1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
function myoutput = independent_metropolis_hastings_core(myinputs,fblck,nblck,whoiam, ThisMatlab)
% PARALLEL CONTEXT
% The most computationally intensive portion of code in
% independent_metropolis_hastings (the 'for xxx = fblck:nblck' cycle).
% See the comment in random_walk_metropolis_hastings_core.m funtion.
%
% INPUTS
% See See the comment in random_walk_metropolis_hastings_core.m funtion.
% OUTPUTS
% See See the comment in random_walk_metropolis_hastings_core.m funtion.
%
% ALGORITHM
% Portion of Independing Metropolis-Hastings.
%
% SPECIAL REQUIREMENTS.
% None.
%
% Copyright (C) 2006-2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
if nargin<4,
whoiam=0;
end
global bayestopt_ estim_params_ options_ M_ oo_ objective_function_penalty_base
% Reshape 'myinputs' for local computation.
% In order to avoid confusion in the name space, the instruction struct2local(myinputs) is replaced by:
TargetFun=myinputs.TargetFun;
ProposalFun=myinputs.ProposalFun;
xparam1=myinputs.xparam1;
vv=myinputs.vv;
mh_bounds=myinputs.mh_bounds;
ix2=myinputs.ix2;
ilogpo2=myinputs.ilogpo2;
ModelName=myinputs.ModelName;
fline=myinputs.fline;
npar=myinputs.npar;
nruns=myinputs.nruns;
NewFile=myinputs.NewFile;
MAX_nruns=myinputs.MAX_nruns;
d=myinputs.d;
InitSizeArray=myinputs.InitSizeArray;
record=myinputs.record;
varargin=myinputs.varargin;
if whoiam
Parallel=myinputs.Parallel;
% initialize persistent variables in priordens()
priordens(xparam1',bayestopt_.pshape,bayestopt_.p6,bayestopt_.p7, ...
bayestopt_.p3,bayestopt_.p4,1);
end
% (re)Set the penalty.
objective_function_penalty_base = Inf;
MetropolisFolder = CheckPath('metropolis',M_.dname);
BaseName = [MetropolisFolder filesep ModelName];
OpenOldFile = ones(nblck,1);
if strcmpi(ProposalFun,'rand_multivariate_normal')
n = npar;
ProposalDensity = 'multivariate_normal_pdf';
elseif strcmpi(ProposalFun,'rand_multivariate_student')
n = options_.student_degrees_of_freedom;
ProposalDensity = 'multivariate_student_pdf';
end
% Now I run the (nblck-fblck+1) metropolis-hastings chains
if any(isnan(bayestopt_.jscale))
if exist([ModelName '_optimal_mh_scale_parameter.mat'])% This file is created by mode_compute=6.
load([ModelName '_optimal_mh_scale_parameter'])
proposal_covariance = d*Scale;
else
error('mh:: Something is wrong. I can''t figure out the value of the scale parameter.')
end
else
proposal_covariance = d*diag(bayestopt_.jscale);
end
jloop=0;
for b = fblck:nblck,
jloop=jloop+1;
try
% this will not work if the master uses a random generator not
% available in the slave (different Matlab version or
% Matlab/Octave cluster). Therefor the trap.
% this set the random generator type (the seed is useless but
% needed by the function)
set_dynare_seed(options_.DynareRandomStreams.algo,...
options_.DynareRandomStreams.seed);
% this set the state
set_dynare_random_generator_state(record.InitialSeeds(b).Unifor, ...
record.InitialSeeds(b).Normal);
catch
% if the state set by master is incompatible with the slave, we
% only reseed
set_dynare_seed(options_.DynareRandomStreams.seed+b);
end
if (options_.load_mh_file~=0) && (fline(b)>1) && OpenOldFile(b)
load([BaseName '_mh' int2str(NewFile(b)) '_blck' int2str(b) '.mat'])
x2 = [x2;zeros(InitSizeArray(b)-fline(b)+1,npar)];
logpo2 = [logpo2;zeros(InitSizeArray(b)-fline(b)+1,1)];
OpenOldFile(b) = 0;
else
x2 = zeros(InitSizeArray(b),npar);
logpo2 = zeros(InitSizeArray(b),1);
end
if isoctave || options_.console_mode
diary off
skipline()
elseif whoiam
% keyboard;
waitbarString = ['Please wait... Metropolis-Hastings (' int2str(b) '/' int2str(options_.mh_nblck) ')...'];
% waitbarTitle=['Metropolis-Hastings ',options_.parallel(ThisMatlab).ComputerName];
if options_.parallel(ThisMatlab).Local,
waitbarTitle=['Local '];
else
waitbarTitle=[options_.parallel(ThisMatlab).ComputerName];
end
fMessageStatus(0,whoiam,waitbarString, waitbarTitle, options_.parallel(ThisMatlab));
else,
hh = waitbar(0,['Please wait... Metropolis-Hastings (' int2str(b) '/' int2str(options_.mh_nblck) ')...']);
set(hh,'Name','Metropolis-Hastings');
end
isux = 0;
jsux = 0;
irun = fline(b);
j = 1;
while j <= nruns(b)
par = feval(ProposalFun, xparam1, proposal_covariance, n);
if all( par(:) > mh_bounds(:,1) ) && all( par(:) < mh_bounds(:,2) )
try
logpost = - feval(TargetFun, par(:),varargin{:});
catch,
logpost = -inf;
end
else
logpost = -inf;
end
r = logpost - ilogpo2(b) + ...
log(feval(ProposalDensity, ix2(b,:), xparam1, proposal_covariance, n)) - ...
log(feval(ProposalDensity, par, xparam1, proposal_covariance, n));
if (logpost > -inf) && (log(rand) < r)
x2(irun,:) = par;
ix2(b,:) = par;
logpo2(irun) = logpost;
ilogpo2(b) = logpost;
isux = isux + 1;
jsux = jsux + 1;
else
x2(irun,:) = ix2(b,:);
logpo2(irun) = ilogpo2(b);
end
prtfrc = j/nruns(b);
if isoctave || options_.console_mode
if mod(j, 10) == 0
if isoctave
if (whoiam==0),
printf('Estimation::mcmc: Computing Metropolis-Hastings (chain %d/%d): %3.f%% done, Current acceptance ratio: %3.f%%\r', b, nblck, 100 * prtfrc, 100 * isux / j);
end
else
fprintf('Estimation::mcmc: Computing Metropolis-Hastings (chain %d/%d): %3.f \b%% done, Current acceptance ratio: %3.f \b%%\r', b, nblck, 100 * prtfrc, 100 * isux / j);
end
end
if mod(j,50)==0 && whoiam,
% keyboard;
waitbarString = [ '(' int2str(b) '/' int2str(options_.mh_nblck) '), ' sprintf('accept. %3.f%%%%', 100 * isux/j)];
fMessageStatus(prtfrc,whoiam,waitbarString, '', options_.parallel(ThisMatlab))
end
else
if mod(j, 3)==0 && ~whoiam
waitbar(prtfrc,hh,[ '(' int2str(b) '/' int2str(options_.mh_nblck) ') ' sprintf('%f done, Current acceptance ratio %f',prtfrc,isux/j)]);
elseif mod(j,50)==0 && whoiam,
% keyboard;
waitbarString = [ '(' int2str(b) '/' int2str(options_.mh_nblck) ') ' sprintf('%f done, Current acceptance ratio %f',prtfrc,isux/j)];
fMessageStatus(prtfrc,whoiam,waitbarString, waitbarTitle, options_.parallel(ThisMatlab))
end
end
if (irun == InitSizeArray(b)) || (j == nruns(b)) % Now I save the simulations
save([BaseName '_mh' int2str(NewFile(b)) '_blck' int2str(b) '.mat'],'x2','logpo2');
fidlog = fopen([MetropolisFolder '/metropolis.log'],'a');
fprintf(fidlog,['\n']);
fprintf(fidlog,['%% Mh' int2str(NewFile(b)) 'Blck' int2str(b) ' (' datestr(now,0) ')\n']);
fprintf(fidlog,' \n');
fprintf(fidlog,[' Number of simulations.: ' int2str(length(logpo2)) '\n']);
fprintf(fidlog,[' Acceptance ratio......: ' num2str(jsux/length(logpo2)) '\n']);
fprintf(fidlog,[' Posterior mean........:\n']);
for i=1:length(x2(1,:))
fprintf(fidlog,[' params:' int2str(i) ': ' num2str(mean(x2(:,i))) '\n']);
end
fprintf(fidlog,[' log2po:' num2str(mean(logpo2)) '\n']);
fprintf(fidlog,[' Minimum value.........:\n']);;
for i=1:length(x2(1,:))
fprintf(fidlog,[' params:' int2str(i) ': ' num2str(min(x2(:,i))) '\n']);
end
fprintf(fidlog,[' log2po:' num2str(min(logpo2)) '\n']);
fprintf(fidlog,[' Maximum value.........:\n']);
for i=1:length(x2(1,:))
fprintf(fidlog,[' params:' int2str(i) ': ' num2str(max(x2(:,i))) '\n']);
end
fprintf(fidlog,[' log2po:' num2str(max(logpo2)) '\n']);
fprintf(fidlog,' \n');
fclose(fidlog);
jsux = 0;
if j == nruns(b) % I record the last draw...
record.LastParameters(b,:) = x2(end,:);
record.LastLogPost(b) = logpo2(end);
end
% size of next file in chain b
InitSizeArray(b) = min(nruns(b)-j,MAX_nruns);
% initialization of next file if necessary
if InitSizeArray(b)
x2 = zeros(InitSizeArray(b),npar);
logpo2 = zeros(InitSizeArray(b),1);
NewFile(b) = NewFile(b) + 1;
irun = 0;
end
end
j=j+1;
irun = irun + 1;
end% End of the simulations for one mh-block.
record.AcceptanceRatio(b) = isux/j;
if isoctave || options_.console_mode
printf('\n');
diary on
elseif ~whoiam
close(hh);
end
[record.LastSeeds(b).Unifor, record.LastSeeds(b).Normal] = get_dynare_random_generator_state();
OutputFileName(jloop,:) = {[MetropolisFolder,filesep], [ModelName '_mh*_blck' int2str(b) '.mat']};
end% End of the loop over the mh-blocks.
myoutput.record = record;
myoutput.irun = irun;
myoutput.NewFile = NewFile;
myoutput.OutputFileName = OutputFileName;
|