1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
function forcst_unc(y0,var_list)
% function [mean,intval1,intval2]=forcst_unc(y0,var_list)
% computes forecasts with parameter uncertainty
%
% INPUTS
% y0: matrix of initial values
% var_list: list of variables to be forecasted
%
% OUTPUTS
% none
%
% ALGORITHM
% uses antithetic draws for the shocks
%
% SPECIAL REQUIREMENTS
% None.
% Copyright (C) 2006-2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global M_ options_ oo_ estim_params_ bayestopt_
% setting up estim_params_
[xparam1,estim_params_,bayestopt_,lb,ub] = set_prior(estim_params_,M_);
options_.TeX = 0;
options_.nograph = 0;
plot_priors(bayestopt_,M_,options_);
% workspace initialization
if isempty(var_list)
var_list = M_.endo_names(1:M_.orig_endo_nbr,:);
end
n = size(var_list,1);
periods = options_.forecast;
exo_nbr = M_.exo_nbr;
replic = options_.replic;
order = options_.order;
maximum_lag = M_.maximum_lag;
% params = prior_draw(1);
params = rndprior(bayestopt_);
set_parameters(params);
% eliminate shocks with 0 variance
i_exo_var = setdiff([1:exo_nbr],find(diag(M_.Sigma_e) == 0));
nx = length(i_exo_var);
ex0 = zeros(periods,exo_nbr);
yf1 = zeros(periods+M_.maximum_lag,n,replic);
% loops on parameter values
m1 = 0;
m2 = 0;
for i=1:replic
% draw parameter values from the prior
% params = prior_draw(0);
params = rndprior(bayestopt_);
set_parameters(params);
% solve the model
[dr,info,M_,options_,oo_] = resol(0,M_,options_,oo_);
% discard problematic cases
if info
continue
end
% compute forecast with zero shocks
m1 = m1+1;
yf1(:,:,m1) = simult_(y0,dr,ex0,order)';
% compute forecast with antithetic shocks
chol_S = chol(M_.Sigma_e(i_exo_var,i_exo_var));
ex(:,i_exo_var) = randn(periods,nx)*chol_S;
m2 = m2+1;
yf2(:,:,m2) = simult_(y0,dr,ex,order)';
m2 = m2+1;
yf2(:,:,m2) = simult_(y0,dr,-ex,order)';
end
oo_.forecast.accept_rate = (replic-m1)/replic;
if options_.noprint == 0 && m1 < replic
skipline(2)
disp('FORECASTING WITH PARAMETER UNCERTAINTY:')
disp(sprintf(['The model couldn''t be solved for %f%% of the parameter' ...
' values'],100*oo_.forecast.accept_rate))
skipline(2)
end
% compute moments
yf1 = yf1(:,:,1:m1);
yf2 = yf2(:,:,1:m2);
yf_mean = mean(yf1,3);
yf1 = sort(yf1,3);
yf2 = sort(yf2,3);
sig_lev = options_.conf_sig;
k1 = round((0.5+[-sig_lev, sig_lev]/2)*replic);
% make sure that lower bound is at least the first element
if k1(2) == 0
k1(2) = 1;
end
k2 = round((1+[-sig_lev, sig_lev])*replic);
% make sure that lower bound is at least the first element
if k2(2) == 0
k2(2) = 1;
end
% compute shock uncertainty around forecast with mean prior
set_parameters(bayestopt_.p1);
[dr,info,M_,options_,oo_] = resol(0,M_,options_,oo_);
[yf3,yf3_intv] = forcst(dr,y0,periods,var_list);
yf3_1 = yf3'-[zeros(maximum_lag,n); yf3_intv];
yf3_2 = yf3'+[zeros(maximum_lag,n); yf3_intv];
% graphs
OutputDirectoryName = CheckPath('graphs',M_.fname);
dyn_graph=dynare_graph_init('Forecasts type I',n,{'b-' 'g-' 'g-' 'r-' 'r-'});
for i=1:n
dynare_graph(dyn_graph,[yf_mean(:,i) squeeze(yf1(:,i,k1)) squeeze(yf2(:,i,k2))],...
var_list(i,:));
end
dyn_saveas(dyn_graph.fh,[OutputDirectoryName '/' M_.fname '_forecast_param_uncert_',num2str(nlags)],options_)
dyn_graph=dynare_graph_init('Forecasts type II',n,{'b-' 'k-' 'k-' 'r-' 'r-'});
for i=1:n
dynare_graph(dyn_graph,[yf_mean(:,i) yf3_1(:,i) yf3_2(:,i) squeeze(yf2(:,i,k2))],...
var_list(i,:));
end
dyn_saveas(dyn_graph.fh,[OutputDirectoryName '/' M_.fname '_forecast_param_shock_uncert_',num2str(nlags)],options_)
% saving results
save_results(yf_mean,'oo_.forecast.Mean.',var_list);
save_results(yf1(:,:,k1(1)),'oo_.forecast.HPDinf.',var_list);
save_results(yf1(:,:,k1(2)),'oo_.forecast.HPDsup.',var_list);
save_results(yf2(:,:,k2(1)),'oo_.forecast.HPDTotalinf.',var_list);
save_results(yf2(:,:,k2(2)),'oo_.forecast.HPDTotalsup.',var_list);
|