File: get_prior_info.m

package info (click to toggle)
dynare 4.4.3-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 41,356 kB
  • ctags: 15,842
  • sloc: cpp: 77,029; ansic: 29,056; pascal: 13,241; sh: 4,811; objc: 3,061; yacc: 3,013; makefile: 1,479; lex: 1,258; python: 162; lisp: 54; xml: 8
file content (252 lines) | stat: -rw-r--r-- 9,720 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
function results = get_prior_info(info,plt_flag)
% Computes various prior statistics.
%
% INPUTS
%   info     [integer]   scalar specifying what has to be done.
%
% OUTPUTS
%   none
%
% SPECIAL REQUIREMENTS
%   none

% Copyright (C) 2009-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
global options_ M_ estim_params_ oo_ objective_function_penalty_base

if ~nargin
    info = 0;
    plt_flag = 0;
end

if nargin==1
    plt_flag = 1;
end

% Initialize returned variable.
results = [];

changed_qz_criterium_flag  = 0;
if isempty(options_.qz_criterium)
    options_.qz_criterium = 1+1e-9;
    changed_qz_criterium_flag  = 1;
end

M_.dname = M_.fname;

% Temporarly set options_.order equal to one
order = options_.order;
options_.order = 1;

[xparam1,estim_params_,bayestopt_,lb,ub,M_] = set_prior(estim_params_,M_,options_);
if plt_flag
    plot_priors(bayestopt_,M_,estim_params_,options_)
end

PriorNames = { 'Beta' , 'Gamma' , 'Gaussian' , 'Inverted Gamma' , 'Uniform' , 'Inverted Gamma -- 2' };

if size(M_.param_names,1)==size(M_.param_names_tex,1)% All the parameters have a TeX name.
    fidTeX = fopen('priors_data.tex','w+');
    fprintf(fidTeX,'%% TeX-table generated by get_prior_info (Dynare).\n');
    fprintf(fidTeX,'%% Prior Information\n');
    fprintf(fidTeX,['%% ' datestr(now,0)]);
    fprintf(fidTeX,' \n');
    fprintf(fidTeX,' \n');
    fprintf(fidTeX,'\\begin{center}\n');
    fprintf(fidTeX,'\\begin{longtable}{l|ccccccc} \n');
    fprintf(fidTeX,'\\caption{Prior information (parameters)}\\\\\n ');
    fprintf(fidTeX,'\\label{Table:Prior}\\\\\n');
    fprintf(fidTeX,'\\hline\\hline \\\\ \n');
    fprintf(fidTeX,'  & Prior distribution & Prior mean  & Prior s.d. & Lower Bound & Upper Bound & LB Untrunc. 80\\%% HPDI & UB Untrunc. 80\\%% HPDI  \\\\ \n');
    fprintf(fidTeX,'\\hline \\endfirsthead \n');
    fprintf(fidTeX,'\\caption{(continued)}\\\\\n ');
    fprintf(fidTeX,'\\hline\\hline \\\\ \n');
    fprintf(fidTeX,'  & Prior distribution & Prior mean  & Prior s.d. & Lower Bound & Upper Bound & LB Untrunc.  80\\%% HPDI & UB Untrunc. 80\\%% HPDI  \\\\ \n');
    fprintf(fidTeX,'\\hline \\endhead \n');
    fprintf(fidTeX,'\\hline \\multicolumn{8}{r}{(Continued on next page)} \\\\ \\hline \\endfoot \n');
    fprintf(fidTeX,'\\hline \\hline \\endlastfoot \n');

    % Column 1: a string for the name of the prior distribution.
    % Column 2: the prior mean.
    % Column 3: the prior standard deviation.
    % Column 4: the lower bound of the prior density support.
    % Column 5: the upper bound of the prior density support.
    % Column 6: the lower bound of the interval containing 80% of the prior mass.
    % Column 7: the upper bound of the interval containing 80% of the prior mass.
    prior_trunc_backup = options_.prior_trunc ;
    options_.prior_trunc = (1-options_.prior_interval)/2 ;
    PriorIntervals = prior_bounds(bayestopt_,options_) ;
    options_.prior_trunc = prior_trunc_backup ;
    for i=1:size(bayestopt_.name,1)
        [tmp,TexName] = get_the_name(i,1,M_,estim_params_,options_);
        PriorShape = PriorNames{ bayestopt_.pshape(i) };
        PriorMean = bayestopt_.p1(i);
        PriorStandardDeviation = bayestopt_.p2(i);
        switch bayestopt_.pshape(i)
          case { 1 , 5 }
            LowerBound = bayestopt_.p3(i);
            UpperBound = bayestopt_.p4(i);
            if ~isinf(bayestopt_.lb(i))
                LowerBound=max(LowerBound,bayestopt_.lb(i));
            end
            if ~isinf(bayestopt_.ub(i))
                UpperBound=min(UpperBound,bayestopt_.ub(i));
            end
            case { 2 , 4 , 6 }
            LowerBound = bayestopt_.p3(i);
            if ~isinf(bayestopt_.lb(i))
                LowerBound=max(LowerBound,bayestopt_.lb(i));
            end
            if ~isinf(bayestopt_.ub(i))
                UpperBound=bayestopt_.ub(i);
            else
                UpperBound = '$\infty$';
            end
          case 3
            if isinf(bayestopt_.p3(i)) && isinf(bayestopt_.lb(i))
                LowerBound = '$-\infty$';
            else
                LowerBound = bayestopt_.p3(i);
                if ~isinf(bayestopt_.lb(i))
                    LowerBound=max(LowerBound,bayestopt_.lb(i));
                end
            end
            if isinf(bayestopt_.p4(i)) && isinf(bayestopt_.ub(i))
                UpperBound = '$\infty$';
            else
                UpperBound = bayestopt_.p4(i);
                if ~isinf(bayestopt_.ub(i))
                    UpperBound=min(UpperBound,bayestopt_.ub(i));
                end
            end
          otherwise
            error('get_prior_info:: Dynare bug!')
        end
        format_string = build_format_string(PriorStandardDeviation,LowerBound,UpperBound);
        fprintf(fidTeX,format_string, ...
                TexName, ...
                PriorShape, ...
                PriorMean, ...
                PriorStandardDeviation, ...
                LowerBound, ...
                UpperBound, ...
                PriorIntervals(i,1), ...
                PriorIntervals(i,2) );
    end
    fprintf(fidTeX,'\\end{longtable}\n ');    
    fprintf(fidTeX,'\\end{center}\n');
    fprintf(fidTeX,'%% End of TeX file.\n');
    fclose(fidTeX);
end

M_.dname = M_.fname;

if info==1% Prior simulations (BK).
    results = prior_sampler(0,M_,bayestopt_,options_,oo_,estim_params_);
    % Display prior mass info
    disp(['Prior mass = ' num2str(results.prior.mass)])
    disp(['BK indeterminacy share                = ' num2str(results.bk.indeterminacy_share)])
    disp(['BK unstability share                  = ' num2str(results.bk.unstability_share)])
    disp(['BK singularity share                  = ' num2str(results.bk.singularity_share)])
    disp(['Complex jacobian share                = ' num2str(results.jacobian.problem_share)])
    disp(['mjdgges crash share                   = ' num2str(results.dll.problem_share)])
    disp(['Steady state problem share            = ' num2str(results.ss.problem_share)])
    disp(['Complex steady state  share           = ' num2str(results.ss.complex_share)])
    disp(['Analytical steady state problem share = ' num2str(results.ass.problem_share)])
end

if info==2% Prior optimization.
          % Initialize to the prior mode if possible
    oo_.dr=set_state_space(oo_.dr,M_,options_);
    k = find(~isnan(bayestopt_.p5));
    xparam1(k) = bayestopt_.p5(k);
    % Pertubation of the initial condition.
    look_for_admissible_initial_condition = 1;
    scale = 1.0;
    iter  = 0;
    while look_for_admissible_initial_condition
        xinit = xparam1+scale*randn(size(xparam1));
        if all(xinit(:)>bayestopt_.p3) && all(xinit(:)<bayestopt_.p4)
            M_ = set_all_parameters(xinit,estim_params_,M_);
            [dr,INFO,M_,options_,oo_] = resol(0,M_,options_,oo_);
            if ~INFO(1)
                look_for_admissible_initial_condition = 0;
            end
        else
            if iter == 2000;
                scale = scale/1.1;
                iter  = 0;
            else
                iter = iter+1;
            end
        end
    end
    objective_function_penalty_base = minus_logged_prior_density(xinit, bayestopt_.pshape, ...
                               bayestopt_.p6, ...
                               bayestopt_.p7, ...
                               bayestopt_.p3, ...
                               bayestopt_.p4,options_,M_,estim_params_,oo_);
    % Maximization
    [xparams,lpd,hessian] = ...
        maximize_prior_density(xinit, bayestopt_.pshape, ...
                               bayestopt_.p6, ...
                               bayestopt_.p7, ...
                               bayestopt_.p3, ...
                               bayestopt_.p4,options_,M_,estim_params_,oo_);
    % Display the results.
    skipline(2)
    disp('------------------')
    disp('PRIOR OPTIMIZATION')
    disp('------------------')
    skipline()
    for i = 1:length(xparams)
        disp(['deep parameter ' int2str(i) ': ' get_the_name(i,0,M_,estim_params_,options_) '.'])
        disp(['  Initial condition ....... ' num2str(xinit(i)) '.'])
        disp(['  Prior mode .............. ' num2str(bayestopt_.p5(i)) '.'])
        disp(['  Optimized prior mode .... ' num2str(xparams(i)) '.'])
        skipline()
    end
end

if info==3% Prior simulations (2nd order moments).
    oo_ = compute_moments_varendo('prior',options_,M_,oo_);
end

if changed_qz_criterium_flag
    options_.qz_criterium = [];
end

options_.order = order;

function format_string = build_format_string(PriorStandardDeviation,LowerBound,UpperBound)
format_string = ['%s & %s & %6.4f &'];
if ~isnumeric(PriorStandardDeviation)
    format_string = [ format_string , ' %s &'];
else
    format_string = [ format_string , ' %6.4f &'];
end
if ~isnumeric(LowerBound)
    format_string = [ format_string , ' %s &'];
else
    format_string = [ format_string , ' %6.4f &'];
end
if ~isnumeric(UpperBound)
    format_string = [ format_string , ' %s &'];
else
    format_string = [ format_string , ' %6.4f &'];
end
format_string = [ format_string , ' %6.4f & %6.4f \\\\ \n'];