File: cfore.m

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (481 lines) | stat: -rw-r--r-- 15,148 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
% 10/24/97
% Distance Method of Waggoner and Zha
% Modified from Sims and Zha's code
%
%
% Copyright (C) 1997-2012 Tao Zha
%
% This free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% If you did not received a copy of the GNU General Public License
% with this software, see <http://www.gnu.org/licenses/>.
%

% ** ONLY UNDER UNIX SYSTEM
%path(path,'/usr2/f1taz14/mymatlab')


%global xxhp Hm1t Hm1 Hm SpH FRESHFUNCTION
%
%* =================================================
%* ====== Beginning of the script ==================
%* =================================================
%
%* The available data considered
%
q_m = 12;   % quarters or months
yrBin=59;   % beginning of the year
qmBin=1;    % begining of the quarter or month
yrFin=97;   % final year
qmFin=12;    % final quarter
%tnvar = 2;   % total number of variables
nData=(yrFin-yrBin)*q_m + (qmFin-qmBin+1);
% total number of the available data -- this is all you have
%
%* Load data and series
%
load xd24a      % the default name for the variable is "xdd".
[nt,ndv]=size(xdd);
if nt~=nData
   warning(sprintf('nt=%d, Caution: not equal to the length in the data',nt));
   %disp(sprintf('nt=%d, Caution: not equal to the length in the data',nt));
   return
end
%1  CPI-U
%2  FFR
%3  T-bill3
%4  Treasure note 10
%5  M2
%6  M1
%7  Nominal PCE
%8  real PCE
%9  Unemployment Rate
%10 IMF Commodity Price Index
%11 Civilians Employed: 16 & over
%12 Nonfarm Payroll Employment
%13 IP
%14 Retail Sales (Nominal)
%15 NAPM Composit Index
%16 Total Reserves
%17 PPI-finished goods
%18 PPI-Crude materials
%19 PPI-Crude materials less energy
%20 CRB Spot Commodity Index -- all commodities
%21 CRB Spot Commodity Index -- raw industrials
%22 PCE price index
%23 rgdpmon Real GDP (monthly, chain $92)
%24 dgdpmon Deflator GDP (monthly, chain $92)


%1  IMF CP
%2  M2
%3  FFR
%3  real GDP
%4  CPI-U
%5  U

%>>>>>>>>>>>>>>>>>>
logindx = [1 5:8 10:14 16:24];
xdd(:,logindx) = log(xdd(:,logindx));
pctindx = [2:4 9 15];
xdd(:,pctindx)=.01*xdd(:,pctindx);       % make it a general term for the following use
%
vlist = [10 5 2 23 1 9];    % regarding "xdd", IMF-CP, M2, FFR, GDP, CPI, U
vlistlog = [1 2 4 5];       % subset of "vlist"
vlistper = [3 6];           % subset of "vlist"
%<<<<<<<<<<<<<<<<<<<

idfile='iden6';

xlab = {'Inf'
        'MS'
        'FFR'
        'y'
        'P'
        'U'};

ylab = {'Pcm'
        'M2'
        'FFR'
        'y'
        'P'
        'U'};

xdd_per = xdd(:,vlist);

x1 = 'Pcm';
x2 = 'M2';
x3 = 'FFR';
x4 = 'GDP';
x5 = 'CPI';
x6 = 'U';
x7 = 'R10';


baddata = find(isnan(xdd_per));
if ~isempty(baddata)
   warning('Some data are actually unavailable.')
   disp('Hit any key to continue, or ctrl-c to abort')
   pause
end
%

%* A specific sample is considered for estimation
%*   Sample period 59:7-82:9, forecast period 82:10-84:9
yrStart=59;
qmStart=1;
[yrEnd,qmEnd,forep,forepy,forelabel] = pararc;
nSample=(yrEnd-yrStart)*q_m + (qmEnd-qmStart+1);
if qmEnd == q_m     % end of the year
   nSampleCal=nSample;            % Cal: calendar year
else
   nSampleCal=(yrEnd-1-yrStart)*q_m + (q_m-qmStart+1);   % Cal: calendar year
end

%* More script variables
%
lags = 13;        % <<>>
%  automatic decay code (monthly data), only two options: lags = 6 or 13
forepq = forep/3;      % quarterly
actup = 5*48;     % <<>> actual periods before forecasting (20 years)
%actup = 12*floor(nSample/12);     % <<>> actual periods before forecasting (8 years)
actup = 48;     % <<>> actual periods before forecasting (4 years)
actupq = actup/3;   % quarterly
actupy = actup/12;   % four years
imstp = 48;      % <<>>  impulse responses (4 years)
ninv = 1000;   % the number of intervals for counting impulse responses
nhp = 6;          % <<>> number of hyperparameters for estimation
%%scf = 2.4/sqrt(nvar);       % scf^2*Sigma (covaraince)
scf = 0.25;           % scf^2*Sigma (covaraince)
ndraws1=15;         % 1500, 1st part of Monte Carlo draws
ndraws2=2*ndraws1;         % 2nd part of Monte Carlo draws
ndraws=3*ndraws2         % a total number of Monte Carlo draws
nstarts=3;         % number of starting points
imndraws = nstarts*ndraws2;
tdf = 3;          % degrees of freedom for t-dist
ga = tdf/2;      % asymmetry parameter in Gamma
gb = 2/tdf;      % normalized parameter in Gamma
%
%* =================================================
%* ====== End of the script ========================
%* =================================================


if (q_m==12)
   nStart=(yrStart-yrBin)*12+qmStart-qmBin;  % positive number of months at the start
   nEnd=(yrEnd-yrFin)*12+qmEnd-qmFin;     % negative number of months towards end
elseif (q_m==4)
   nStart=(yrStart-yrBin)*4+qmStart-qmBin;  % positive number of months at the start
   nEnd=(yrEnd-yrFin)*4+qmEnd-qmFin;     % negative number of months towards end
else
   disp('Warning: this code is only good for monthly/quarterly data!!!')
   return
end
%
if nEnd>0 | nStart<0
   disp('Warning: this particular sample consider is out of bounds of the data!!!')
   return
end
%
xdgel=xdd(nStart+1:nData+nEnd,vlist);  % gel: general term for selected xdd
xdata=xdd(nStart+1:nData,vlist);

[Gb,Sbd,Bh,SpH,fss,ndobs,phi,y,nvar,ncoef,xxhpc,a0indx,na0p,...
             idmat0,idmatpp] = szasbvar(idfile,q_m,lags,nSample,nhp,xdgel);

% * the largest matrix in this file  <<>>
yforew = zeros(ndraws,forep*nvar);     % preallocating
yforeqgw = zeros(ndraws,forepq*nvar);     % preallocating
yforeCalygw = zeros(ndraws,forepy*nvar);     % preallocating
% * the largest matrix in this file  <<>>
%%imfcnt = zeros(ninv+2,imstp*nvar^2);   % cnt: count

load idenml    % xhat ghat fhat, etc.
%load outiden    % xhat ghat fhat

%==================
%  Impulse responses first
%==================
%A0 = zeros(nvar);
%A0(a0indx)=xhat;
%A0(4,2) = -xhat(7);   % output in MD
%A0(5,2)=-xhat(7);   % price in MD
A0in = inv(A0);
swish = A0in';       % each row corresponds to an equation
%Bh = Hm1t;    % no longer have Hm1t in this new szasbvar

% ** impulse responses
nn = [nvar lags imstp];
imf = zimpulse(Bh,swish,nn);    % in the form that is congenial to RATS
%[vd,str,imf] = errors(Bh,swish,nn);

scaleout = imcgraph(imf,nvar,imstp,xlab,ylab)


%%%%
%$$$ Out-of-sample forecasts. Note: Hm1t does not change with A0.
%%%%
%
% ** out-of-sample forecast, from 82:4 to 84:3 (flp+1:flp+forep)
% * updating the last row of X (phi) with the current (last row of) y.
phil = phi(size(phi,1),:);
phil(nvar+1:ncoef-1) = phil(1:ncoef-1-nvar);
phil(1:nvar) = y(size(y,1),:);
ylast = y(size(y,1),:);
indx12 = size(y,1)-q_m+1:size(y,1);
ylast12 = y(indx12,:);        % last 12 months data
nn = [nvar lags forep];
%
yfore = forecast(Bh,phil,nn);    % forep-by-nvar


%>>>>>>>>>>>>>>>
yforel=yfore;
yforel(:,vlistlog) = exp(yfore(:,vlistlog));
figure;
t2=1:forep;
for i = 1:nvar
   subplot(nvar/2,2,i)
   plot(t2,yforel(:,i),'--')
   %title('solid-actual, dotted-forecast');
   %title(eval(['forelabel']));
   %ylabel(eval(['x' int2str(i)]));
	ylabel(char(ylab(i)))
end
%<<<<<<<<<<<<<<<

%%%%%%%%
%
%% See Zha's note "Forecast (1)" p. 5, RATS manual (some errors in RATS), etc.
%
%% Some notations:  y(t+1) = y(t)B1 + e(t+1)inv(A0). e(t+1) is 1-by-n.
%%    Let r(t+1)=e(t+1)inv(A0) + e(t+2)C + .... where inv(A0) is impulse
%%          response at t=1, C at t=2, etc. The row of inv(A0) or C is
%%          all responses to one shock.
%%    Let r be q-by-1 (such as r(1) = r(t+1)
%%                 = y(t+1) (constrained) - y(t+1) (forecast)).
%%    Use impulse responses to find out R (k-by-q) where k=nvar*nsteps
%%        where nsteps the largest constrained step.  The key of the program
%%        is to creat R using impulse responses
%%    Optimal solution for shock e where R'*e=r and e is k-by-1 is
%%                 e = R*inv(R'*R)*r.
%
%%%%%%%%

nconstr=4;   % q: 4 years -- 4*12 months
eq_ms = 2;      % location of MS equation
%eq_ms = [];     % all shocks
%*** initializing
stepcon=cell(nconstr,1);  % initializing, value y conditioned
valuecon=zeros(nconstr,1);  % initializing, value y conditioned
varcon=zeros(nconstr,1);  % initializing, endogous variables conditioned
%
stepcon{1}=[1:12]';    % average over 12 months.
stepcon{2}=[13:24]';    % average over 12 months.
stepcon{3}=[25:36]';    % average over 12 months.
stepcon{4}=[37:48]';    % average over 12 months.
%
%for i=1:nconstr
%   stepcon{i}=i;
%end
%
chk1 = mean(yfore(stepcon{1},3))
chk2 = mean(yfore(stepcon{2},3))
chk3 = mean(yfore(stepcon{3},3))
chk4 = mean(yfore(stepcon{4},3))
Ro=[chk1 chk2 chk3 chk4];
%
chk1 = exp( (sum(yfore(stepcon{1},5))-sum(ylast12(:,5))) ./ q_m )
chk2 = exp( (sum(yfore(stepcon{2},5))-sum(yfore(stepcon{1},5))) ./ q_m )
chk3 = exp( (sum(yfore(stepcon{3},5))-sum(yfore(stepcon{2},5))) ./ q_m )
chk4 = exp( (sum(yfore(stepcon{4},5))-sum(yfore(stepcon{3},5))) ./ q_m )
%
%valuecon(:)=0.055;
%
%>>>>>>>>>>>>>>>>> E: Condition on funds rate path >>>>>>>>>>>>> Toggle
%delta=0.0010;
%valuecon(1) = mean(yfore(stepcon{1},3))+2*delta;
%valuecon(2) = mean(yfore(stepcon{2},3))+2*delta;
%valuecon(3) = mean(yfore(stepcon{3},3))-2*delta;
%valuecon(4) = mean(yfore(stepcon{4},3))-2*delta;
%valuecon(1) = 0.055;
%valuecon(2) = 0.050;
%valuecon(3) = 0.0475;
%valuecon(4) = 0.045;
%>>>>>>>>>>>>>>>>> E: Condition on funds rate path >>>>>>>>>>>>>
%
%<<<<<<<<<<<<<<<< B: Condition on inflation path <<<<<<<<<< Toggle
%delta=0.0010;
%valuecon(1)=mean(ylast12(:,5))+log(chk1-0*delta);
%valuecon(2)=valuecon(1)+log(chk2-2*delta);
%valuecon(3)=valuecon(2)+log(chk3-6*delta);
%valuecon(4)=valuecon(3)+log(chk4-12*delta);
%        % 5: CPI; 2.5%: annual inflation over 12 months, geometric means
%$$$ very good results -- following
valuecon(1)=mean(ylast12(:,5))+log(chk1);
valuecon(2)=valuecon(1)+log(1.020);
valuecon(3)=valuecon(2)+log(1.02);
valuecon(4)=valuecon(3)+log(1.02);
%        % 5: CPI; 2.5%: annual inflation over 12 months, geometric means
%<<<<<<<<<<<<<<<< E: Condition on inflation path <<<<<<<<<<

nstepsm = 0;   % initializing, the maximum step in all constraints
for i=1:nconstr
   nstepsm = max([nstepsm max(stepcon{i})]);
end
varcon(:)=5;     % 3: FFR; 5: CPI
%
imf3=reshape(imf,size(imf,1),nvar,nvar);
         % imf3: row-steps, column-nvar responses, 3rd dimension-nvar shocks
imf3s=permute(imf3,[1 3 2]);
         % imf3s: permuted so that row-steps, column-nvar shocks,
			%                                       3rd dimension-nvar responses

[yhat,Estr] = fidencond(valuecon,stepcon,varcon,nconstr,nstepsm,nvar,lags,...
                                 yfore,imf3s,phil,Bh,eq_ms);

chk1 = mean(yhat(stepcon{1},3))
chk2 = mean(yhat(stepcon{2},3))
chk3 = mean(yhat(stepcon{3},3))
chk4 = mean(yhat(stepcon{4},3))
Rh=[chk1 chk2 chk3 chk4];

chk1 = exp( (sum(yhat(stepcon{1},5))-sum(ylast12(:,5))) ./ q_m )
chk2 = exp( (sum(yhat(stepcon{2},5))-sum(yhat(stepcon{1},5))) ./ q_m )
chk3 = exp( (sum(yhat(stepcon{3},5))-sum(yhat(stepcon{2},5))) ./ q_m )
chk4 = exp( (sum(yhat(stepcon{4},5))-sum(yhat(stepcon{3},5))) ./ q_m )

%chk1 = mean(yhat(1:12,3))
%chk2 = mean(yhat(13:24,3))
%chk3 = mean(yhat(25:36,3))
%chk4 = mean(yhat(36:48,3))
%Rh=[chk1 chk2 chk3 chk4];

%chk1 = exp( (sum(yhat(1:12,5))-sum(ylast12(:,5))) ./ q_m )
%chk2 = exp( (sum(yhat(13:24,5))-sum(yhat(1:12,5))) ./ q_m )
%chk3 = exp( (sum(yhat(25:36,5))-sum(yhat(13:24,5))) ./ q_m )
%chk4 = exp( (sum(yhat(37:48,5))-sum(yhat(25:36,5))) ./ q_m )


idiff=mean(yfore(:,3))-mean(yhat(:,3))
mean(yfore(:,3))
mean(yhat(:,3))
figure
plot(1:48,yfore(:,3),1:48,yhat(:,3),':')
figure
plot(1:4,Ro,1:4,Rh,':')

%>>>>>>>>>>>>>>>
yhatl=yhat;
yhatl(:,vlistlog) = exp(yhat(:,vlistlog));
figure;
t2=1:forep;
for i = 1:nvar
   subplot(nvar/2,2,i)
   plot(t2,yhatl(:,i),'--')
   %title('solid-actual, dotted-forecast');
   %title(eval(['forelabel']));
   %ylabel(eval(['x' int2str(i)]));
	ylabel(char(ylab(i)))
end
%<<<<<<<<<<<<<<<


% inputs needed.
%yfore=yhat;

%===================================================
%%% Converting to calendar years and all at level
%===================================================
[yforeml,yforeqgml,yforeCalygml] = fore_cal(yhat,xdata,nvar,nSample,...
                  nSampleCal,forep,forepq,forepy,q_m,qmEnd,vlist,vlistlog);

%==================
%  Note
%=================
% ? 1--median; l--lower bound; h--upper bound: between the bound: 2/3 probability
% yfore?         % monthly, level
% yforeqg?       % quarterly, growth rate
% yforeCalyg?    % calendar year, growth rate

%save outw ndraws yfore1 yforeqg1 yforeCalyg1 yforel yforeqgl yforeh yforeqgh ...
%                        yforeCalygl yforeCalygh IUbeta

yforeCalygml


%----------------------------------------------------------------------
%=================  Graphics =====================
%----------------------------------------------------------------------
%

%[yactCalyg,yforeCalygml,yAg,yFg] = fore_gh(xdata,nvar,nSample,nSampleCal,...
%               yforeml,yforeqgml,yforeCalygml,actup,actupq,actupy,...
%		         vlist,vlistlog,vlistper,q_m,forep,ylab);

xinput = cell(16,1);
xinput{1}=xdata; xinput{2}=nvar; xinput{3}=nSample; xinput{4}=nSampleCal;
xinput{5}=yforeml; xinput{6}=yforeqgml; xinput{7}=yforeCalygml; xinput{8}=actup;
xinput{9}=actupq; xinput{10}=actupy; xinput{11}=vlist; xinput{12}=vlistlog;
xinput{13}=vlistper; xinput{14}=q_m; xinput{15}=forep; xinput{16}=ylab;
[yactCalyg,yforeCalygml,yAg,yFg] = fore_gh(xinput);


% Key Macroeconomic Variables: GDP, CPI, U
%******* From Goldbook July 1-2, 1997 FOMC
yforeBlue = [
  3.6  2.4  5.0
  2.5  2.6  5.0
      ];    % real GDP, CPI-U, U,
yforeMacro = [
  3.7  2.3  4.9
  2.1  2.4  4.9
      ];    % real GDP, CPI-U, U
yforeGold = [
  3.8  2.4  5.0
  2.5  2.5  4.8
  2.4  2.7  4.7
      ];    % real GDP, CPI-U, U
t3 = yAg+1:yAg+length(yforeBlue(:,1));
t4 = yAg+1:yAg+length(yforeGold(:,1));
%
keyindx = [4:nvar 3 2];      %  GdP, CPI, U, FFR, M2
count=0;
t1 = 1:yAg;
t2 = yAg:yAg+yFg;
for i = keyindx
   count = count+1;
   subplot(3,2,count)
   %plot(t1,yactqg(:,i),t2,yforeqg(:,i),':')
   if (i==3) | (i==2)
      plot(t1,yactCalyg(:,i),t2,[yactCalyg(length(t1),i);yforeCalygml(:,i)],'--')
      %title('solid-actual, dotted-forecast');
      %xlabel(eval(['forelabel']));
		%ylabel(eval(['x' int2str(i)]));
		ylabel(char(ylab(i)))
   else
      plot(t1,yactCalyg(:,i),t2,[yactCalyg(length(t1),i);yforeCalygml(:,i)],'--',...
               t3,yforeBlue(:,count),'o',t3,yforeMacro(:,count),'d',...
               t4,yforeGold(:,count),'^')
               %title('solid-actual, dotted-forecast');
      %xlabel(eval(['forelabel']));
      %ylabel(eval(['x' int2str(i)]));
		ylabel(char(ylab(i)))
   end
end

actual=yactCalyg(:,keyindx)     %  GDP, CPI, U, M2
mode=yforeCalygml(:,keyindx)   %  GDP, CPI, U, M2
%low=yforeCalygl(:,keyindx)
%high=yforeCalygh(:,keyindx)
yforeBlue
yforeMacro
yforeGold