {
				throw ogu::Exception(__FILE__,__LINE__,
									 "Unknown unary operation code in EvalTree::eval");
				res = 0.0;
			}
			values[t] = res;
			flags[t] = true;
		} else if (op.nary() == 2) {
			double res;
			if (op.getCode() == PLUS) {
				double r1 = eval(op.getOp1());
				double r2 = eval(op.getOp2());
				res = r1 + r2;
			} else if (op.getCode() == MINUS) {
				double r1 = eval(op.getOp1());
				double r2 = eval(op.getOp2());
				res = r1 - r2;
			} else if (op.getCode() == TIMES) {
				// pickup less complex formula first
				unsigned int nul1 = otree.nulary_of_term(op.getOp1()).size();
				unsigned int nul2 = otree.nulary_of_term(op.getOp2()).size();
				if (nul1 < nul2) {
					double r1 = eval(op.getOp1());
					if (r1 == 0.0)
						res = 0.0;
					else {
						double r2 = eval(op.getOp2());
						res = r1 * r2;
					}
				} else {
					double r2 = eval(op.getOp2());
					if (r2 == 0)
						res = 0.0;
					else {
						double r1 = eval(op.getOp1());
						res = r1*r2;
					}
				}
			} else if (op.getCode() == DIVIDE) {
				double r1 = eval(op.getOp1());
				if (r1 == 0)
					res = 0.0;
				else {
					double r2 = eval(op.getOp2());
					res = r1 / r2;
				}
			} else if (op.getCode() == POWER) {
				// suppose that more complex is the first op in average
				double r2 = eval(op.getOp2());
				if (r2 == 0.0)
					res = 1.0;
				else {
					double r1 = eval(op.getOp1());
					res = pow(r1, r2);
				}
			} else {
				throw ogu::Exception(__FILE__,__LINE__,
									 "Unknown binary operation code in EvalTree::eval");
				res = 0.0;
			}
			values[t] = res;
			flags[t] = true;
		}
		return values[t];
	}

	// if (! std::isfinite(values[t]))
	//	printf("Tree value t=%d is not finite = %f\n", t, values[t]);

	return values[t];
}

void EvalTree::print() const
{
	printf("last_op=%d\n", last_operation);
	printf("         0     1     2     3     4     5     6     7     8     9\n");
	printf("----------------------------------------------------------------\n");
	for (int i = 0; i <= (last_operation+1)/10; i++) {
		printf("%-3d|", i);
		int j = 0;
		while (j < 10 && 10*i+j < last_operation+1) {
			int k = 10*i+j;
			if (flags[k])
				printf(" %5.1g", values[k]);
			else
				printf(" -----");
			j++;
		}
		printf("\n");
	}
}

void DefaultOperationFormatter::format(const Operation& op, int t, FILE* fd)
{
	// add to the stop_set
	if (stop_set.end() == stop_set.find(t))
		stop_set.insert(t);
	else
		return;

	// call recursively non-nulary terms of the operation
	if (op.nary() == 2) {
		int t1 = op.getOp1();
		const Operation& op1 = otree.terms[t1];
		int t2 = op.getOp2();
		const Operation& op2 = otree.terms[t2];
		if (op1.nary() > 0)
			format(op1, t1, fd);
		if (op2.nary() > 0)
			format(op2, t2, fd);
	} 
	if (op.nary() == 1) {
		int t1 = op.getOp1();
		const Operation& op1 = otree.terms[t1];
		if (op1.nary() > 0)
			format(op1, t1, fd);
	}

	// print 'term ='
	format_term(t, fd);
	fprintf(fd, " = ");
	if (op.nary() == 0) {
		format_nulary(t, fd);
	} else if (op.nary() == 1) {
		int t1 = op.getOp1();
		const Operation& op1 = otree.terms[t1];
		const char* opname = "unknown";
		switch (op.getCode()) {
		case UMINUS:
			opname = "-";
			break;
		case LOG:
			opname = "log";
			break;
		case EXP:
			opname = "exp";
			break;
		case SIN:
			opname = "sin";
			break;
		case COS:
			opname = "cos";
			break;
		case TAN:
			opname = "tan";
			break;
		case SQRT:
			opname = "sqrt";
			break;
		case ERF:
			opname = "erf";
			break;
		case ERFC:
			opname = "erfc";
			break;
		default:
			break;
		}
		fprintf(fd, "%s(", opname);
		if (op1.nary() == 0)
			format_nulary(t1, fd);
		else
			format_term(t1, fd);
		fprintf(fd, ")");
	} else {
		int t1 = op.getOp1();
		const Operation& op1 = otree.terms[t1];
		int t2 = op.getOp2();
		const Operation& op2 = otree.terms[t2];
		const char* opname = "unknown";
		switch (op.getCode()) {
		case PLUS:
			opname = "+";
			break;
		case MINUS:
			opname = "-";
			break;
		case TIMES:
			opname = "*";
			break;
		case DIVIDE:
			opname = "/";
			break;
		case POWER:
			opname = "^";
			break;
		default:
			break;
		}
		if (op1.nary() == 0)
			format_nulary(t1, fd);
		else
			format_term(t1, fd);
		fprintf(fd, " %s ", opname);
		if (op2.nary() == 0)
			format_nulary(t2, fd);
		else
			format_term(t2, fd);
	}

	print_delim(fd);

}

void DefaultOperationFormatter::format_term(int t, FILE* fd) const
{
	fprintf(fd, "$%d", t);
}

void DefaultOperationFormatter::format_nulary(int t, FILE* fd) const
{
	if (t == OperationTree::zero)
		fprintf(fd, "0");
	else if (t == OperationTree::one)
		fprintf(fd, "1");
	else if (t == OperationTree::nan)
		fprintf(fd, "NaN");
	else
		fprintf(fd, "$%d", t);
}

void DefaultOperationFormatter::print_delim(FILE* fd) const
{
	fprintf(fd, ";\n");
}

std::string OperationStringConvertor::convert(const Operation& op, int t) const
{
	if (op.nary() == 0) {
		if (t < OperationTree::num_constants)
			if (t == OperationTree::zero)
				return std::string("0");
			else if (t == OperationTree::one)
				return std::string("1");
			else if (t == OperationTree::nan)
				return std::string("NaN");
			else if (t == OperationTree::two_over_pi) {
				char buf[100];
				sprintf(buf, "%20.16g", 2.0/std::sqrt(M_PI));
				return std::string(buf);
			} else {
				return std::string("error!error");
			}
		else
			return nulsc.convert(t);
	} else if (op.nary() == 1) {
		int t1 = op.getOp1();
		const Operation& op1 = otree.operation(t1);
		const char* opname = "unknown";
		switch (op.getCode()) {
		case UMINUS:
			opname = "-";
			break;
		case LOG:
			opname = "log";
			break;
		case EXP:
			opname = "exp";
			break;
		case SIN:
			opname = "sin";
			break;
		case COS:
			opname = "cos";
			break;
		case TAN:
			opname = "tan";
			break;
		case SQRT:
			opname = "sqrt";
			break;
		case ERF:
			opname = "erf";
			break;
		case ERFC:
			opname = "erfc";
			break;
		default:
			break;
		}
		std::string s1 = convert(op1, t1);
		return std::string(opname) + "(" + s1 + ")";
	} else {
		int t1 = op.getOp1();
		const Operation& op1 = otree.operation(t1);
		int t2 = op.getOp2();
		const Operation& op2 = otree.operation(t2);
		const char* opname = "unknown";
		switch (op.getCode()) {
		case PLUS:
			opname = "+";
			break;
		case MINUS:
			opname = "-";
			break;
		case TIMES:
			opname = "*";
			break;
		case DIVIDE:
			opname = "/";
			break;
		case POWER:
			opname = "^";
			break;
		default:
			break;
		}
		// decide about parenthesis
		bool op1_par = true;
		bool op2_par = true;
		if (op.getCode() == PLUS) {
			op1_par = false;
			op2_par = false;
		} else if (op.getCode() == MINUS) {
			op1_par = false;
			if (op2.getCode() != MINUS && op2.getCode() != PLUS)
				op2_par = false;
		} else {
			if (op1.nary() < 2)
				op1_par = false;
			if (op2.nary() < 2)
				op2_par = false;
		}

		std::string res;
		if (op1_par)
			res += "(";
		res += convert(op1, t1);
		if (op1_par)
			res += ")";
		res += " ";
		res += opname;
		res += " ";
		if (op2_par)
			res += "(";
		res += convert(op2, t2);
		if (op2_par)
			res += ")";

		return res;
	}
}

// Local Variables:
// mode:C++
// End: