File: fn_fcstcnd.m

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (253 lines) | stat: -rw-r--r-- 12,175 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
function [yhat,Estr,rcon,Rcon,u,v,d] = fn_fcstcnd(valuecon,stepcon,varcon,nstepsm,...
                      nconstr,eq_ms,nvar,lags,phil,Sband,yfore_h,imf3s_h,Bh_h,forep)
% ******* There are some BUG problems when calling this fucntion. ******* 3/15/2004.
% [yhat,Estr,rcon,Rcon,u,v,d] = fn_fcstcnd(valuecon,stepcon,varcon,nstepsm,...
%                      nconstr,eq_ms,nvar,lags,phil,Sband,yfore_h,imf3s_h,Bh_h,forep)
%
%   Conditional forecasting in the identified model with or without error bands
%   It handles conditions on average values as well, so "valuecon" must be
%      expressed at average (NOT sum) levels (i.e., arithmetic averages of log(y) over
%      the period of stepcon{i}.  5/22/01.
%   Unconditional forecast when imf3s_h, etc is fixed and nconstr=0.
%   Note that length(eq_ms)==1 implies one-one mapping between MS shocks and, say, FFR
%     if nstepsm==nconstr.  If this condition does not hold, this procedure is incorrect.
%     I don't have time to fix it now (3/20/99).  Meantime, consult or use the old code
%     fidencond.m.
%
% valuecon:  vector of values conditioned
% stepcon:   sequence (cell) of steps conditioned; if length(stepcon{i}) > 1, the condition
%               is then an arithmetic average of log(y) over the stepcon{i} period.
% varcon:    vector of variables conditioned
% nstepsm:   maximum number of steps in all DLS constraints
% nconstr:   number of DLS constraints
% eq_ms:  Equation location of MS shocks.  If [], all shocks.
% nvar:   number of variables in the BVAR model
% lags:   number of lags in the BVAR model
% phil:  the 1-by-(nvar*lags+1) data matrix where k=nvar*lags+1
%                 (last period plus lags before the beginning of forecast)
% Sband:  1: draws from random shocks E; 0: no random shocks  For now (4/27/01), no option
%    for Aband because I don't think it works best to do both Aband and Sband in one function.
% yfore_h:  uncondtional forecasts: forep-by-nvar.  Never used when nconstr=0.
%            In this case, may set it to [];
% imf3s_h: 3-dimensional impulse responses matrix: impsteps-by-nvar shocks-by-nvar responses
%            Never used when nconstr=0.  In this case, may set it to [];
% Bh_h:  reduced-form parameter matrix: k-by-nvar, y(t) = X(t)*Bh+e(t)
%                    where X(t) is k-by-nvar and y(t) is 1-by-nvar
% forep:  # of forecast periods (e.g., monthly for a monthly model)
% eq_Cms:  equation location of MS shocks
% ------
% yhat:  conditional forecasts: forep-by-nvar
% Estr:  backed-out structural shocks (from constrained Gaussians)
% rcon:  vector - the difference between valuecon and log(yfore) (unconditional forecasts)
% Rcon:  k-by-q (q constranits and k=nvar*max(nsteps)) so that
%                        Rcon'*e = rcon where e is k-by-1
% [u,d,v]:  svd(Rcon,0)
%
%% See Zha's note "Forecast (1)" p. 5, RATS manual (some errors in RATS), etc.
%% Some notations:  y(t+1) = y(t)B1 + e(t+1)inv(A0). e(t+1) is 1-by-n.
%%    Let r(t+1)=e(t+1)inv(A0) + e(t+2)C + .... where inv(A0) is impulse
%%          response at t=1, C at t=2, etc. The row of inv(A0) or C is
%%          all responses to one shock.
%%    Let r be q-by-1 (such as r(1) = r(t+1)
%%                 = y(t+1) (constrained) - y(t+1) (forecast)).
%%    Use impulse responses to find out R (k-by-q) where k=nvar*nsteps
%%        where nsteps the largest constrained step.  The key of the program
%%        is to creat R using impulse responses
%%    Optimal solution for shock e where R'*e=r and e is k-by-1 is
%%                 e = R*inv(R'*R)*r and k>=q
%
% See the old code fidencond.m.  I wond't use fn_fcstidcnd?.m, 5/22/01.
% Written by Tao Zha March 1998 .
% Revised November 1998, May 2001 (Delete A0_h as
%    input arg so that previous programs may not be compatible).

%
% Copyright (C) 1997-2012 Tao Zha
%
% This free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% If you did not received a copy of the GNU General Public License
% with this software, see <http://www.gnu.org/licenses/>.
%

DLSIdShock = ~isempty(eq_ms);   % if not empty, the MS shock is identified as in DLS

impsteps=size(imf3s_h,1);
if (forep<nstepsm) | (impsteps<nstepsm)
	disp('Increase # of forecast or impulse steps!!')
   disp('Or decrease # of constraints (nconstr) or constrained steps (stepcon(i))!!')
	error('Maximum of conditional steps > # of forecast or impulse steps!!')
end
kts = nvar*nstepsm;   % k -- ts: total shocks some of which are restricted and others
							  %  are free.
%*** initializing
Rcon = zeros(kts,nconstr);   % R: k-by-q
Econ = zeros(kts,1);      % E: k-by-1
rcon = zeros(nconstr,1);   % r: q-by-1
%rcon=valuecon-diag(yfore(stepcon,varcon));  % another way is to use "loop" below.
tcwc = nvar*lags;     % total coefficients without constant
phi=phil;



%----------------------------------------------------
%  Form rcon, Rcon, and Econ (the mean of structural shocks)
%----------------------------------------------------
A0in = reshape(imf3s_h(1,:,:),nvar,nvar);  % <<>>1 nvar shocks-by-nvar responses
if nconstr   % Conditional forecasts.
	for i=1:nconstr
      rcon(i)=length(stepcon{i})*valuecon(i) - sum(yfore_h(stepcon{i},varcon(i)),1);
                                   %<<>>2 Automatically taking care of average conditions.
	   Rmat = zeros(nstepsm,nvar);
		r2mat = zeros(nstepsm,1);   % simply one identified equation
	         % Must be here inside the loop because it's matrix of one column of Rcon
	   for j=1:length(stepcon{i})
			if DLSIdShock   % Assuming the Fed can't see all other shocks within a month
	      	Rmat(1:stepcon{i}(j),eq_ms) = Rmat(1:stepcon{i}(j),eq_ms) + ...
	                 imf3s_h(stepcon{i}(j):-1:1,eq_ms,varcon(i));
                % Rmat: row--nstepsm, column--nvar shocks (here all shocks except
					 %     the identified one are set to zero) for a particular
                %     endogenous variable 'varcon(i)'.  See Zha Forcast (1), pp.6-7
			else             % Rcon random with (A0,A+)
				Rmat(1:stepcon{i}(j),:) = Rmat(1:stepcon{i}(j),:) + ...
				        imf3s_h(stepcon{i}(j):-1:1,:,varcon(i));
		                % Rmat: row--nstepsm, column--nvar shocks (here all shocks are
							 %     *not* set to zero) for a particular endogenous
	                   %     variable 'varcon(i)'.  See Zha Forcast (1), pp.6-7
			end
	   end
		Rmatt = Rmat';  % Now, nvar-by-nstepsm. I think here is where RATS has an error
							 % i.e. "OVERR" is not transposed when overlaid to "CAPR"
		Rcon(:,i)=Rmatt(:);      % Rcon: k-by-q where q=nconstr
	end
   %
	[u d v]=svd(Rcon,0); %trial
	vd=v.*(ones(size(v,2),1)*diag(d)'); %trial
	dinv = 1./diag(d);    % inv(diag(d))
	vdinv=v.*(ones(size(v,2),1)*dinv'); %trial
	rtr=vd*vd';       % R'*R
	rtrinv = vdinv*vdinv';   % inv(R'*R)

	Econ = Rcon*rtrinv*rcon;    % E = R*inv(R'R)*r; the mean of structural shocks
else   % Unconditional forecasts.
	Econ = zeros(kts,1);  % the mean of shocks is zero under no variable condition
	Rcon = NaN;
	rcon = NaN;
	u = NaN;
	d = NaN;
	v = NaN;
end



%---------------------------------------
%  No uncertainty at all.  In other words, no future shocks.
%---------------------------------------
if (~Sband) %| (nconstr & (length(eq_ms)==1))
         % length(eq_ms)==1 implies one-one mapping between MS shocks and, say, FFR
         %  if nstepsm==nconstr.  If this condition does not hold, this procedure
         %  is incorrect.  I don't have time to fix it now (3/20/99).  So I use
         %  this as a proximation
	Estr = reshape(Econ,nvar,nstepsm);
	Estr = Estr';   % transpose so that
	          % Estr: structural shocks. Row--steps, Column--n shocks
   Estr = [Estr;zeros(forep-nstepsm,nvar)];
				 % Now, forep-by-nvar -- ready for forecasts
   Ures = Estr*A0in;      % <<>>1 nstepsm-by-nvar
			 % Ures: reduced-form residuals.  Row--steps; Column--n shocks
          % Note: We don't use /A0_h so as to eliminate small discrepancies to be
          %   completely compatible with the computation of Rmat and Estr, which uses A0in.

	% ** reconstruct x(t) for y(t+h) = x(t+h-1)*B
	% **       where phi = x(t+h-1) with last column being constant
	%
	yhat = zeros(forep,nvar);
	for k=1:forep
   	yhat(k,:) = phi*Bh_h + Ures(k,:);
		phi(1,nvar+1:tcwc) = phi(1,1:tcwc-nvar);
		phi(1,1:nvar) = yhat(k,:);
	end
%---------------------------------------
%  With random future shocks.
%---------------------------------------
else
   if nconstr     % Conditional forecasts.
		%--------------
      % Condition on variables with all shocks backed out. Straight DLS forecasts.  No A random but S random.
		%--------------
      if ~DLSIdShock
    		Ome = eye(kts) - u*u';        % note, I-u*u' = I - R*inv(R'*R)*R'
    		%[u1 d1 v1] = svd(Ome);  % too slow
    		[u1 d1] = eig(Ome);
    		Stdcon = u1*diag(sqrt(diag(abs(d1))));    % lower triagular chol of conditional variance
    							% see Zha's forecast (1), p.17
         Estr1 = Econ + Stdcon*randn(kts,1);   % Draws of constrained (conditioned) shocks.
         Estr2 = reshape(Estr1,nvar,nstepsm);
         Estr2 = Estr2';   % transpose so that
             % Estr2: structural shocks. Row--nstepsm, Column--n shocks
         Estr = [Estr2;randn(forep-nstepsm,nvar)];  % Second concatenated part: draws of free shocks.
             % Now, forep-by-nvar -- ready for forecasts
		%--------------
      % Condition on variables with identified MS shocks backed out, no A random but S random.
		%--------------
      else     % other shocks are indepedent of the eq_ms shock
           % 3/20/99 The following may be problematic because Osk should depend
           %  on u (A0_h and Bh_h) in general.  I have NOT worked out any good version.
         %/*
         %  Osk = randn(kts,1);    % other shocks
         %  for j=1:nstepsm
         %     Osk(nvar*(j-1)+eq_ms)=0;     % no shock to the MS or identified equation
         %  end
         %  Estr = Econ + Osk;   % Econ is non zero only at position
         %                       %  eq_ms*j where j=1:nstepsm
         %  Estr = reshape(Estr,nvar,nstepsm);
         %  Estr = Estr';   % transpose so that
         %           % Estr: structural shocks. Row--steps, Column--n shocks
         %  Estr = [Estr;randn(forep-nstepsm,nvar)];
         %     % Now, forep-by-nvar -- ready for forecasts
         %
         disp('DLS')
         Ome = eye(kts) - u*u';        % note, I-u*u' = I - R*inv(R'*R)*R'
         %[u1 d1 v1] = svd(Ome);  % too slow
         [u1 d1] = eig(Ome);
         Stdcon = u1*diag(sqrt(diag(abs(d1))));    % lower triagular chol of conditional variance
                        % see Zha's forecast (1), p.17
         tmp1=zeros(nvar,nstepsm);
         tmp1(eq_ms,:)=randn(1,nstepsm);
         tmp2=tmp1(:);
         %Estr1 = Econ + Stdcon*randn(kts,1);
         %jnk = reshape(Stdcon*tmp2,nvar,nstepsm)
         Estr1 = Econ + Stdcon*tmp2;
         Estr2 = reshape(Estr1,nvar,nstepsm);
         Estr2 = Estr2';   % transpose so that
            % Estr2: structural shocks. Row--nstepsm, Column--n shocks
         Estr = [Estr2;randn(forep-nstepsm,nvar)];
            % Now, forep-by-nvar -- ready for forecasts
      end
   else   % Unconditional forecasts.
     Estr = randn(forep,nvar);    % Unconditional draws.
	end

   Ures = Estr*A0in;     % <<>>1 nstepsm-by-nvar
			 % Ures: reduced-form residuals.  Row--steps; Column--n shocks
          % Note: We don't use /A0_h so as to eliminate small discrepancies to be
          %   completely compatible with the computation of Rmat and Estr, which uses A0in.

	% ** reconstruct x(t) for y(t+h) = x(t+h-1)*B
	% **       where phi = x(t+h-1) with last column being constant
	%
	yhat = zeros(forep,nvar);
	for k=1:forep
   	yhat(k,:) = phi*Bh_h + Ures(k,:);
		phi(1,nvar+1:tcwc) = phi(1,1:tcwc-nvar);
		phi(1,1:nvar) = yhat(k,:);
	end
end