File: mode_and_variance_to_mean.m

package info (click to toggle)
dynare 4.4.3-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 41,356 kB
  • ctags: 15,842
  • sloc: cpp: 77,029; ansic: 29,056; pascal: 13,241; sh: 4,811; objc: 3,061; yacc: 3,013; makefile: 1,479; lex: 1,258; python: 162; lisp: 54; xml: 8
file content (189 lines) | stat: -rw-r--r-- 5,899 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
function [mu, parameters] = mode_and_variance_to_mean(m,s2,distribution,lower_bound,upper_bound)
% This function computes the mean of a distribution given the mode and variance of this distribution.
%
%  INPUTS 
%    m                [double]    scalar, mode of the distribution.
%    s2               [double]    scalar, variance of the distribution.
%    distribution     [integer]   scalar for the distribution shape 
%                                    1 gamma
%                                    2 inv-gamma-2
%                                    3 inv-gamma-1
%                                    4 beta    
%    lower_bound      [double]    scalar, lower bound of the random variable support (optional).
%    upper_bound      [double]    scalar, upper bound of the random variable support (optional).
%    
%  OUTPUT 
%    mu               [double]    scalar, mean of the distribution.
%    parameters       [double]    2*1 vector, parameters of the distribution.
%    

% Copyright (C) 2009 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

% Check input aruments. 
if ~(nargin==3 || nargin==5 || nargin==4 )
    error('mode_and_variance_to mean:: 3 or 5 input arguments are needed!')
end

% Set defaults bounds.
if nargin==3
    switch distribution
      case 1
        lower_bound = 0;
        upper_bound = Inf;
      case 3
        lower_bound = 0;
        upper_bound = Inf;
      case 2
        lower_bound = 0;
        upper_bound = Inf;
      case 4
        lower_bound = 0;
        upper_bound = 1;
      otherwise
        error('Unknown distribution!')
    end
end
if nargin==4
    switch distribution
      case 1
        upper_bound = Inf;
      case 3
        upper_bound = Inf;
      case 2
        upper_bound = Inf;
      case 4
        upper_bound = 1;
      otherwise
        error('Unknown distribution!')
    end
end


if (distribution==1)% Gamma distribution
    if m<lower_bound
        error('The mode has to be greater than the lower bound!')
    end
    if (m-lower_bound)<1e-12
        error('The gamma distribution should be specified with the mean and variance.')
    end        
    m = m - lower_bound ;
    beta  = -.5*m*(1-sqrt(1+4*s2/(m*m))) ;
    alpha = (m+beta)/beta ;
    parameters(1) = alpha;
    parameters(2) = beta;
    mu = alpha*beta + lower_bound ;
    return
end

if (distribution==2)% Inverse Gamma - 2 distribution
    if m<lower_bound+2*eps
        error('The mode has to be greater than the lower bound!')
    end
    m = m - lower_bound ;
    if isinf(s2)
        nu = 4;
        s  = 2*m;
    else
        delta = 2*(m*m/s2);
        poly = [ 1 , -(8+delta) , 20-4*delta , -(16+4*delta) ];
        all_roots  = roots(poly);
        real_roots = all_roots(find(abs(imag(all_roots))<2*eps));
        nu = real_roots(find(real_roots>2));
        s  = m*(nu+2);
    end
    parameters(1) = nu;
    parameters(2) = s;
    mu = s/(nu-2) + lower_bound;
    return
end

if (distribution==3)% Inverted Gamma 1 distribution
    if m<lower_bound+2*eps
        error('The mode has to be greater than the lower bound!')
    end
    m = m - lower_bound ;
    if isinf(s2)
        nu = 2;
        s  = 3*(m*m);
    else
        [mu, parameters] = mode_and_variance_to_mean(m,s2,2);
        nu = sqrt(parameters(1));
        nu2 = 2*nu;
        nu1 = 2;
        err = s2/(m*m) - (nu+1)/(nu-2) + .5*(nu+1)*(gamma((nu-1)/2)/gamma(nu/2))^2;
        while abs(nu2-nu1) > 1e-12
            if err < 0
                nu1 = nu;
                if nu < nu2
                    nu = nu2;
                else
                    nu = 2*nu;
                    nu2 = nu;
                end
            else
                nu2 = nu;
            end
            nu =  (nu1+nu2)/2;
            err = s2/(m*m) - (nu+1)/(nu-2) + .5*(nu+1)*(gamma((nu-1)/2)/gamma(nu/2))^2;
        end
        s = (nu+1)*(m*m) ;
    end
    parameters(1) = nu;
    parameters(2) = s;
    mu = sqrt(.5*s)*gamma(.5*(nu-1))/gamma(.5*nu) + lower_bound ;
    return
end

if (distribution==4)% Beta distribution
    if m<lower_bound
        error('The mode has to be greater than the lower bound!')
    end
    if m>upper_bound
        error('The mode has to be less than the upper bound!')
    end
    if (m-lower_bound)<1e-12
        error('The beta distribution should be specified with the mean and variance.')
    end
    if (upper_bound-m)<1e-12
        error('The beta distribution should be specified with the mean and variance.')
    end
    ll = upper_bound-lower_bound;
    m  = (m-lower_bound)/ll;
    s2 = s2/(ll*ll);
    delta = m^2/s2;
    poly = NaN(1,4);
    poly(1) = 1;
    poly(2) = 7*m-(1-m)*delta-3;
    poly(3) = 16*m^2-14*m+3-2*m*delta+delta;
    poly(4) = 12*m^3-16*m^2+7*m-1;
    all_roots = roots(poly);
    real_roots = all_roots(find(abs(imag(all_roots))<2*eps));
    idx = find(real_roots>1);
    if length(idx)>1
        error('Multiplicity of solutions for the beta distribution specification.')
    elseif isempty(idx)
        disp('No solution for the beta distribution specification. You should reduce the variance.')
        error();
    end
    alpha = real_roots(idx);
    beta = ((1-m)*alpha+2*m-1)/m;
    parameters(1) = alpha;
    parameters(2) = beta;
    mu = alpha/(alpha+beta)*(upper_bound-lower_bound)+lower_bound;
    return
end