1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
function [ys,params,info] = evaluate_steady_state(ys_init,M,options,oo,steadystate_check_flag)
% function [ys,params,info] = evaluate_steady_state(ys_init,M,options,oo,steadystate_check_flag)
% Computes the steady state
%
% INPUTS
% ys_init vector initial values used to compute the steady
% state
% M struct model structure
% options struct options
% oo struct output results
% steadystate_check_flag boolean if true, check that the
% steadystate verifies the
% static model
%
% OUTPUTS
% ys vector steady state
% params vector model parameters possibly
% modified by user steadystate
% function
% info 2x1 vector error codes
%
% SPECIAL REQUIREMENTS
% none
% Copyright (C) 2001-2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
info = 0;
check = 0;
steadystate_flag = options.steadystate_flag;
params = M.params;
exo_ss = [oo.exo_steady_state; oo.exo_det_steady_state];
if length(M.aux_vars) > 0
h_set_auxiliary_variables = str2func([M.fname '_set_auxiliary_variables']);
ys_init = h_set_auxiliary_variables(ys_init,exo_ss,M.params);
end
if options.ramsey_policy
[ys,params] = dyn_ramsey_static(ys_init,M,options,oo);
elseif steadystate_flag
% explicit steady state file
[ys,params,info] = evaluate_steady_state_file(ys_init,exo_ss,M, ...
options);
if info(1)
return;
end
elseif (options.bytecode == 0 && options.block == 0)
if options.linear == 0
% non linear model
[ys,check] = dynare_solve([M.fname '_static'],...
ys_init,...
options.jacobian_flag, ...
exo_ss, params);
else
% linear model
fh_static = str2func([M.fname '_static']);
[fvec,jacob] = fh_static(ys_init,exo_ss, ...
params);
ii = find(~isfinite(fvec));
if ~isempty(ii)
ys=fvec;
check=1;
disp(['STEADY: numerical initial values or parameters incompatible with the following' ...
' equations'])
disp(ii')
disp('Check whether your model in truly linear')
elseif isempty(ii) && max(abs(fvec)) > 1e-12
ys = ys_init-jacob\fvec;
else
ys = ys_init;
end
if options.debug
if any(any(isinf(jacob) | isnan(jacob)))
[infrow,infcol]=find(isinf(jacob) | isnan(jacob));
fprintf('\nSTEADY: The Jacobian contains Inf or NaN. The problem arises from: \n\n')
for ii=1:length(infrow)
if infcol(ii)<=M.orig_endo_nbr
fprintf('STEADY: Derivative of Equation %d with respect to Variable %s (initial value of %s: %g) \n',infrow(ii),deblank(M.endo_names(infcol(ii),:)),deblank(M.endo_names(infcol(ii),:)),ys_init(infcol(ii)))
else %auxiliary vars
orig_var_index=M.aux_vars(1,infcol(ii)-M.orig_endo_nbr).orig_index;
fprintf('STEADY: Derivative of Equation %d with respect to Variable %s (initial value of %s: %g) \n',infrow(ii),deblank(M.endo_names(orig_var_index,:)),deblank(M.endo_names(orig_var_index,:)),ys_init(infcol(ii)))
end
end
disp('STEADY: Check whether your model in truly linear\n')
end
end
end
else
% block or bytecode
[ys,check] = dynare_solve_block_or_bytecode(ys_init,exo_ss, params, ...
options, M);
end
if check
if options.steadystate_flag
info(1)= 19;
resid = check1 ;
else
info(1)= 20;
resid = evaluate_static_model(ys_init,exo_ss,params,M,options);
end
info(2) = resid'*resid ;
if isnan(info(2))
info(1)=22;
end
return
end
% If some equations are tagged [static] or [dynamic], verify consistency
if M.static_and_dynamic_models_differ
% Evaluate residual of *dynamic* model using the steady state
% computed on the *static* one
z = repmat(ys,1,M.maximum_lead + M.maximum_lag + 1);
zx = repmat([oo.exo_simul oo.exo_det_simul],M.maximum_lead + M.maximum_lag + 1, 1);
if options.bytecode
[chck, r, junk]= bytecode('dynamic','evaluate', z, zx, M.params, ys, 1);
mexErrCheck('bytecode', chck);
elseif options.block
[r, oo.dr] = feval([M.fname '_dynamic'], z', zx, M.params, ys, M.maximum_lag+1, oo.dr);
else
iyv = M.lead_lag_incidence';
iyr0 = find(iyv(:));
xys = z(iyr0);
r = feval([M.fname '_dynamic'], z(iyr0), zx, M.params, ys, M.maximum_lag + 1);
end
% Fail if residual greater than tolerance
if max(abs(r)) > options.solve_tolf
info(1) = 25;
return
end
end
if ~isreal(ys)
info(1) = 21;
info(2) = sum(imag(ys).^2);
ys = real(ys);
return
end
if ~isempty(find(isnan(ys)))
info(1) = 22;
info(2) = NaN;
return
end
|