1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
function disp_th_moments(dr,var_list)
% Display theoretical moments of variables
% Copyright (C) 2001-2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global M_ oo_ options_
if size(var_list,1) == 0
var_list = M_.endo_names(1:M_.orig_endo_nbr, :);
end
nvar = size(var_list,1);
ivar=zeros(nvar,1);
for i=1:nvar
i_tmp = strmatch(var_list(i,:),M_.endo_names,'exact');
if isempty(i_tmp)
error (['One of the variable specified does not exist']) ;
else
ivar(i) = i_tmp;
end
end
[oo_.gamma_y,stationary_vars] = th_autocovariances(dr,ivar,M_,options_);
m = dr.ys(ivar);
non_stationary_vars = setdiff(1:length(ivar),stationary_vars);
m(non_stationary_vars) = NaN;
i1 = find(abs(diag(oo_.gamma_y{1})) > 1e-12);
s2 = diag(oo_.gamma_y{1});
sd = sqrt(s2);
if options_.order == 2
m = m+oo_.gamma_y{options_.ar+3};
end
z = [ m sd s2 ];
oo_.mean = m;
oo_.var = oo_.gamma_y{1};
if ~options_.noprint %options_.nomoments == 0
if options_.order == 2
title='APROXIMATED THEORETICAL MOMENTS';
else
title='THEORETICAL MOMENTS';
end
if options_.hp_filter
title = [title ' (HP filter, lambda = ' num2str(options_.hp_filter) ')'];
end
headers=char('VARIABLE','MEAN','STD. DEV.','VARIANCE');
labels = deblank(M_.endo_names(ivar,:));
lh = size(labels,2)+2;
dyntable(title,headers,labels,z,lh,11,4);
if M_.exo_nbr > 1 && size(stationary_vars, 1) > 0
skipline()
if options_.order == 2
title='APPROXIMATED VARIANCE DECOMPOSITION (in percent)';
else
title='VARIANCE DECOMPOSITION (in percent)';
end
if options_.hp_filter
title = [title ' (HP filter, lambda = ' ...
num2str(options_.hp_filter) ')'];
end
headers = M_.exo_names;
headers(M_.exo_names_orig_ord,:) = headers;
headers = char(' ',headers);
lh = size(deblank(M_.endo_names(ivar(stationary_vars),:)),2)+2;
dyntable(title,headers,deblank(M_.endo_names(ivar(stationary_vars), ...
:)),100*oo_.gamma_y{options_.ar+2}(stationary_vars,:),lh,8,2);
end
conditional_variance_steps = options_.conditional_variance_decomposition;
if length(conditional_variance_steps)
oo_ = display_conditional_variance_decomposition(conditional_variance_steps,...
ivar,dr,M_, ...
options_,oo_);
end
end
if length(i1) == 0
skipline()
disp('All endogenous are constant or non stationary, not displaying correlations and auto-correlations')
skipline()
return
end
if options_.nocorr == 0 && size(stationary_vars, 1) > 0
corr = oo_.gamma_y{1}(i1,i1)./(sd(i1)*sd(i1)');
if ~options_.noprint,
skipline()
if options_.order == 2
title='APPROXIMATED MATRIX OF CORRELATIONS';
else
title='MATRIX OF CORRELATIONS';
end
if options_.hp_filter
title = [title ' (HP filter, lambda = ' num2str(options_.hp_filter) ')'];
end
labels = deblank(M_.endo_names(ivar(i1),:));
headers = char('Variables',labels);
lh = size(labels,2)+2;
dyntable(title,headers,labels,corr,lh,8,4);
end
end
if options_.ar > 0 && size(stationary_vars, 1) > 0
z=[];
for i=1:options_.ar
oo_.autocorr{i} = oo_.gamma_y{i+1};
z(:,i) = diag(oo_.gamma_y{i+1}(i1,i1));
end
if ~options_.noprint,
skipline()
if options_.order == 2
title='APPROXIMATED COEFFICIENTS OF AUTOCORRELATION';
else
title='COEFFICIENTS OF AUTOCORRELATION';
end
if options_.hp_filter
title = [title ' (HP filter, lambda = ' num2str(options_.hp_filter) ')'];
end
labels = deblank(M_.endo_names(ivar(i1),:));
headers = char('Order ',int2str([1:options_.ar]'));
lh = size(labels,2)+2;
dyntable(title,headers,labels,z,lh,8,4);
end
end
|