1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
|
% 10/24/97
% Distance Method of Waggoner and Zha
% Modified from Sims and Zha's code
%
%
% Copyright (C) 1997-2012 Tao Zha
%
% This free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% If you did not received a copy of the GNU General Public License
% with this software, see <http://www.gnu.org/licenses/>.
%
% ** ONLY UNDER UNIX SYSTEM
%path(path,'/usr2/f1taz14/mymatlab')
%global xxhp Hm1t Hm1 Hm SpH FRESHFUNCTION
%
%* =================================================
%* ====== Beginning of the script ==================
%* =================================================
%
%* The available data considered
%
q_m = 12; % quarters or months
yrBin=59; % beginning of the year
qmBin=1; % begining of the quarter or month
yrFin=97; % final year
qmFin=12; % final quarter
%tnvar = 2; % total number of variables
nData=(yrFin-yrBin)*q_m + (qmFin-qmBin+1);
% total number of the available data -- this is all you have
%
%* Load data and series
%
load xd24a % the default name for the variable is "xdd".
[nt,ndv]=size(xdd);
if nt~=nData
warning(sprintf('nt=%d, Caution: not equal to the length in the data',nt));
%disp(sprintf('nt=%d, Caution: not equal to the length in the data',nt));
return
end
%1 CPI-U
%2 FFR
%3 T-bill3
%4 Treasure note 10
%5 M2
%6 M1
%7 Nominal PCE
%8 real PCE
%9 Unemployment Rate
%10 IMF Commodity Price Index
%11 Civilians Employed: 16 & over
%12 Nonfarm Payroll Employment
%13 IP
%14 Retail Sales (Nominal)
%15 NAPM Composit Index
%16 Total Reserves
%17 PPI-finished goods
%18 PPI-Crude materials
%19 PPI-Crude materials less energy
%20 CRB Spot Commodity Index -- all commodities
%21 CRB Spot Commodity Index -- raw industrials
%22 PCE price index
%23 rgdpmon Real GDP (monthly, chain $92)
%24 dgdpmon Deflator GDP (monthly, chain $92)
%1 IMF CP
%2 M2
%3 FFR
%3 real GDP
%4 CPI-U
%5 U
%>>>>>>>>>>>>>>>>>>
logindx = [1 5:8 10:14 16:24];
xdd(:,logindx) = log(xdd(:,logindx));
pctindx = [2:4 9 15];
xdd(:,pctindx)=.01*xdd(:,pctindx); % make it a general term for the following use
%
vlist = [10 5 2 23 1 9]; % regarding "xdd", IMF-CP, M2, FFR, GDP, CPI, U
vlistlog = [1 2 4 5]; % subset of "vlist"
vlistper = [3 6]; % subset of "vlist"
%<<<<<<<<<<<<<<<<<<<
idfile='iden6';
xlab = {'Inf'
'MS'
'FFR'
'y'
'P'
'U'};
ylab = {'Pcm'
'M2'
'FFR'
'y'
'P'
'U'};
xdd_per = xdd(:,vlist);
x1 = 'Pcm';
x2 = 'M2';
x3 = 'FFR';
x4 = 'GDP';
x5 = 'CPI';
x6 = 'U';
x7 = 'R10';
baddata = find(isnan(xdd_per));
if ~isempty(baddata)
warning('Some data are actually unavailable.')
disp('Hit any key to continue, or ctrl-c to abort')
pause
end
%
%* A specific sample is considered for estimation
%* Sample period 59:7-82:9, forecast period 82:10-84:9
yrStart=59;
qmStart=1;
[yrEnd,qmEnd,forep,forepy,forelabel] = pararc;
nSample=(yrEnd-yrStart)*q_m + (qmEnd-qmStart+1);
if qmEnd == q_m % end of the year
nSampleCal=nSample; % Cal: calendar year
else
nSampleCal=(yrEnd-1-yrStart)*q_m + (q_m-qmStart+1); % Cal: calendar year
end
%* More script variables
%
lags = 13; % <<>>
% automatic decay code (monthly data), only two options: lags = 6 or 13
forepq = forep/3; % quarterly
actup = 5*48; % <<>> actual periods before forecasting (20 years)
%actup = 12*floor(nSample/12); % <<>> actual periods before forecasting (8 years)
actup = 48; % <<>> actual periods before forecasting (4 years)
actupq = actup/3; % quarterly
actupy = actup/12; % four years
imstp = 48; % <<>> impulse responses (4 years)
ninv = 1000; % the number of intervals for counting impulse responses
nhp = 6; % <<>> number of hyperparameters for estimation
%%scf = 2.4/sqrt(nvar); % scf^2*Sigma (covaraince)
scf = 0.25; % scf^2*Sigma (covaraince)
ndraws1=15; % 1500, 1st part of Monte Carlo draws
ndraws2=2*ndraws1; % 2nd part of Monte Carlo draws
ndraws=3*ndraws2 % a total number of Monte Carlo draws
nstarts=3; % number of starting points
imndraws = nstarts*ndraws2;
tdf = 3; % degrees of freedom for t-dist
ga = tdf/2; % asymmetry parameter in Gamma
gb = 2/tdf; % normalized parameter in Gamma
%
%* =================================================
%* ====== End of the script ========================
%* =================================================
if (q_m==12)
nStart=(yrStart-yrBin)*12+qmStart-qmBin; % positive number of months at the start
nEnd=(yrEnd-yrFin)*12+qmEnd-qmFin; % negative number of months towards end
elseif (q_m==4)
nStart=(yrStart-yrBin)*4+qmStart-qmBin; % positive number of months at the start
nEnd=(yrEnd-yrFin)*4+qmEnd-qmFin; % negative number of months towards end
else
disp('Warning: this code is only good for monthly/quarterly data!!!')
return
end
%
if nEnd>0 | nStart<0
disp('Warning: this particular sample consider is out of bounds of the data!!!')
return
end
%
xdgel=xdd(nStart+1:nData+nEnd,vlist); % gel: general term for selected xdd
xdata=xdd(nStart+1:nData,vlist);
[Gb,Sbd,Bh,SpH,fss,ndobs,phi,y,nvar,ncoef,xxhpc,a0indx,na0p,...
idmat0,idmatpp] = szasbvar(idfile,q_m,lags,nSample,nhp,xdgel);
% * the largest matrix in this file <<>>
yforew = zeros(ndraws,forep*nvar); % preallocating
yforeqgw = zeros(ndraws,forepq*nvar); % preallocating
yforeCalygw = zeros(ndraws,forepy*nvar); % preallocating
% * the largest matrix in this file <<>>
%%imfcnt = zeros(ninv+2,imstp*nvar^2); % cnt: count
load idenml % xhat ghat fhat, etc.
%load outiden % xhat ghat fhat
%==================
% Impulse responses first
%==================
%A0 = zeros(nvar);
%A0(a0indx)=xhat;
%A0(4,2) = -xhat(7); % output in MD
%A0(5,2)=-xhat(7); % price in MD
A0in = inv(A0);
swish = A0in'; % each row corresponds to an equation
%Bh = Hm1t; % no longer have Hm1t in this new szasbvar
% ** impulse responses
nn = [nvar lags imstp];
imf = zimpulse(Bh,swish,nn); % in the form that is congenial to RATS
%[vd,str,imf] = errors(Bh,swish,nn);
scaleout = imcgraph(imf,nvar,imstp,xlab,ylab)
%%%%
%$$$ Out-of-sample forecasts. Note: Hm1t does not change with A0.
%%%%
%
% ** out-of-sample forecast, from 82:4 to 84:3 (flp+1:flp+forep)
% * updating the last row of X (phi) with the current (last row of) y.
phil = phi(size(phi,1),:);
phil(nvar+1:ncoef-1) = phil(1:ncoef-1-nvar);
phil(1:nvar) = y(size(y,1),:);
ylast = y(size(y,1),:);
indx12 = size(y,1)-q_m+1:size(y,1);
ylast12 = y(indx12,:); % last 12 months data
nn = [nvar lags forep];
%
yfore = forecast(Bh,phil,nn); % forep-by-nvar
%>>>>>>>>>>>>>>>
yforel=yfore;
yforel(:,vlistlog) = exp(yfore(:,vlistlog));
figure;
t2=1:forep;
for i = 1:nvar
subplot(nvar/2,2,i)
plot(t2,yforel(:,i),'--')
%title('solid-actual, dotted-forecast');
%title(eval(['forelabel']));
%ylabel(eval(['x' int2str(i)]));
ylabel(char(ylab(i)))
end
%<<<<<<<<<<<<<<<
%%%%%%%%
%
%% See Zha's note "Forecast (1)" p. 5, RATS manual (some errors in RATS), etc.
%
%% Some notations: y(t+1) = y(t)B1 + e(t+1)inv(A0). e(t+1) is 1-by-n.
%% Let r(t+1)=e(t+1)inv(A0) + e(t+2)C + .... where inv(A0) is impulse
%% response at t=1, C at t=2, etc. The row of inv(A0) or C is
%% all responses to one shock.
%% Let r be q-by-1 (such as r(1) = r(t+1)
%% = y(t+1) (constrained) - y(t+1) (forecast)).
%% Use impulse responses to find out R (k-by-q) where k=nvar*nsteps
%% where nsteps the largest constrained step. The key of the program
%% is to creat R using impulse responses
%% Optimal solution for shock e where R'*e=r and e is k-by-1 is
%% e = R*inv(R'*R)*r.
%
%%%%%%%%
nconstr=4; % q: 4 years -- 4*12 months
eq_ms = 2; % location of MS equation
%eq_ms = []; % all shocks
%*** initializing
stepcon=cell(nconstr,1); % initializing, value y conditioned
valuecon=zeros(nconstr,1); % initializing, value y conditioned
varcon=zeros(nconstr,1); % initializing, endogous variables conditioned
%
stepcon{1}=[1:12]'; % average over 12 months.
stepcon{2}=[13:24]'; % average over 12 months.
stepcon{3}=[25:36]'; % average over 12 months.
stepcon{4}=[37:48]'; % average over 12 months.
%
%for i=1:nconstr
% stepcon{i}=i;
%end
%
chk1 = mean(yfore(stepcon{1},3))
chk2 = mean(yfore(stepcon{2},3))
chk3 = mean(yfore(stepcon{3},3))
chk4 = mean(yfore(stepcon{4},3))
Ro=[chk1 chk2 chk3 chk4];
%
chk1 = exp( (sum(yfore(stepcon{1},5))-sum(ylast12(:,5))) ./ q_m )
chk2 = exp( (sum(yfore(stepcon{2},5))-sum(yfore(stepcon{1},5))) ./ q_m )
chk3 = exp( (sum(yfore(stepcon{3},5))-sum(yfore(stepcon{2},5))) ./ q_m )
chk4 = exp( (sum(yfore(stepcon{4},5))-sum(yfore(stepcon{3},5))) ./ q_m )
%
%valuecon(:)=0.055;
%
%>>>>>>>>>>>>>>>>> E: Condition on funds rate path >>>>>>>>>>>>> Toggle
%delta=0.0010;
%valuecon(1) = mean(yfore(stepcon{1},3))+2*delta;
%valuecon(2) = mean(yfore(stepcon{2},3))+2*delta;
%valuecon(3) = mean(yfore(stepcon{3},3))-2*delta;
%valuecon(4) = mean(yfore(stepcon{4},3))-2*delta;
%valuecon(1) = 0.055;
%valuecon(2) = 0.050;
%valuecon(3) = 0.0475;
%valuecon(4) = 0.045;
%>>>>>>>>>>>>>>>>> E: Condition on funds rate path >>>>>>>>>>>>>
%
%<<<<<<<<<<<<<<<< B: Condition on inflation path <<<<<<<<<< Toggle
%delta=0.0010;
%valuecon(1)=mean(ylast12(:,5))+log(chk1-0*delta);
%valuecon(2)=valuecon(1)+log(chk2-2*delta);
%valuecon(3)=valuecon(2)+log(chk3-6*delta);
%valuecon(4)=valuecon(3)+log(chk4-12*delta);
% % 5: CPI; 2.5%: annual inflation over 12 months, geometric means
%$$$ very good results -- following
valuecon(1)=mean(ylast12(:,5))+log(chk1);
valuecon(2)=valuecon(1)+log(1.020);
valuecon(3)=valuecon(2)+log(1.02);
valuecon(4)=valuecon(3)+log(1.02);
% % 5: CPI; 2.5%: annual inflation over 12 months, geometric means
%<<<<<<<<<<<<<<<< E: Condition on inflation path <<<<<<<<<<
nstepsm = 0; % initializing, the maximum step in all constraints
for i=1:nconstr
nstepsm = max([nstepsm max(stepcon{i})]);
end
varcon(:)=5; % 3: FFR; 5: CPI
%
imf3=reshape(imf,size(imf,1),nvar,nvar);
% imf3: row-steps, column-nvar responses, 3rd dimension-nvar shocks
imf3s=permute(imf3,[1 3 2]);
% imf3s: permuted so that row-steps, column-nvar shocks,
% 3rd dimension-nvar responses
[yhat,Estr] = fidencond(valuecon,stepcon,varcon,nconstr,nstepsm,nvar,lags,...
yfore,imf3s,phil,Bh,eq_ms);
chk1 = mean(yhat(stepcon{1},3))
chk2 = mean(yhat(stepcon{2},3))
chk3 = mean(yhat(stepcon{3},3))
chk4 = mean(yhat(stepcon{4},3))
Rh=[chk1 chk2 chk3 chk4];
chk1 = exp( (sum(yhat(stepcon{1},5))-sum(ylast12(:,5))) ./ q_m )
chk2 = exp( (sum(yhat(stepcon{2},5))-sum(yhat(stepcon{1},5))) ./ q_m )
chk3 = exp( (sum(yhat(stepcon{3},5))-sum(yhat(stepcon{2},5))) ./ q_m )
chk4 = exp( (sum(yhat(stepcon{4},5))-sum(yhat(stepcon{3},5))) ./ q_m )
%chk1 = mean(yhat(1:12,3))
%chk2 = mean(yhat(13:24,3))
%chk3 = mean(yhat(25:36,3))
%chk4 = mean(yhat(36:48,3))
%Rh=[chk1 chk2 chk3 chk4];
%chk1 = exp( (sum(yhat(1:12,5))-sum(ylast12(:,5))) ./ q_m )
%chk2 = exp( (sum(yhat(13:24,5))-sum(yhat(1:12,5))) ./ q_m )
%chk3 = exp( (sum(yhat(25:36,5))-sum(yhat(13:24,5))) ./ q_m )
%chk4 = exp( (sum(yhat(37:48,5))-sum(yhat(25:36,5))) ./ q_m )
idiff=mean(yfore(:,3))-mean(yhat(:,3))
mean(yfore(:,3))
mean(yhat(:,3))
figure
plot(1:48,yfore(:,3),1:48,yhat(:,3),':')
figure
plot(1:4,Ro,1:4,Rh,':')
%>>>>>>>>>>>>>>>
yhatl=yhat;
yhatl(:,vlistlog) = exp(yhat(:,vlistlog));
figure;
t2=1:forep;
for i = 1:nvar
subplot(nvar/2,2,i)
plot(t2,yhatl(:,i),'--')
%title('solid-actual, dotted-forecast');
%title(eval(['forelabel']));
%ylabel(eval(['x' int2str(i)]));
ylabel(char(ylab(i)))
end
%<<<<<<<<<<<<<<<
% inputs needed.
%yfore=yhat;
%===================================================
%%% Converting to calendar years and all at level
%===================================================
[yforeml,yforeqgml,yforeCalygml] = fore_cal(yhat,xdata,nvar,nSample,...
nSampleCal,forep,forepq,forepy,q_m,qmEnd,vlist,vlistlog);
%==================
% Note
%=================
% ? 1--median; l--lower bound; h--upper bound: between the bound: 2/3 probability
% yfore? % monthly, level
% yforeqg? % quarterly, growth rate
% yforeCalyg? % calendar year, growth rate
%save outw ndraws yfore1 yforeqg1 yforeCalyg1 yforel yforeqgl yforeh yforeqgh ...
% yforeCalygl yforeCalygh IUbeta
yforeCalygml
%----------------------------------------------------------------------
%================= Graphics =====================
%----------------------------------------------------------------------
%
%[yactCalyg,yforeCalygml,yAg,yFg] = fore_gh(xdata,nvar,nSample,nSampleCal,...
% yforeml,yforeqgml,yforeCalygml,actup,actupq,actupy,...
% vlist,vlistlog,vlistper,q_m,forep,ylab);
xinput = cell(16,1);
xinput{1}=xdata; xinput{2}=nvar; xinput{3}=nSample; xinput{4}=nSampleCal;
xinput{5}=yforeml; xinput{6}=yforeqgml; xinput{7}=yforeCalygml; xinput{8}=actup;
xinput{9}=actupq; xinput{10}=actupy; xinput{11}=vlist; xinput{12}=vlistlog;
xinput{13}=vlistper; xinput{14}=q_m; xinput{15}=forep; xinput{16}=ylab;
[yactCalyg,yforeCalygml,yAg,yFg] = fore_gh(xinput);
% Key Macroeconomic Variables: GDP, CPI, U
%******* From Goldbook July 1-2, 1997 FOMC
yforeBlue = [
3.6 2.4 5.0
2.5 2.6 5.0
]; % real GDP, CPI-U, U,
yforeMacro = [
3.7 2.3 4.9
2.1 2.4 4.9
]; % real GDP, CPI-U, U
yforeGold = [
3.8 2.4 5.0
2.5 2.5 4.8
2.4 2.7 4.7
]; % real GDP, CPI-U, U
t3 = yAg+1:yAg+length(yforeBlue(:,1));
t4 = yAg+1:yAg+length(yforeGold(:,1));
%
keyindx = [4:nvar 3 2]; % GdP, CPI, U, FFR, M2
count=0;
t1 = 1:yAg;
t2 = yAg:yAg+yFg;
for i = keyindx
count = count+1;
subplot(3,2,count)
%plot(t1,yactqg(:,i),t2,yforeqg(:,i),':')
if (i==3) | (i==2)
plot(t1,yactCalyg(:,i),t2,[yactCalyg(length(t1),i);yforeCalygml(:,i)],'--')
%title('solid-actual, dotted-forecast');
%xlabel(eval(['forelabel']));
%ylabel(eval(['x' int2str(i)]));
ylabel(char(ylab(i)))
else
plot(t1,yactCalyg(:,i),t2,[yactCalyg(length(t1),i);yforeCalygml(:,i)],'--',...
t3,yforeBlue(:,count),'o',t3,yforeMacro(:,count),'d',...
t4,yforeGold(:,count),'^')
%title('solid-actual, dotted-forecast');
%xlabel(eval(['forelabel']));
%ylabel(eval(['x' int2str(i)]));
ylabel(char(ylab(i)))
end
end
actual=yactCalyg(:,keyindx) % GDP, CPI, U, M2
mode=yforeCalygml(:,keyindx) % GDP, CPI, U, M2
%low=yforeCalygl(:,keyindx)
%high=yforeCalygh(:,keyindx)
yforeBlue
yforeMacro
yforeGold
|