1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
function [HDratio,HDvalue,yhatn,yforen] = history2(HDindx,A0,Bhml,phil,nn,...
actup,Estrexa,xdata,nvar,nSample,nSampleCal,forep,forepq,forepy,q_m,...
qmEnd,vlist,vlistlog,vlistper,lmqyIndx)
% [HDratio,HDvalue,yhatn,yforen] = history2(HDindx,A0,Bhml,phil,nn,actup,...
% xdata,nvar,nSample,nSampleCal,forep,forepq,forepy,q_m,...
% qmEnd,vlist,vlistlog,vlistper,lmqyIndx)
%
% (Out-of-sample) historical decompostions: alternative approach to history.m in 3 aspects
% (1) compute the percentage (not the value itself)
% (2) NOT cumulative HD (THIS is NOT correct, TAZ, 03/17/99)
% (3) conditional on time t (not time 0).
% (4) condtional and uncondtional forecasts
%
% HDindx: k-by-1 cell where k groups of shocks; index number for particular shocks
% A0h: nvar-by-nvar for y(t)A0 = X*A+ + E, where column means equation
% Bh: the (posterior) estimate of B for y(t) = X*Bh + E*inv(A0)
% phil: the 1-by-(nvar*lags+1) data matrix where k=nvar*lags+1
% (last period plus lags before the beginning of forecast)
% nn: [nvar,lags,forep], forep: forecast periods (monthly)
% actup: actual data periods (monthly) before the beginning of forecasts
% xdata: oringal data set, up to the period before (peudo-) out-of-sample forecasting,
% all logged except R, U, etc.
% Estrexa: forep-by-nvar -- backed out structural shocks for out-of-sample forecast
% nvar: number of variables
% nSample: sample size (including lags or initial periods)
% nSampleCal: sample size in terms of calendar years
% forep: forecast periods (monthly)
% forepq: forecast periods (quarterly)
% forepy: forecast periods (yearly)
% q_m: quarterly or monthly for the underlying model
% qmEnd: last q_m before out-of-sample forecasting
% vlist: a list of variables
% vlistlog: sub list of variables that are in log
% vlistper: sub list of variables that are in percent
% lmyqIndx: 4-by-1 1 or 0's. Index for m log, m level, qg, and yg; 1: yes; 0: no;
% if lmyqIndx(1)==1, both monthly log and monthly level are returned
%--------------
% HDratio: 5-by-k cells, where k groups (see HDindx) of shocks associated with decomposition;
% 5: monthly log, monthly level, mg, qg, and calendar yg in this order;
% each cell is forep(q)(y)-by-nvar
% HDvalue: same dimension as HDratio but with the values (differences between
% conditional and unconditional forecasts
% yhatn: same dimension as HDratio but with conditional forecasts
% yforen: 5-by-1 cells and each cell is forep(q)(y)-by-nvar unconditional forecasts
%
% October 1998 by Tao Zha.
% Last change 3/19/99 on the dimension of "Estrexa" so that previous programs may not be
% compatible.
%
% Copyright (C) 1997-2012 Tao Zha
%
% This free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% If you did not received a copy of the GNU General Public License
% with this software, see <http://www.gnu.org/licenses/>.
%
nyout = 1+nargout('fore_cal');
% +1 because we want the original logged variables as well.
[nHD,jnk] = size(HDindx);
yhat=cell(nHD,1);
yhatn = cell(nyout,nHD);
% row: output such as l, mg, qg, or yg; column: how many decomps
%--------------------------------------------------------------------------
% Unconditional point forecasts for log, monthly levle, mg, qg, and yg.
%--------------------------------------------------------------------------
yforeml = forecast(Bhml,phil,nn);
yforen = cell(nyout,1);
yforen{1} = yforeml;
oputstr = '['; % output string
for n=2:nyout
if n<nyout
oputstr = [oputstr 'yforen{' num2str(n) '},'];
else
oputstr = [oputstr 'yforen{' num2str(n) '}'];
end
end
oputstr =[oputstr ']'];
%
eval([oputstr ' = fore_cal(yforeml,xdata,nvar,nSample,nSampleCal,forep,'...
'forepq,forepy,q_m,qmEnd,vlist,vlistlog,vlistper,lmqyIndx);']);
%--------------------------------------------------------------------------
% Conditional forecasts on specified paths of shocks
% for log, monthly levle, mg, qg, and yg.
%--------------------------------------------------------------------------
for k=1:nHD
Estr = zeros(forep,nvar); % out of sample
Estr(:,HDindx{k}) = Estrexa(:,HDindx{k}); % out of sample, MS
yhat{k} = forefixe(A0,Bhml,phil,nn,Estr);
yhatn{1,k} = yhat{k}; % original logged variables
%
oputstr = '['; % output string
for n=2:nyout
if n<nyout
oputstr = [oputstr 'yhatn{' num2str(n) ',k},'];
else
oputstr = [oputstr 'yhatn{' num2str(n) ',k}'];
end
end
oputstr =[oputstr ']'];
%
eval([oputstr ' = fore_cal(yhat{k},xdata,nvar,nSample,nSampleCal,forep,'...
'forepq,forepy,q_m,qmEnd,vlist,vlistlog,vlistper,lmqyIndx);']);
end
%--------------------------------------------------------------------------
% Historical decompositions: both values and raitos (%)
%--------------------------------------------------------------------------
HDratio=cell(nyout,nHD);
HDvalue=HDratio;
for n=2:nyout
if lmqyIndx(n-1)
if (n-1==1)
yhatotal = zeros(size(yhatn{1,k}));
for k=1:nHD
HDvalue{1,k} = yhatn{1,k}-yforen{1};
yhatotal = yhatotal + abs(HDvalue{1,k});
% a sum of absolute values. One can also use square
end
%
for k=1:nHD
HDratio{1,k} = abs(HDvalue{1,k})*100 ./ yhatotal;
end
end
%
yhatotal = zeros(size(yhatn{n,k}));
for k=1:nHD
HDvalue{n,k} = yhatn{n,k}-yforen{n};
yhatotal = yhatotal + abs(HDvalue{n,k});
% a sum of absolute values. One can also use square
end
%
for k=1:nHD
HDratio{n,k} = abs(HDvalue{n,k})*100 ./ yhatotal;
end
end
end
%** check. This first may not be zeros, but the second (monthly log) must be zeros.
%HDvalue{5,1}+HDvalue{5,2}-...
% (yactCalyg(size(yactCalyg,1)-3:size(yactCalyg,1),:)-yforeCalygml)
%HDvalue{1,1}+HDvalue{1,2}-...
% (yact(size(yact,1)-forep+1:size(yact,1),:)-yforen{1,1})
|