File: fn_rnrprior_tv.m

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (252 lines) | stat: -rw-r--r-- 11,137 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
function [Pi_bar,H0tldcell_inv,Hptldcell_inv] ...
                      = fn_rnrprior_tv(nvar,nStates,q_m,lags,xdgel,mu,Ui,Vi,nexo,asym0,asymp)
%    Exports random Bayesian prior of Sims and Zha with linear restrictions applied, allowing for
%       possibly with asymmetric prior.
%    See Waggoner and Zha's Gibbs sampling paper and TVBVAR NOTE pp.50-61.
%
% nvar:  number of endogenous variables
% nStates:  Number of states.
% q_m:  quarter or month
% lags: the maximum length of lag
% xdgel: the general matrix of the original data (no manipulation involved)
%             with sample size including lags.  Used only to get variances of residuals for
%             the scaling purpose; NOT used for mu(5) and mu(6).
% mu: 6-by-1 vector of hyperparameters (the following numbers for Atlanta Fed's forecast), where
%          mu(5) and mu(6) are NOT used here.  See fn_dataxy.m for using mu(5) and mu(6).
%       mu(1): overall tightness and also for A0;  (0.57)
%       mu(2): relative tightness for A+;  (0.13)
%       mu(3): relative tightness for the constant term;  (0.1).  NOTE: for other
%               exogenous terms, the variance of each exogenous term must be taken into
%               acount to eliminate the scaling factor.
%       mu(4): tightness on lag decay;  (1)
%       mu(5): weight on nvar sums of coeffs dummy observations (unit roots);  (5)
%       mu(6): weight on single dummy initial observation including constant
%               (cointegration, unit roots, and stationarity);  (5)
%       NOTE: for this function, mu(5) and mu(6) are not used.
% Ui: nvar-by-1 cell.  In each cell, nvar-by-(qi+si) orthonormal basis for the null of the ith
%           equation contemporaneous restriction matrix where qi is the number of free parameters
%           within the state and si is the number of free parameters across the states.
%           With this transformation, we have ai = Ui*bi or Ui'*ai = bi where ai is a vector
%           of total original parameters and bi is a vector of free parameters. When no
%           restrictions are imposed, we have Ui = I.  There must be at least one free
%           parameter left for the ith equation.
% Vi: nvar-by-1 cell.  In each cell, k-by-(ri+ti) orthonormal basis for the null of the ith
%           equation lagged restriction matrix where k is a total of exogenous variables and
%           ri is the number of free parameters within the state and ti is the number of free
%           parameters across the states. With this transformation, we have fi = Vi*gi
%           or Vi'*fi = gi where fi is a vector of total original parameters and gi is a
%           vector of free parameters.  The ith equation is in the order of [nvar for 1st lag,
%           ..., nvar for last lag, const].
% nexo:  number of exogenous variables (if not specified, nexo=1 (constant) by default).
%         The constant term is always put to the last of all endogenous and exogenous variables.
% asym0: nvar-by-nvar asymmetric prior on A0.  Column -- equation.
%        If ones(nvar,nvar), symmetric prior;  if not, relative (asymmetric) tightness on A0.
% asymp: ncoef-1-by-nvar asymmetric prior on A+ bar constant.  Column -- equation.
%        If ones(ncoef-1,nvar), symmetric prior;  if not, relative (asymmetric) tightness on A+.
% --------------------
% Pi_bar: ncoef-by-nvar matrix for the ith equation under random walk.  Same for all equations
% H0tldcell_inv: cell(nvar,1).  The ith cell represents the ith equation, where the dim is
%         (qi+si)-by-(qi+si).  The inverse of H0tld on p.60.
% Hptldcell_inv: cell(nvar,1).  The ith cell represents the ith equation, where the dim is
%         (ri+ti)-by-(ri+ti).The inverse of Hptld on p.60.
%
% Tao Zha, February 2000.  Revised, September 2000, 2001.
% See fn_dataxy.m for using mu(5) and mu(6).
%
% Copyright (C) 1997-2012 Tao Zha
%
% This free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% If you did not received a copy of the GNU General Public License
% with this software, see <http://www.gnu.org/licenses/>.
%


if nargin==8, nexo=1; end   % <<>>1
ncoef = nvar*lags+nexo;  % Number of coefficients in *each* equation for each state, RHS coefficients only.
ncoefsts = nStates*ncoef;  % Number of coefficients in *each* equation in all states, RHS coefficients only.

H0tldcell_inv=cell(nvar,1);  % inv(H0tilde) for different equations under asymmetric prior.
Hptldcell_inv=cell(nvar,1);  % inv(H+tilde) for different equations under asymmetric prior.

%*** Constructing Pi_bar for the ith equation under the random walk assumption
Pi_bar = zeros(ncoef,nvar);   % same for all equations
Pi_bar(1:nvar,1:nvar) = eye(nvar);   % random walk

%
%@@@ Prepared for Bayesian prior
%
%
% ** monthly lag decay in order to match quarterly decay: a*exp(bl) where
% **  l is the monthly lag.  Suppose quarterly decay is 1/x where x=1,2,3,4.
% **  Let the decay of l1 (a*exp(b*l1)) match that of x1 (say, beginning: 1/1)
% **  and the decay of l2 (a*exp(b*l2)) match that of x2 (say, end: 1/5),
% **  we can solve for a and b which are
% **      b = (log_x1-log_x2)/(l1-l2), and a = x1*exp(-b*l1).
if q_m==12
   l1 = 1;   % 1st month == 1st quarter
   xx1 = 1;   % 1st quarter
   l2 = lags;   % last month
   xx2 = 1/((ceil(lags/3))^mu(4));   % last quarter
   %xx2 = 1/6;   % last quarter
   % 3rd quarter:  i.e., we intend to let decay of the 6th month match
   %    that of the 3rd quarter, so that the 6th month decays a little
   %    faster than the second quarter which is 1/2.
   if lags==1
      b = 0;
   else
      b = (log(xx1)-log(xx2))/(l1-l2);
   end
   a = xx1*exp(-b*l1);
end



%
% *** specify the prior for each equation separately, SZ method,
% ** get the residuals from univariate regressions.
%
sgh = zeros(nvar,1);        % square root
sgsh = sgh;              % square
nSample=size(xdgel,1);  % sample size-lags
yu = xdgel;
C = ones(nSample,1);
for k=1:nvar
   [Bk,ek,junk1,junk2,junk3,junk4] = sye([yu(:,k) C],lags);
   clear Bk junk1 junk2 junk3 junk4;
   sgsh(k) = ek'*ek/(nSample-lags);
   sgh(k) = sqrt(sgsh(k));
end
% ** prior variance for A0(:,1), same for all equations!!!
sg0bid = zeros(nvar,1);  % Sigma0_bar diagonal only for the ith equation
for j=1:nvar
   sg0bid(j) = 1/sgsh(j);    % sgsh = sigmai^2
end
% ** prior variance for lagged and exogeous variables, same for all equations
sgpbid = zeros(ncoef,1);     % Sigma_plus_bar, diagonal, for the ith equation
for i = 1:lags
   if (q_m==12)
      lagdecay = a*exp(b*i*mu(4));
   end
   %
   for j = 1:nvar
      if (q_m==12)
         % exponential decay to match quarterly decay
         sgpbid((i-1)*nvar+j) = lagdecay^2/sgsh(j);  % ith equation
      elseif (q_m==4)
         sgpbid((i-1)*nvar+j) = (1/i^mu(4))^2/sgsh(j);  % ith equation
      else
			error('Incompatibility with lags, check the possible errors!!!')
         %warning('Incompatibility with lags, check the possible errors!!!')
         %return
      end
   end
end
%


%=================================================
%   Computing the (prior) covariance matrix for the posterior of A0, no data yet
%=================================================
%
%
% ** set up the conditional prior variance sg0bi and sgpbi.
sg0bida = mu(1)^2*sg0bid;   % ith equation
sgpbida = mu(1)^2*mu(2)^2*sgpbid;
sgpbida(ncoef-nexo+1:ncoef) = mu(1)^2*mu(3)^2;
          %<<>> No scaling adjustment has been made for exogenous terms other than constant
sgppbd = sgpbida(nvar+1:ncoef);    % corresponding to A++, in a Sims-Zha paper

Hptd = zeros(ncoef);
Hptdi=Hptd;
Hptd(ncoef,ncoef)=sgppbd(ncoef-nvar);
Hptdinv(ncoef,ncoef)=1./sgppbd(ncoef-nvar);
             % condtional on A0i, H_plus_tilde


if nargin<10   % <<>>1 Default is no asymmetric information
   asym0 = ones(nvar,nvar);  % if not ones, then we have relative (asymmetric) tightness
   asymp = ones(ncoef-1,nvar);    % for A+.  Column -- equation
end

%**** Asymmetric Information
%asym0 = ones(nvar,nvar);  % if not ones, then we have relative (asymmetric) tightness
%asymp = ones(ncoef-1,nvar);    % pp: plus without constant.  Column -- equation
%>>>>>> B: asymmetric prior variance for asymp <<<<<<<<
%
%for i = 1:lags
%   rowif = (i-1)*nvar+1;
%   rowil = i*nvar;
%     idmatw0 = 0.5;   % weight assigned to idmat0 in the formation of asymp
%	if (i==1)
%     asymp(rowif:rowil,:)=(1-idmatw0)*ones(nvar)+idmatw0*idmat0;  % first lag
%		                 % note:  idmat1 is already transposed.  Column -- equation
%	else
%     %asymp(rowif:rowil,1:nvar) = (1-idmatw0)*ones(nvar)+idmatw0*idmat0;
%                % <<<<<<< toggle +
%                % Note: already transposed, since idmat0 is transposed.
%				     % Meaning: column implies equation
%     asymp(rowif:rowil,1:nvar) = ones(nvar);
%                % >>>>>>> toggle -
%	end
%end
%
%>>>>>> E: asymmetric prior variance for asymp <<<<<<<<


%=================================================
%   Computing the final covariance matrix (S1,...,Sm) for the prior of A0,
%      and final Gb=(G1,...,Gm) for A+ if asymmetric prior or for
%      B if symmetric prior for A+
%=================================================
%
for i = 1:nvar
   %------------------------------
   % Introduce prior information on which variables "belong" in various equations.
   % In this first trial, we just introduce this information here, in a model-specific way.
   % Eventually this info has to be passed parametricly.  In our first shot, we just damp down
   % all coefficients except those on the diagonal.

   %*** For A0
   factor0=asym0(:,i);
   sg0bd = sg0bida.*factor0;  %  Note, this only works for the prior variance Sg(i)
                      % of a0(i) being diagonal.  If the prior variance Sg(i) is not
                      % diagonal, we have to work on inv(Sg(i)) or sg0bdinv directly.
   sg0bdinv = 1./sg0bd;
   % *    unconditional variance on A0+
   H0td = diag(sg0bd);    % unconditional
   H0tdinv = diag(sg0bdinv);
   %
   H0tldcell_inv{i}=(Ui{i}'*kron(eye(nStates),H0tdinv/nStates))*Ui{i};


   %*** For A+
   if ~(lags==0)  % For A1 to remain random walk properties
      factor1=asymp(1:nvar,i);
      sg1bd = sgpbida(1:nvar).*factor1;
      sg1bdinv = 1./sg1bd;
      %
      Hptd(1:nvar,1:nvar)=diag(sg1bd);
      Hptdinv(1:nvar,1:nvar)=diag(sg1bdinv);
      if lags>1
         factorpp=asymp(nvar+1:ncoef-1,i);
         sgpp_cbd = sgppbd(1:ncoef-nvar-1) .* factorpp;
         sgpp_cbdinv = 1./sgpp_cbd;
         Hptd(nvar+1:ncoef-1,nvar+1:ncoef-1)=diag(sgpp_cbd);
         Hptdinv(nvar+1:ncoef-1,nvar+1:ncoef-1)=diag(sgpp_cbdinv);
               % condtional on A0i, H_plus_tilde
      end
   end
   Hptldcell_inv{i}=(Vi{i}'*kron(eye(nStates),Hptdinv/nStates))*Vi{i};
   %Hptdinv_3 = kron(eye(nStates),Hptdinv);   % ?????
end