File: errors.m

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (102 lines) | stat: -rw-r--r-- 4,172 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
function [vd,str,imf] = errors(Bh,swish,nn)
% Computing variance decompositions and impulse functions with
%                [vd,str,imf] = errors(Bh,swish,nn)
%   where imf and vd is of the same format as in RATS, that is to say:
%                Column: nvar responses to 1st shock,
%                            nvar responses to 2nd shock, and so on.
%                Row:  steps of impulse responses.
%         vd:  variance decompositions
%         str: standard errors of each variable, steps-by-nvar
%         imf: impulse response functions
%         Bh is the estimated reduced form coefficient in the form
%              Y(T*nvar) = XB + U, X: T*k, B: k*nvar.  The matrix
%              form or dimension is the same as "Bh" from the function "sye";
%         swish is the inv(A0) in the structural model A(L)y(t) = e(t).
%         nn is the numbers of inputs [nvar,lags,# of impulse responses].
%
% Copyright (C) 1997-2012 Tao Zha
%
% This free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% If you did not received a copy of the GNU General Public License
% with this software, see <http://www.gnu.org/licenses/>.
%

nvar = nn(1);
lags = nn(2);
imstep = nn(3);   % number of steps for impulse responses

Ah = Bh';
% Row: nvar equations
% Column: 1st lag (with nvar variables) to lags (with nvar variables) + const = k.

imf = zeros(imstep,nvar*nvar);
vd = imf;
% Column: nvar responses to 1st shock, nvar responses to 2nd shock, and so on.
% Row:  steps of impulse responses.
str = zeros(imstep,nvar);    % initializing standard errors of each equation
M = zeros(nvar*(lags+1),nvar);
% Stack lags M's in the order of, e.g., [Mlags, ..., M2,M1;M0]
M(1:nvar,:) = swish';
Mtem = M(1:nvar,:);    % temporary M -- impulse responses.
%
Mvd = Mtem.^2;     % saved for the cumulative sum later
Mvds = (sum(Mvd'))';
str(1,:) = sqrt(Mvds');    % standard errors of each equation
Mvds = Mvds(:,ones(size(Mvds,1),1));
Mvdtem = (100.0*Mvd) ./ Mvds;     % tempoary Mvd -- variance decompositions
% first or initial responses to
%            one standard deviation shock (or forecast errors).
%   Row: responses; Column: shocks
%
% * put in the form of "imf"
imf(1,:) = Mtem(:)';
vd(1,:) = Mvdtem(:)';

t = 1;
ims1 = min([imstep-1 lags]);
while t <= ims1
   Mtem = Ah(:,1:nvar*t)*M(1:nvar*t,:);
   % Row: nvar equations, each for the nvar variables at tth lag
   M(nvar+1:nvar*(t+1),:)=M(1:nvar*t,:);
   M(1:nvar,:) = Mtem;
   % ** impulse response functions
   imf(t+1,:) = Mtem(:)';
   % stack imf with each step, Row: 6 var to 1st shock, 6 var to 2nd shock, etc.
   % ** variance decompositions
   Mvd = Mvd + Mtem.^2;         % saved for the cumulative sum later
   Mvds = (sum(Mvd'))';
   str(t+1,:) = sqrt(Mvds');    % standard errors of each equation
   Mvds = Mvds(:,ones(size(Mvds,1),1));
   Mvdtem = (100.0*Mvd) ./ Mvds;   % tempoary Mvd -- variance decompositions
   vd(t+1,:) = Mvdtem(:)';
   % stack vd with each step, Row: 6 var to 1st shock, 6 var to 2nd shock, etc.
   t= t+1;
end

for t = lags+1:imstep-1
   Mtem = Ah(:,1:nvar*lags)*M(1:nvar*lags,:);
   % Row: nvar equations, each for the nvar variables at tth lag
   M(nvar+1:nvar*(t+1),:) = M(1:nvar*t,:);
   M(1:nvar,:)=Mtem;
   % ** impulse response functions
   imf(t+1,:) = Mtem(:)';
   % stack imf with each step, Row: 6 var to 1st shock, 6 var to 2nd shock, etc.
   % ** variance decompositions
   Mvd = Mvd + Mtem.^2;         % saved for the cumulative sum later
   Mvds = (sum(Mvd'))';
   str(t+1,:) = sqrt(Mvds');    % standard errors of each equation
   Mvds = Mvds(:,ones(size(Mvds,1),1));
   Mvdtem = (100.0*Mvd) ./ Mvds;   % tempoary Mvd -- variance decompositions
   vd(t+1,:) = Mvdtem(:)';
   % stack vd with each step, Row: 6 var to 1st shock, 6 var to 2nd shock, etc.
end