File: fidencond.m

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (192 lines) | stat: -rw-r--r-- 8,235 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
function [yhat,Estr,rcon,Ome,Rmat,u,v,d] = fidencond(valuecon,stepcon,varcon,nconstr,...
                         nstepsm,nvar,lags,yfore,imf3s,phil,Bh,eq_iden,steps_iden)
% Estimating conditional forecasting in the identified model
%function [yhat,Estr,rcon,Ome,Rmat,u,v,d] = fidencond(valuecon,stepcon,varcon,nconstr,...
%                         nstepsm,nvar,lags,yfore,imf3s,phil,Bh,eq_iden,steps_iden)
%
% valuecon:  vector of values conditioned
% stepcon:   sequence (cell) of steps conditioned; if length(stepcon{i}) > 1, the condition
%               is then an arithmetic average of log(y) over the stepcon{i} period.
% varcon:    vector of variables conditioned
% nconstr:   number of constraints
% nstepsm:   maximum number of steps in all constraints
% nvar:   number of variables in the BVAR model
% lags:   number of lags in the BVAR model
% yfore:  uncondtional forecasts: forep-by-nvar
% imf3s: 3-dimensional impulse responses matrix:
%                               impsteps-by-nvar shocks-by-nvar responses
% phil:  the 1-by-(nvar*lags+1) data matrix where k=nvar*lags+1
%                 (last period plus lags before the beginning of forecast)
% Bh:  reduced-form parameter matrix: k-by-nvar, y(t) = X(t)*Bh+e(t)
%                    where X(t) is k-by-nvar and y(t) is 1-by-nvar
% eq_iden: identified equation or shock (in terms of number).
%          If eq_iden=[], then'fidencond' is, similar to RATS, to compute
%             forecasts with *all* shocks.
%          If length(eq_iden)=1, compute forecasts with only "MS" shocks.
%          If eq_iden = [a b c], a is # of constraints for all shocks (<=nconstr),
%             b is location of MS, and c is max steps for all shocks.
%             My recall is that this option has never been tested 9/18/98
% steps_iden:  a vector (set) of steps for identified shocks.  Valid only
%              if length(eq_iden)=1. Note, length(steps_iden) must nconstr.
% ------
% yhat:  conditional forecasts: forep-by-nvar
% Estr:  backed-out structural shocks (from N(0,1))
% rcon:  vector - the difference between valuecon and log(yfore) (unconditional forecasts)
% Rcon:  k-by-q (q constranits and k=nvar*max(nsteps)) so that
%                        Rcon'*e = rcon where e is k-by-1, where k=nvar*nstepm
% Rmat:  nstepsm-by-nvar (shocks), for only one constraint at a time. See Zha's
%                  Forecast (1), pp.5-6
% Ome:  k-by-k: covariance matrix of vectorized structural shocks vec(Estr)
%
% [u,d,v]:  svd(Rcon,0)
%
%% See Zha's note "Forecast (1)" pp.5-7, RATS manual (some errors in RATS), etc.
%
%% Some notations:  y(t+1) = y(t)B1 + e(t+1)inv(A0). e(t+1) is 1-by-n.
%%    Let r(t+1)=e(t+1)inv(A0) + e(t+2)C + .... where inv(A0) is impulse
%%          response at t=1, C at t=2, etc. The row of inv(A0) or C is
%%          all responses to one shock.
%%    Let r be q-by-1 (such as r(1) = r(t+1)
%%                 = y(t+1) (constrained) - y(t+1) (forecast)).
%%    Use impulse responses to find out R (k-by-q) where k=nvar*nsteps
%%        where nsteps the largest constrained step.  The key of the program
%%        is to creat R using impulse responses
%%    Optimal solution for shock e where R'*e=r and e is k-by-1 is
%%                 e = R*inv(R'*R)*r.
%
% NOTE: the code needs to be improved, 10/19/98 (use lzpaper/fcstidcnd.m for the time being).
%
%
% Copyright (C) 1997-2012 Tao Zha
%
% This free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% If you did not received a copy of the GNU General Public License
% with this software, see <http://www.gnu.org/licenses/>.
%


%IdenShock = ~isempty(eq_iden);   % if not empty, the shock is identified
forep=size(yfore,1);
impsteps=size(imf3s,1);
if (forep<nstepsm) | (impsteps<nstepsm)
	disp('Increase # of forecast or impulse steps!!')
   disp('Or decrease # of constraints (nconstr) or constrained steps (stepcon(i))!!')
	error('Maximum of conditional steps > # of forecast or impulse steps!!')
	%warning
	%return
end
if max(steps_iden) < nconstr
	disp('Increase # of identified steps or decrease # of constraints')
	error('length(steps_iden) > nconstr')
end

kfs = nvar*nstepsm;   % k -- fs: free shocks
%*** initializing
Rcon = zeros(kfs,nconstr);   % R: k-by-q
Econ = zeros(kfs,1);      % E: k-by-1
rcon = zeros(nconstr,1);   % r: q-by-1
%rcon=valuecon-diag(yfore(stepcon,varcon));  % another way is to use "loop" below.
A0in = reshape(imf3s(1,:,:),nvar,nvar);  % nvar shocks-by-nvar responses


for i=1:nconstr
   rcon(i)=valuecon(i)-mean(yfore(stepcon{i},varcon(i)));
	%rcon(i)=valuecon(i)-sum(yfore(stepcon{i},varcon(i)));
   Rmat = zeros(nstepsm,nvar);
           % Rmat: row--nstepsm, column--nvar shocks (here all shocks except
	        %     the identified one are set to zero) for a particular
           %     endogenous variable 'varcon(i)'.  See Zha Forcast (1), pp.6-7
	r2mat = zeros(nstepsm,1);   % simply one identified equation
           % Must be here inside the loop because it's matrix of one column of Rcon
   for j=1:length(stepcon{i})
      if (length(eq_iden)==1)
			r2mat(1:stepcon{i}(j)) = r2mat(1:stepcon{i}(j)) + ...
                                      imf3s(stepcon{i}(j):-1:1,eq_iden,varcon(i));
      elseif (length(eq_iden)>1)
         if (i<=eq_iden(1))
            Rmat(1:stepcon{i}(j),:) = Rmat(1:stepcon{i}(j),:) + ...
			                             imf3s(stepcon{i}(j):-1:1,:,varcon(i));
         else
            Rmat(1:eq_iden(3),:) = Rmat(1:eq_iden(3),:) + ...
                     imf3s(stepcon{i}(j):-1:stepcon{i}(j)-eq_iden(3)+1,:,varcon(i));

            Rmat(eq_iden(3)+1:stepcon{i}(j),eq_iden(2)) = ...
                         Rmat(eq_iden(3)+1:stepcon{i}(j),eq_iden(2)) + ...
                         imf3s(stepcon{i}(j)-eq_iden(3):-1:1,eq_iden(2),varcon(i));
         end
		else
			Rmat(1:stepcon{i}(j),:) = Rmat(1:stepcon{i}(j),:) + ...
			                             imf3s(stepcon{i}(j):-1:1,:,varcon(i));
	                % Rmat: row--nstepsm, column--nvar shocks (here all shocks are
						 %     *not* set to zero) for a particular endogenous
                   %     variable 'varcon(i)'.  See Zha Forcast (1), pp.6-7
		end
   end
	%
	if (length(eq_iden)==1)
      Rmat(steps_iden,eq_iden) = r2mat(steps_iden);   % for only one constraint at a time
	end
	Rmat=Rmat/length(stepcon{i});    % <<>>
	Rmatt = Rmat';   % Now, nvar-by-nstepsm. I think here is where RATS has an error
							  % i.e. "OVERR" is not transposed when overlaid to "CAPR"
	Rcon(:,i)=Rmatt(:);      % Rcon: k-by-q where q=nconstr
end

if nconstr
   [u d v]=svd(Rcon,0); %trial.   Rcon: k-by-q; u: k-by-q
	% rtr = Rcon'*Rcon; %trial
	% rtrinv = inv(Rcon'*Rcon); %trial
	vd=v.*(ones(size(v,2),1)*diag(d)'); %trial
	dinv = 1./diag(d);    % inv(diag(d))
	vdinv=v.*(ones(size(v,2),1)*dinv'); %trial
	rtr=vd*vd';       % R'*R
	rtrinv = vdinv*vdinv';   % inv(R'*R)
   Ome = eye(kfs) - u*u';       % note: I-u*u' = I - R*inv(R'*R)*R'; k-by-k

	Econ = Rcon*rtrinv*rcon;    % E = R*inv(R'R)*r; mean
else
	Econ = zeros(kfs,1);
	Rcon = NaN;
	rcon = NaN;
	u = NaN;
	d = NaN;
	v = NaN;
end


Estr = reshape(Econ,nvar,nstepsm);
Estr = Estr';   % transpose so that
          % Estr: structural shocks. Row--steps, Column--n shocks
Ures = Estr*A0in;     % nstepsm-by-nvar
			 % Ures: reduced-form residuals.  Row--steps; Column--n shocks
%Ures = Estr*A0in;

% ** reconstruct x(t) for y(t+h) = x(t+h-1)*B
% **       where phi = x(t+h-1) with last column being constant
%
tcwc = nvar*lags;     % total coefficients without constant
phi=phil;
%
yhat = zeros(forep,nvar);
for k=1:forep
	if (k<=nstepsm)
   	epsl = Ures(k,:);
   	yhat(k,:) = phi*Bh + epsl;
		%yhat(k,:) = phi*Bh;
   	phi(1,nvar+1:tcwc) = phi(1,1:tcwc-nvar);
   	phi(1,1:nvar) = yhat(k,:);
	else
   	yhat(k,:) = phi*Bh;
   	phi(1,nvar+1:tcwc) = phi(1,1:tcwc-nvar);
   	phi(1,1:nvar) = yhat(k,:);
	end
end