1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
|
function yhat = forecasterr(A0hin,Bh,phi,nn)
% forecast: unconditional forecating: yhat = forecast(Bh,phi,nn)
% y_hat(t+h) = x_hat(t+h-1)*Bh, X: 1*k; Bh: k*nvar; y_hat: 1*nvar
% where A0hin: inv(A0h) where columns correspond to equations
% Bh: the (posterior) estimate of B;
% phi: the 1-by-(nvar*lags+1) data matrix where k=nvar*lags+1
% (last period plus lags before the beginning of forecast);
% nn: [nvar,lags,forep], forep: forecast periods;
% yhat: forep*nvar.
%
% See fsim.m when A0h (rather than A0hin) is used.
%
% Copyright (C) 1997-2012 Tao Zha
%
% This free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% If you did not received a copy of the GNU General Public License
% with this software, see <http://www.gnu.org/licenses/>.
%
% ** setup
nvar = nn(1);
lags = nn(2);
forep = nn(3);
tcwc = nvar*lags; % total coefficients without constant
% ** reconstruct x(t) for y(t+h) = x(t+h-1)*B
% ** where phi = x(t+h-1) with last column being constant
Estr = randn(forep,nvar);
Ures = Estr*A0hin;
yhat = zeros(forep,nvar);
for k=1:forep
yhat(k,:) = phi*Bh + Ures(k,:);
phi(1,nvar+1:tcwc) = phi(1,1:tcwc-nvar);
phi(1,1:nvar) = yhat(k,:);
end
|