1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
function [fval,grad,hess,exit_flag,info,PHI,SIGMAu,iXX,prior] = dsge_var_likelihood(xparam1,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults)
% Evaluates the posterior kernel of the bvar-dsge model.
%
% INPUTS
% o xparam1 [double] Vector of model's parameters.
% o gend [integer] Number of observations (without conditionning observations for the lags).
%
% OUTPUTS
% o fval [double] Value of the posterior kernel at xparam1.
% o cost_flag [integer] Zero if the function returns a penalty, one otherwise.
% o info [integer] Vector of informations about the penalty.
% o PHI [double] Stacked BVAR-DSGE autoregressive matrices (at the mode associated to xparam1).
% o SIGMAu [double] Covariance matrix of the BVAR-DSGE (at the mode associated to xparam1).
% o iXX [double] inv(X'X).
% o prior [double] a matlab structure describing the dsge-var prior.
%
% SPECIAL REQUIREMENTS
% None.
% Copyright (C) 2006-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global objective_function_penalty_base
persistent dsge_prior_weight_idx
grad=[];
hess=[];
exit_flag = [];
info = [];
PHI = [];
SIGMAu = [];
iXX = [];
prior = [];
% Initialization of of the index for parameter dsge_prior_weight in Model.params.
if isempty(dsge_prior_weight_idx)
dsge_prior_weight_idx = strmatch('dsge_prior_weight',Model.param_names);
end
% Get the number of estimated (dsge) parameters.
nx = EstimatedParameters.nvx + EstimatedParameters.np;
% Get the number of observed variables in the VAR model.
NumberOfObservedVariables = DynareDataset.info.nvobs;
% Get the number of lags in the VAR model.
NumberOfLags = DynareOptions.dsge_varlag;
% Get the number of parameters in the VAR model.
NumberOfParameters = NumberOfObservedVariables*NumberOfLags ;
if ~DynareOptions.noconstant
NumberOfParameters = NumberOfParameters + 1;
end
% Get empirical second order moments for the observed variables.
mYY = evalin('base', 'mYY');
mYX = evalin('base', 'mYX');
mXY = evalin('base', 'mXY');
mXX = evalin('base', 'mXX');
% Initialize some of the output arguments.
fval = [];
exit_flag = 1;
% Return, with endogenous penalty, if some dsge-parameters are smaller than the lower bound of the prior domain.
if DynareOptions.mode_compute ~= 1 && any(xparam1 < BayesInfo.lb)
k = find(xparam1 < BayesInfo.lb);
fval = objective_function_penalty_base+sum((BayesInfo.lb(k)-xparam1(k)).^2);
exit_flag = 0;
info = 41;
return;
end
% Return, with endogenous penalty, if some dsge-parameters are greater than the upper bound of the prior domain.
if DynareOptions.mode_compute ~= 1 && any(xparam1 > BayesInfo.ub)
k = find(xparam1 > BayesInfo.ub);
fval = objective_function_penalty_base+sum((xparam1(k)-BayesInfo.ub(k)).^2);
exit_flag = 0;
info = 42;
return;
end
% Get the variance of each structural innovation.
Q = Model.Sigma_e;
for i=1:EstimatedParameters.nvx
k = EstimatedParameters.var_exo(i,1);
Q(k,k) = xparam1(i)*xparam1(i);
end
offset = EstimatedParameters.nvx;
% Update Model.params and Model.Sigma_e.
Model.params(EstimatedParameters.param_vals(:,1)) = xparam1(offset+1:end);
Model.Sigma_e = Q;
% Get the weight of the dsge prior.
dsge_prior_weight = Model.params(dsge_prior_weight_idx);
% Is the dsge prior proper?
if dsge_prior_weight<(NumberOfParameters+NumberOfObservedVariables)/DynareDataset.info.ntobs;
fval = objective_function_penalty_base+abs(DynareDataset.info.ntobs*dsge_prior_weight-(NumberOfParameters+NumberOfObservedVariables));
exit_flag = 0;
info = 51;
info(2)=dsge_prior_weight;
info(3)=(NumberOfParameters+NumberOfObservedVariables)/DynareDataset.info.ntobs;
return
end
%------------------------------------------------------------------------------
% 2. call model setup & reduction program
%------------------------------------------------------------------------------
% Solve the Dsge model and get the matrices of the reduced form solution. T and R are the matrices of the
% state equation
[T,R,SteadyState,info,Model,DynareOptions,DynareResults] = dynare_resolve(Model,DynareOptions,DynareResults,'restrict');
% Return, with endogenous penalty when possible, if dynare_resolve issues an error code (defined in resol).
if info(1) == 1 || info(1) == 2 || info(1) == 5 || info(1) == 7 || info(1) ...
== 8 || info(1) == 22 || info(1) == 24 || info(1) == 25
fval = objective_function_penalty_base+1;
info = info(1);
exit_flag = 0;
return
elseif info(1) == 3 || info(1) == 4 || info(1) == 19 || info(1) == 20 || info(1) == 21
fval = objective_function_penalty_base+info(2);
info = info(1);
exit_flag = 0;
return
end
% Define the mean/steady state vector.
if ~DynareOptions.noconstant
if DynareOptions.loglinear
constant = transpose(log(SteadyState(BayesInfo.mfys)));
else
constant = transpose(SteadyState(BayesInfo.mfys));
end
else
constant = zeros(1,NumberOfObservedVariables);
end
%------------------------------------------------------------------------------
% 3. theoretical moments (second order)
%------------------------------------------------------------------------------
% Compute the theoretical second order moments
tmp0 = lyapunov_symm(T,R*Q*R',DynareOptions.qz_criterium,DynareOptions.lyapunov_complex_threshold);
mf = BayesInfo.mf1;
% Get the non centered second order moments
TheoreticalAutoCovarianceOfTheObservedVariables = zeros(NumberOfObservedVariables,NumberOfObservedVariables,NumberOfLags+1);
TheoreticalAutoCovarianceOfTheObservedVariables(:,:,1) = tmp0(mf,mf)+constant'*constant;
for lag = 1:NumberOfLags
tmp0 = T*tmp0;
TheoreticalAutoCovarianceOfTheObservedVariables(:,:,lag+1) = tmp0(mf,mf) + constant'*constant;
end
% Build the theoretical "covariance" between Y and X
GYX = zeros(NumberOfObservedVariables,NumberOfParameters);
for i=1:NumberOfLags
GYX(:,(i-1)*NumberOfObservedVariables+1:i*NumberOfObservedVariables) = TheoreticalAutoCovarianceOfTheObservedVariables(:,:,i+1);
end
if ~DynareOptions.noconstant
GYX(:,end) = constant';
end
% Build the theoretical "covariance" between X and X
GXX = kron(eye(NumberOfLags), TheoreticalAutoCovarianceOfTheObservedVariables(:,:,1));
for i = 1:NumberOfLags-1
tmp1 = diag(ones(NumberOfLags-i,1),i);
tmp2 = diag(ones(NumberOfLags-i,1),-i);
GXX = GXX + kron(tmp1,TheoreticalAutoCovarianceOfTheObservedVariables(:,:,i+1));
GXX = GXX + kron(tmp2,TheoreticalAutoCovarianceOfTheObservedVariables(:,:,i+1)');
end
if ~DynareOptions.noconstant
% Add one row and one column to GXX
GXX = [GXX , kron(ones(NumberOfLags,1),constant') ; [ kron(ones(1,NumberOfLags),constant) , 1] ];
end
GYY = TheoreticalAutoCovarianceOfTheObservedVariables(:,:,1);
assignin('base','GYY',GYY);
assignin('base','GXX',GXX);
assignin('base','GYX',GYX);
if ~isinf(dsge_prior_weight)% Evaluation of the likelihood of the dsge-var model when the dsge prior weight is finite.
tmp0 = dsge_prior_weight*DynareDataset.info.ntobs*TheoreticalAutoCovarianceOfTheObservedVariables(:,:,1) + mYY ;
tmp1 = dsge_prior_weight*DynareDataset.info.ntobs*GYX + mYX;
tmp2 = inv(dsge_prior_weight*DynareDataset.info.ntobs*GXX+mXX);
SIGMAu = tmp0 - tmp1*tmp2*tmp1'; clear('tmp0');
[SIGMAu_is_positive_definite, penalty] = ispd(SIGMAu);
if ~SIGMAu_is_positive_definite
fval = objective_function_penalty_base + penalty;
info = 52;
exit_flag = 0;
return;
end
SIGMAu = SIGMAu / (DynareDataset.info.ntobs*(1+dsge_prior_weight));
PHI = tmp2*tmp1'; clear('tmp1');
prodlng1 = sum(gammaln(.5*((1+dsge_prior_weight)*DynareDataset.info.ntobs- ...
NumberOfObservedVariables*NumberOfLags ...
+1-(1:NumberOfObservedVariables)')));
prodlng2 = sum(gammaln(.5*(dsge_prior_weight*DynareDataset.info.ntobs- ...
NumberOfObservedVariables*NumberOfLags ...
+1-(1:NumberOfObservedVariables)')));
lik = .5*NumberOfObservedVariables*log(det(dsge_prior_weight*DynareDataset.info.ntobs*GXX+mXX)) ...
+ .5*((dsge_prior_weight+1)*DynareDataset.info.ntobs-NumberOfParameters)*log(det((dsge_prior_weight+1)*DynareDataset.info.ntobs*SIGMAu)) ...
- .5*NumberOfObservedVariables*log(det(dsge_prior_weight*DynareDataset.info.ntobs*GXX)) ...
- .5*(dsge_prior_weight*DynareDataset.info.ntobs-NumberOfParameters)*log(det(dsge_prior_weight*DynareDataset.info.ntobs*(GYY-GYX*inv(GXX)*GYX'))) ...
+ .5*NumberOfObservedVariables*DynareDataset.info.ntobs*log(2*pi) ...
- .5*log(2)*NumberOfObservedVariables*((dsge_prior_weight+1)*DynareDataset.info.ntobs-NumberOfParameters) ...
+ .5*log(2)*NumberOfObservedVariables*(dsge_prior_weight*DynareDataset.info.ntobs-NumberOfParameters) ...
- prodlng1 + prodlng2;
else% Evaluation of the likelihood of the dsge-var model when the dsge prior weight is infinite.
iGXX = inv(GXX);
SIGMAu = GYY - GYX*iGXX*transpose(GYX);
PHI = iGXX*transpose(GYX);
lik = DynareDataset.info.ntobs * ( log(det(SIGMAu)) + NumberOfObservedVariables*log(2*pi) + ...
trace(inv(SIGMAu)*(mYY - transpose(mYX*PHI) - mYX*PHI + transpose(PHI)*mXX*PHI)/DynareDataset.info.ntobs));
lik = .5*lik;% Minus likelihood
end
% Add the (logged) prior density for the dsge-parameters.
lnprior = priordens(xparam1,BayesInfo.pshape,BayesInfo.p6,BayesInfo.p7,BayesInfo.p3,BayesInfo.p4);
fval = (lik-lnprior);
if (nargout == 8)
if isinf(dsge_prior_weight)
iXX = iGXX;
else
iXX = tmp2;
end
end
if (nargout==9)
if isinf(dsge_prior_weight)
iXX = iGXX;
else
iXX = tmp2;
end
iGXX = inv(GXX);
prior.SIGMAstar = GYY - GYX*iGXX*GYX';
prior.PHIstar = iGXX*transpose(GYX);
prior.ArtificialSampleSize = fix(dsge_prior_weight*DynareDataset.info.ntobs);
prior.DF = prior.ArtificialSampleSize - NumberOfParameters - NumberOfObservedVariables;
prior.iGXX = iGXX;
end
|