File: fcstidcnd.m

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (322 lines) | stat: -rw-r--r-- 13,727 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
function [yhat,Estr,rcon,Rcon,u,v,d] = fcstidcnd(valuecon,stepcon,varcon,nstepsm,...
            nconstr,eq_ms,nvar,lags,phil,Aband,Sband,yfore_h,imf3s_h,A0_h,Bh_h,...
            forep,TLindx,TLnumber,nCms,eq_Cms)
% [yhat,Estr,rcon,Rcon,u,v,d] = fcstidcnd(valuecon,stepcon,varcon,nstepsm,...
%            nconstr,eq_ms,nvar,lags,phil,Aband,Sband,yfore_h,imf3s_h,A0_h,Bh_h,...
%            forep,TLindx,TLnumber,nCms,eq_Cms)
%
%   Conditional forecasting in the identified model with or without error bands
%   It handles conditions on average values as well, so "valuecon" must be
%      expressed at average (NOT sum) level.
%   Aband is used only once when nconstr>0 and Bband=1 where Gibbs sampler may be used
%   Unconditional forecast when imf3s_h, etc is fixed and nconstr=0.
%
% valuecon:  vector of values conditioned
% stepcon:   sequence (cell) of steps conditioned; if length(stepcon{i}) > 1, the condition
%               is then an arithmetic average of log(y) over the stepcon{i} period.
% varcon:    vector of variables conditioned
% nconstr:   number of DLS constraints
% nstepsm:   maximum number of steps in all DLS constraints
% nvar:   number of variables in the BVAR model
% lags:   number of lags in the BVAR model
% phil:  the 1-by-(nvar*lags+1) data matrix where k=nvar*lags+1
%                 (last period plus lags before the beginning of forecast)
% Aband:  1: draws from A0 and Bh; 0: no draws
% Sband:  1: draws from random shocks E; 0: no random shocks
% yfore_h:  uncondtional forecasts: forep-by-nvar.  Never used when nconstr=0.
%            In this case, set it to [];
% imf3s_h: 3-dimensional impulse responses matrix: impsteps-by-nvar shocks-by-nvar responses
%            Never used when nconstr=0.  In this case, set it to [];
% A0_h:  A0 contemporaneous parameter matrix
% Bh_h:  reduced-form parameter matrix: k-by-nvar, y(t) = X(t)*Bh+e(t)
%                    where X(t) is k-by-nvar and y(t) is 1-by-nvar
% forep:  # of forecast periods (e.g., monthly for a monthly model)
% TLindx: 1-by-nCms vector of 1's and 0's, indicating tight or loose; 1: tighter, 0: looser
%       Used only when /* (MS draws) is activated.  Right now, MS shocks are deterministic.
% TLnumber: 1-by-nCms vector, lower bound for tight and upper bound for loose
% nCms: # of LZ conditions
% eq_Cms:  equation location of MS shocks
% ------
% yhat:  conditional forecasts: forep-by-nvar
% Estr:  backed-out structural shocks (from N(0,1))
% rcon:  vector - the difference between valuecon and log(yfore) (unconditional forecasts)
% Rcon:  k-by-q (q constranits and k=nvar*max(nsteps)) so that
%                        Rcon'*e = rcon where e is k-by-1
% [u,d,v]:  svd(Rcon,0)
%
%% See Zha's note "Forecast (1)" p. 5, RATS manual (some errors in RATS), etc.
%
%% Some notations:  y(t+1) = y(t)B1 + e(t+1)inv(A0). e(t+1) is 1-by-n.
%%    Let r(t+1)=e(t+1)inv(A0) + e(t+2)C + .... where inv(A0) is impulse
%%          response at t=1, C at t=2, etc. The row of inv(A0) or C is
%%          all responses to one shock.
%%    Let r be q-by-1 (such as r(1) = r(t+1)
%%                 = y(t+1) (constrained) - y(t+1) (forecast)).
%%    Use impulse responses to find out R (k-by-q) where k=nvar*nsteps
%%        where nsteps the largest constrained step.  The key of the program
%%        is to creat R using impulse responses
%%    Optimal solution for shock e where R'*e=r and e is k-by-1 is
%%                 e = R*inv(R'*R)*r and k>=q
%
% Written by Tao Zha. Revised November 1998;
% 3/20/99 Disenabled draws of MS shcoks.  To enable it, activate /* part
% 3/20/99 Added A0_h and forep and deleted Cms as input argument.  Previous
%              programs may not be compatible.
%
%
% Copyright (C) 1997-2012 Tao Zha
%
% This free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% If you did not received a copy of the GNU General Public License
% with this software, see <http://www.gnu.org/licenses/>.
%


DLSIdShock = ~isempty(eq_ms);   % if not empty, the MS shock is identified as in DLS

impsteps=size(imf3s_h,1);
if (forep<nstepsm) | (impsteps<nstepsm)
	disp('Increase # of forecast or impulse steps!!')
   disp('Or decrease # of constraints (nconstr) or constrained steps (stepcon(i))!!')
	error('Maximum of conditional steps > # of forecast or impulse steps!!')
end
kts = nvar*nstepsm;   % k -- ts: total shocks some of which are restricted and others
							  %  are free.
%*** initializing
Rcon = zeros(kts,nconstr);   % R: k-by-q
Econ = zeros(kts,1);      % E: k-by-1
rcon = zeros(nconstr,1);   % r: q-by-1
%rcon=valuecon-diag(yfore(stepcon,varcon));  % another way is to use "loop" below.
tcwc = nvar*lags;     % total coefficients without constant
phi=phil;



%----------------------------------------------------
%  Form rcon, Rcon, and Econ (the mean of structural shocks)
%----------------------------------------------------
if nconstr
   A0in = reshape(imf3s_h(1,:,:),nvar,nvar);  % nvar shocks-by-nvar responses
	for i=1:nconstr
		rcon(i)=length(stepcon{i})*valuecon(i) - ...
		                     sum(yfore_h(stepcon{i},varcon(i)),1);  %<<>>
	   Rmat = zeros(nstepsm,nvar);
		r2mat = zeros(nstepsm,1);   % simply one identified equation
	         % Must be here inside the loop because it's matrix of one column of Rcon
	   for j=1:length(stepcon{i})
			if DLSIdShock   % Assuming the Fed can't see all other shocks within a month
	      	Rmat(1:stepcon{i}(j),eq_ms) = Rmat(1:stepcon{i}(j),eq_ms) + ...
	                 imf3s_h(stepcon{i}(j):-1:1,eq_ms,varcon(i));
                % Rmat: row--nstepsm, column--nvar shocks (here all shocks except
					 %     the identified one are set to zero) for a particular
                %     endogenous variable 'varcon(i)'.  See Zha Forcast (1), pp.6-7
			else             % Rcon random with (A0,A+)
				Rmat(1:stepcon{i}(j),:) = Rmat(1:stepcon{i}(j),:) + ...
				        imf3s_h(stepcon{i}(j):-1:1,:,varcon(i));
		                % Rmat: row--nstepsm, column--nvar shocks (here all shocks are
							 %     *not* set to zero) for a particular endogenous
	                   %     variable 'varcon(i)'.  See Zha Forcast (1), pp.6-7
			end
	   end
		Rmatt = Rmat';  % Now, nvar-by-nstepsm. I think here is where RATS has an error
							 % i.e. "OVERR" is not transposed when overlaid to "CAPR"
		Rcon(:,i)=Rmatt(:);      % Rcon: k-by-q where q=nconstr
	end

	[u d v]=svd(Rcon,0); %trial
	               %???? Can we reduce the time by computing inv(R'*R) directly?
	% rtr = Rcon'*Rcon; %trial
	% rtrinv = inv(Rcon'*Rcon); %trial
	vd=v.*(ones(size(v,2),1)*diag(d)'); %trial
	dinv = 1./diag(d);    % inv(diag(d))
	vdinv=v.*(ones(size(v,2),1)*dinv'); %trial
	rtr=vd*vd';       % R'*R
	rtrinv = vdinv*vdinv';   % inv(R'*R)

	Econ = Rcon*rtrinv*rcon;    % E = R*inv(R'R)*r; the mean of structural shocks
else
	Econ = zeros(kts,1);  % the mean of shocks is zero under no variable condition
	Rcon = NaN;
	rcon = NaN;
	u = NaN;
	d = NaN;
	v = NaN;
end



%---------------------------------------
%  No uncertainty at all or only random (A0,A+)
%  In other words, no future shocks
%---------------------------------------
if (~Sband) %| (nconstr & (length(eq_ms)==1))
         % length(eq_ms)==1 implies one-one mapping between MS shocks and, say, FFR
         %  if nstepsm==nconstr.  If this condition does not hold, this procedure
         %  is incorrect.  I don't have time to fix it now (3/20/99).  So I use
         %  this as a proximation
	Estr = reshape(Econ,nvar,nstepsm);
	Estr = Estr';   % transpose so that
	          % Estr: structural shocks. Row--steps, Column--n shocks
   Estr = [Estr;zeros(forep-nstepsm,nvar)];
				 % Now, forep-by-nvar -- ready for forecasts
   Estr(1:nCms,eq_Cms) = TLnumber(:);
   Ures = Estr/A0_h;     % nstepsm-by-nvar
			 % Ures: reduced-form residuals.  Row--steps; Column--n shocks

	% ** reconstruct x(t) for y(t+h) = x(t+h-1)*B
	% **       where phi = x(t+h-1) with last column being constant
	%
	yhat = zeros(forep,nvar);
	for k=1:forep
   	yhat(k,:) = phi*Bh_h + Ures(k,:);
		phi(1,nvar+1:tcwc) = phi(1,1:tcwc-nvar);
		phi(1,1:nvar) = yhat(k,:);
      %
	end

%---------------------------------------
%  With random future shocks and possibly (A0,A+) depending
%           on if imf3s_h is random
%---------------------------------------
else
	%--------------
	% Condition on variables and A random
	%--------------
	if nconstr & Aband
      warning(' ')
		disp('This situation (both E and A random) is still under construction')
      disp('It is closely related to Waggoner and Zha ReStat Gibbs sampling method')
		disp('Please press ctrl-c to abort')
		pause
	elseif nconstr
		%--------------
		% Condition on variables and DLS MS shock, no A random but S random
		%--------------
		if DLSIdShock    % other shocks are indepedent of the eq_ms shock
           % 3/20/99 The following may be problematic because Osk should depend
           %  on u (A0_h and Bh_h) in general.  I haven't worked out any good version
         %/*
         %  Osk = randn(kts,1);    % other shocks
         %  for j=1:nstepsm
         %     Osk(nvar*(j-1)+eq_ms)=0;     % no shock to the MS or identified equation
         %  end
         %  Estr = Econ + Osk;   % Econ is non zero only at position
         %                       %  eq_ms*j where j=1:nstepsm
         %  Estr = reshape(Estr,nvar,nstepsm);
         %  Estr = Estr';   % transpose so that
         %           % Estr: structural shocks. Row--steps, Column--n shocks
         %  Estr = [Estr;randn(forep-nstepsm,nvar)];
         %     % Now, forep-by-nvar -- ready for forecasts
         %
         disp('DLS')
         Ome = eye(kts) - u*u';        % note, I-u*u' = I - R*inv(R'*R)*R'
         %[u1 d1 v1] = svd(Ome);  % too slow
         [u1 d1] = eig(Ome);
         Stdcon = u1*diag(sqrt(diag(abs(d1))));    % lower triagular chol of conditional variance
                        % see Zha's forecast (1), p.17
         tmp1=zeros(nvar,nstepsm);
         tmp1(eq_ms,:)=randn(1,nstepsm);
         tmp2=tmp1(:);
         %Estr1 = Econ + Stdcon*randn(kts,1);
         %jnk = reshape(Stdcon*tmp2,nvar,nstepsm)
         Estr1 = Econ + Stdcon*tmp2;
         Estr2 = reshape(Estr1,nvar,nstepsm);
         Estr2 = Estr2';   % transpose so that
            % Estr2: structural shocks. Row--nstepsm, Column--n shocks
         Estr = [Estr2;randn(forep-nstepsm,nvar)];
            % Now, forep-by-nvar -- ready for forecasts
		else
    		Ome = eye(kts) - u*u';        % note, I-u*u' = I - R*inv(R'*R)*R'
    		%[u1 d1 v1] = svd(Ome);  % too slow
    		[u1 d1] = eig(Ome);
    		Stdcon = u1*diag(sqrt(diag(abs(d1))));    % lower triagular chol of conditional variance
    							% see Zha's forecast (1), p.17
			%--------------
			% Condition on variables and LZ MS shock, no A random but S random
			%   This section has not be tested yet, 10/14/98
			%--------------
         if nCms
 				Estr1 = Econ + Stdcon*randn(kts,1);
				Estr2 = reshape(Estr1,nvar,nstepsm);
				Estr2 = Estr2';   % transpose so that
                % Estr2: structural shocks. Row--nstepsm, Column--n shocks
				Estr = [Estr2;randn(forep-nstepsm,nvar)];
			       % Now, forep-by-nvar -- ready for forecasts
            Estr(1:nCms,eq_Cms) = TLnumber(:);

            %/* draw MS shocks
            %  for k=1:nCms
            %     if TLindx(k)     % tighter
            %        while (Estr(k,eq_Cms)<TLnumber(k))
            %           Estr(k,eq_Cms) = randn(1,1);
            %        end
            %     else        % looser
            %        while (Estr(k,eq_Cms)>TLnumber(k))
            %           Estr(k,eq_Cms) = randn(1,1);
            %        end
            %     end
            %  end
			%--------------
			% Condition on variables only, no A random but S random
			%--------------
			else
  				Estr1 = Econ + Stdcon*randn(kts,1);
				Estr2 = reshape(Estr1,nvar,nstepsm);
				Estr2 = Estr2';   % transpose so that
                % Estr2: structural shocks. Row--nstepsm, Column--n shocks
				Estr = [Estr2;randn(forep-nstepsm,nvar)];
			       % Now, forep-by-nvar -- ready for forecasts
			end
		end
  	%--------------
  	% Condition on LZ MS shocks only, S random and possibly A random depending on
   %                     if A0_h and Bh_h are random
  	%--------------
	else
      if nCms
			Estr = randn(forep,nvar);
				    % Now, forep-by-nvar -- ready for forecasts
         Estr(1:nCms,eq_Cms) = TLnumber(:);

         %/* draw MS shocks
         %  for k=1:nCms
         %     if TLindx(k)     % tighter
         %        while (Estr(k,eq_Cms)<TLnumber(k))
         %           Estr(k,eq_Cms) = randn(1,1);
         %        end
         %     else        % looser
         %        while (Estr(k,eq_Cms)>TLnumber(k))
         %           Estr(k,eq_Cms) = randn(1,1);
         %        end
         %     end
         %  end
		else
			Estr = randn(forep,nvar);    % Unconditional forecast
			    % Now, forep-by-nvar -- ready for forecasts
		end
	end
	%


   Ures = Estr/A0_h;     % nstepsm-by-nvar
			 % Ures: reduced-form residuals.  Row--steps; Column--n shocks

	% ** reconstruct x(t) for y(t+h) = x(t+h-1)*B
	% **       where phi = x(t+h-1) with last column being constant
	%
	yhat = zeros(forep,nvar);
	for k=1:forep
   	yhat(k,:) = phi*Bh_h + Ures(k,:);
		phi(1,nvar+1:tcwc) = phi(1,1:tcwc-nvar);
		phi(1,1:nvar) = yhat(k,:);
	end
end