File: k_order_pert.m

package info (click to toggle)
dynare 4.4.3-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 41,356 kB
  • ctags: 15,842
  • sloc: cpp: 77,029; ansic: 29,056; pascal: 13,241; sh: 4,811; objc: 3,061; yacc: 3,013; makefile: 1,479; lex: 1,258; python: 162; lisp: 54; xml: 8
file content (210 lines) | stat: -rw-r--r-- 5,541 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
function [dr,info] = k_order_pert(dr,M,options)
% Compute decision rules using the k-order DLL from Dynare++

% Copyright (C) 2009-2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

info = 0;

M.var_order_endo_names = M.endo_names(dr.order_var,:);

order = options.order;
endo_nbr = M.endo_nbr;
exo_nbr = M.exo_nbr;
nspred = M.nspred;

if order>1 && options.loglinear 
   error('The loglinear-option currently only works at order 1') 
end
if M.maximum_endo_lead == 0 && order>1
  error(['2nd and 3rd order approximation not implemented for purely ' ...
       'backward models'])
end

switch(order)
  case 1
    [err, g_1] = k_order_perturbation(dr,M,options);
    if err
      info(1)=9;
      return;
    end
    dr.g_1 = g_1;
  case 2
    [err, g_0, g_1, g_2] = k_order_perturbation(dr,M,options);
    if err
      info(1)=9;
      return;
    end
    dr.g_0 = g_0;
    dr.g_1 = g_1;
    dr.g_2 = g_2;
  case 3
    if options.pruning 
        [err, g_0, g_1, g_2, g_3, derivs] = k_order_perturbation(dr, ...
                                                          M,options);
        if err
          info(1)=9;
          return;
        end
    else
        [err, g_0, g_1, g_2, g_3] = k_order_perturbation(dr, ...
                                                         M,options);
        if err
          info(1)=9;
          return;
        end
    end
    dr.g_0 = g_0;
    dr.g_1 = g_1;
    dr.g_2 = g_2;
    dr.g_3 = g_3;
  otherwise
    error('order > 3 isn''t implemented')
end

% Now fill in dr.ghx, dr.ghu...

if options.pruning && order == 3
    dr.ghx = derivs.gy;
    dr.ghu = derivs.gu;
    dr.ghxx = unfold2(derivs.gyy,nspred);
    dr.ghxu = derivs.gyu;
    dr.ghuu = unfold2(derivs.guu,exo_nbr);
    dr.ghs2 = derivs.gss;
    dr.ghxxx = unfold3(derivs.gyyy,nspred);
    dr.ghxxu = unfold21(derivs.gyyu,nspred,exo_nbr);
    dr.ghxuu = unfold12(derivs.gyuu,nspred,exo_nbr);
    dr.ghuuu = unfold3(derivs.guuu,exo_nbr);
    dr.ghxss = derivs.gyss;
    dr.ghuss = derivs.guss;
else
    nspred = M.nspred;

    dr.ghx = dr.g_1(:,1:nspred);
    dr.ghu = dr.g_1(:,nspred+1:end);

    if options.loglinear == 1
        k = find(dr.kstate(:,2) <= M.maximum_endo_lag+1);
        klag = dr.kstate(k,[1 2]);
        k1 = dr.order_var;
    
        dr.ghx = repmat(1./dr.ys(k1),1,size(dr.ghx,2)).*dr.ghx.* ...
                 repmat(dr.ys(k1(klag(:,1)))',size(dr.ghx,1),1);
        dr.ghu = repmat(1./dr.ys(k1),1,size(dr.ghu,2)).*dr.ghu;
    end

    if order > 1
        dr.ghs2 = 2*g_0;
        s0 = 0;
        s1 = 0;
        ghxx=zeros(endo_nbr, nspred^2);
        ghxu=zeros(endo_nbr, nspred*exo_nbr);
        ghuu=zeros(endo_nbr, exo_nbr^2);
        for i=1:size(g_2,2)
            if s0 < nspred && s1 < nspred
                ghxx(:,s0*nspred+s1+1) = 2*g_2(:,i);
                if s1 > s0
                    ghxx(:,s1*nspred+s0+1) = 2*g_2(:,i);
                end
            elseif s0 < nspred && s1 < nspred+exo_nbr 
                ghxu(:,(s0*exo_nbr+s1-nspred+1)) = 2*g_2(:,i);
            elseif s0 < nspred+exo_nbr && s1 < nspred+exo_nbr
                ghuu(:,(s0-nspred)*exo_nbr+s1-nspred +1) = 2*g_2(:,i);
                if s1 > s0
                    ghuu(:,(s1-nspred)*exo_nbr+s0-nspred+1) = 2*g_2(:,i);
                end
            else
                error('dr1:k_order_perturbation:g_2','Unaccounted columns in g_2');
            end
            s1 = s1+1;
            if s1 == nspred+exo_nbr
                s0 = s0+1;
                s1 = s0; 
            end
        end % for loop
        dr.ghxx = ghxx;
        dr.ghxu = ghxu;
        dr.ghuu = ghuu;
    end
end

function y = unfold2(x,n)
y=zeros(size(x,1),n*n);
m = 1;
for i=1:n
    for j=i:n
        y(:,(i-1)*n+j)=x(:,m);
        if j ~= i
            y(:,(j-1)*n+i)=x(:,m);
        end
        m = m+1;
    end
end

function y = unfold3(x,n)
y = zeros(size(x,1),n*n*n);
m = 1;
for i=1:n
    for j=i:n
        for k=j:n
            xx = x(:,m);
            y(:,(i-1)*n*n+(j-1)*n+k) = xx;
            y(:,(i-1)*n*n+(k-1)*n+j) = xx;
            y(:,(j-1)*n*n+(k-1)*n+i) = xx;
            y(:,(j-1)*n*n+(i-1)*n+k) = xx;
            y(:,(k-1)*n*n+(i-1)*n+j) = xx;
            y(:,(k-1)*n*n+(j-1)*n+i) = xx;
            m = m + 1;
        end
    end
end

function y = unfold21(x,n1,n2)
y = zeros(size(x,1),n1*n1*n2);
m = 1;
for i=1:n1
    for j=i:n1
        for k=1:n2
            xx = x(:,m);
            y(:,(i-1)*n1*n2+(j-1)*n2+k) = xx;
            if j ~= i
                y(:,(j-1)*n1*n2+(i-1)*n2+k) = xx;
            end
            m = m + 1;
        end
    end
end 

function y = unfold12(x,n1,n2)
y = zeros(size(x,1),n1*n2*n2);
m = 1;
for i=1:n1
    for j=1:n2
        for k=j:n2
            xx = x(:,m);
            y(:,(i-1)*n2*n2+(j-1)*n2+k) = xx;
            if k ~= j
                y(:,(i-1)*n2*n2+(k-1)*n2+j) = xx;
            end
            m = m + 1;
        end
    end
end