File: fn_a0freefun.m

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (55 lines) | stat: -rw-r--r-- 2,269 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
function of = fn_a0freefun(b,Ui,nvar,n0,fss,H0inv)
% of = fn_a0freefun(b,Ui,nvar,n0,fss,H0inv)
%
%    Negative logPosterior function for squeesed A0 free parameters, which are b's in the WZ notation
%        Note: columns correspond to equations
%
% b: sum(n0)-by-1 vector of A0 free parameters
% Ui: nvar-by-1 cell.  In each cell, nvar-by-qi orthonormal basis for the null of the ith
%           equation contemporaneous restriction matrix where qi is the number of free parameters.
%           With this transformation, we have ai = Ui*bi or Ui'*ai = bi where ai is a vector
%           of total original parameters and bi is a vector of free parameters. When no
%           restrictions are imposed, we have Ui = I.  There must be at least one free
%           parameter left for the ith equation.
% nvar:  number of endogeous variables
% n0: nvar-by-1, ith element represents the number of free A0 parameters in ith equation
% fss:  nSample-lags (plus ndobs if dummies are included)
% H0inv: cell(nvar,1).  In each cell, posterior inverse of covariance inv(H0) for the ith equation,
%           resembling old SpH in the exponent term in posterior of A0, but not divided by T yet.
%----------------
% of:  objective function (negative logPosterior)
%
% Tao Zha, February 2000
%
% Copyright (C) 1997-2012 Tao Zha
%
% This free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% If you did not received a copy of the GNU General Public License
% with this software, see <http://www.gnu.org/licenses/>.
%

b=b(:); n0=n0(:);

A0 = zeros(nvar);
n0cum = [0;cumsum(n0)];
tra = 0.0;
for kj = 1:nvar
   bj = b(n0cum(kj)+1:n0cum(kj+1));
   A0(:,kj) = Ui{kj}*bj;
   tra = tra + 0.5*bj'*H0inv{kj}*bj;   % negative exponential term
end

[A0l,A0u] = lu(A0);

ada = -fss*sum(log(abs(diag(A0u))));    % negative log determinant of A0 raised to power T

of = ada + tra;