1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
|
function xparam1=get_all_parameters(estim_params_,M_)
% function xparam1=get_parameters
% gets parameters values from M_.params into xparam1 (inverse mapping to set_all_parameters)
% This is called if a model was calibrated before estimation to back out
% parameter values
%
% INPUTS
% estim_params_: Dynare structure describing the estimated parameters.
% M_: Dynare structure describing the model.
%
% OUTPUTS
% xparam1: N*1 double vector of parameters from calibrated model that are to be estimated
%
% SPECIAL REQUIREMENTS
% none
% Copyright (C) 2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
nvx = estim_params_.nvx;
ncx = estim_params_.ncx;
nvn = estim_params_.nvn;
ncn = estim_params_.ncn;
np = estim_params_.np;
Sigma_e = M_.Sigma_e;
Correlation_matrix = M_.Correlation_matrix;
H = M_.H;
Correlation_matrix_ME = M_.Correlation_matrix_ME;
xparam1=NaN(nvx+ncx+nvn+ncn+np,1);
% stderrs of the exogenous shocks
if nvx
var_exo = estim_params_.var_exo;
for i=1:nvx
k = var_exo(i,1);
xparam1(i)=sqrt(Sigma_e(k,k));
end
end
% update offset
offset = nvx;
% setting measument error variance
if nvn
for i=1:nvn
k = estim_params_.nvn_observable_correspondence(i,1);
xparam1(offset+i)=sqrt(H(k,k));
end
end
% update offset
offset = nvx+nvn;
% correlations among shocks (ncx)
if ncx
corrx = estim_params_.corrx;
for i=1:ncx
k1 = corrx(i,1);
k2 = corrx(i,2);
xparam1(i+offset)=Correlation_matrix(k1,k2);
end
end
% update offset
offset = nvx+nvn+ncx;
if ncn
corrn_observable_correspondence = estim_params_.corrn_observable_correspondence;
for i=1:ncn
k1 = corrn_observable_correspondence(i,1);
k2 = corrn_observable_correspondence(i,2);
xparam1(i+offset)=Correlation_matrix_ME(k1,k2);
end
end
% update offset
offset = nvx+ncx+nvn+ncn;
% structural parameters
if np
xparam1(offset+1:end)=M_.params(estim_params_.param_vals(:,1));
end
|