File: gensysoldversion.m

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (168 lines) | stat: -rw-r--r-- 5,037 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
function [G1,C,impact,fmat,fwt,ywt,gev,eu]=gensys(g0,g1,c,psi,pi,div)
%function [G1,C,impact,fmat,fwt,ywt,gev,eu]=gensys(g0,g1,c,psi,pi,div)
%System given as
%        g0*y(t)=g1*y(t-1)+c+psi*z(t)+pi*eta(t),
%with z an exogenous variable process and eta being endogenously determined
%one-step-ahead expectational errors.  Returned system is
%       y(t)=G1*y(t-1)+C+impact*z(t)+ywt*inv(I-fmat*inv(L))*fwt*z(t+1) .
% If z(t) is i.i.d., the last term drops out.
% If div is omitted from argument list, a div>1 is calculated.
% eu(1)=1 for existence, eu(2)=1 for uniqueness.  eu(1)=-1 for
% existence only with not-s.c. z; eu=[-2,-2] for coincident zeros.
% By Christopher A. Sims
% Corrected 10/28/96 by CAS
%
% Copyright (C) 1997-2012 Christopher A. Sims
%
% This free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% If you did not received a copy of the GNU General Public License
% with this software, see <http://www.gnu.org/licenses/>.
%

eu=[0;0];
realsmall=1e-6;
fixdiv=(nargin==6);
n=size(g0,1);
[a b q z]=qz(g0,g1);
if ~fixdiv, div=1.01; end
nunstab=0;
zxz=0;
for i=1:n
%------------------div calc------------
   if ~fixdiv
      if abs(a(i,i)) > 0
         divhat=abs(b(i,i))/abs(a(i,i));
         if 1+realsmall<divhat & divhat<div
            div=.5*(1+divhat);
         end
      end
   end
%----------------------------------------
   nunstab=nunstab+(abs(b(i,i))>div*abs(a(i,i)));
   if abs(a(i,i))<realsmall & abs(b(i,i))<realsmall
      zxz=1;
   end
end
if ~zxz
   [a b q z]=qzdiv(div,a,b,q,z);
end
save d:\mex\gensysmkl\abqz.mat a b q z div
gev=[diag(a) diag(b)];
if zxz
   %disp('Coincident zeros.  Indeterminacy and/or nonexistence.')
   eu=[-2;-2];
   return
end
q1=q(1:n-nunstab,:);
q2=q(n-nunstab+1:n,:);
a2=a(n-nunstab+1:n,n-nunstab+1:n);
b2=b(n-nunstab+1:n,n-nunstab+1:n);
etawt=q2*pi;
zwt=q2*psi;
[ueta,deta,veta]=svd(etawt);
md=min(size(deta));
bigev=find(diag(deta(1:md,1:md))>realsmall);
ueta=ueta(:,bigev);
veta=veta(:,bigev);
deta=deta(bigev,bigev);
[uz,dz,vz]=svd(zwt);
md=min(size(dz));
bigev=find(diag(dz(1:md,1:md))>realsmall);
uz=uz(:,bigev);
vz=vz(:,bigev);
dz=dz(bigev,bigev);
if isempty(bigev)
   exist=1;
   existx=1;
else
   exist=norm(uz-ueta*ueta'*uz) < realsmall*n;
   zwtx0=b2\zwt;
   zwtx=zwtx0;
   M=b2\a2;
   for i=2:nunstab
      zwtx=[M*zwtx zwtx0];
   end
   zwtx=b2*zwtx;
   [ux,dx,vx]=svd(zwtx);
   md=min(size(dx));
   bigev=find(diag(dx(1:md,1:md))>realsmall);
   ux=ux(:,bigev);
   vx=vx(:,bigev);
   dx=dx(bigev,bigev);
   existx=norm(ux-ueta*ueta'*ux) < realsmall*n;
end
%----------------------------------------------------
% Note that existence and uniqueness are not just matters of comparing
% numbers of roots and numbers of endogenous errors.  These counts are
% reported below because usually they point to the source of the problem.
%------------------------------------------------------
[ueta1,deta1,veta1]=svd(q1*pi);
md=min(size(deta1));
bigev=find(diag(deta1(1:md,1:md))>realsmall);
ueta1=ueta1(:,bigev);
veta1=veta1(:,bigev);
deta1=deta1(bigev,bigev);
if existx | nunstab==0
   %disp('solution exists');
   eu(1)=1;
else
   if exist
      %disp('solution exists for unforecastable z only');
      eu(1)=-1;
   %else
      %fprintf(1,'No solution.  %d unstable roots. %d endog errors.\n',nunstab,size(ueta1,2));
   end
   %disp('Generalized eigenvalues')
   %disp(gev);
   %md=abs(diag(a))>realsmall;
   %ev=diag(md.*diag(a)+(1-md).*diag(b))\ev;
   %disp(ev)
%   return;
end
if isempty(veta1)
   unique=1;
else
    unique=norm(veta1-veta*veta'*veta1)<realsmall*n;
end
if unique
   %disp('solution unique');
   eu(2)=1;
else
   fprintf(1,'Indeterminacy.  %d loose endog errors.\n',size(veta1,2)-size(veta,2));
   %disp('Generalized eigenvalues')
   %disp(gev);
   %md=abs(diag(a))>realsmall;
   %ev=diag(md.*diag(a)+(1-md).*diag(b))\ev;
   %disp(ev)
%   return;
end
tmat = [eye(n-nunstab) -(ueta*(deta\veta')*veta1*deta1*ueta1')'];
G0= [tmat*a; zeros(nunstab,n-nunstab) eye(nunstab)];
G1= [tmat*b; zeros(nunstab,n)];
%----------------------
% G0 is always non-singular because by construction there are no zeros on
% the diagonal of a(1:n-nunstab,1:n-nunstab), which forms G0's ul corner.
%-----------------------
G0I=inv(G0);
G1=G0I*G1;
usix=n-nunstab+1:n;
C=G0I*[tmat*q*c;(a(usix,usix)-b(usix,usix))\q2*c];
impact=G0I*[tmat*q*psi;zeros(nunstab,size(psi,2))];
fmat=b(usix,usix)\a(usix,usix);
fwt=-b(usix,usix)\q2*psi;
ywt=G0I(:,usix);
%-------------------- above are output for system in terms of z'y -------
G1=real(z*G1*z');
C=real(z*C);
impact=real(z*impact);
% Correction 10/28/96:  formerly line below had real(z*ywt) on rhs, an error.
ywt=z*ywt;