File: history2.m

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (160 lines) | stat: -rw-r--r-- 6,391 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
function [HDratio,HDvalue,yhatn,yforen] = history2(HDindx,A0,Bhml,phil,nn,...
            actup,Estrexa,xdata,nvar,nSample,nSampleCal,forep,forepq,forepy,q_m,...
					 qmEnd,vlist,vlistlog,vlistper,lmqyIndx)
%  [HDratio,HDvalue,yhatn,yforen] = history2(HDindx,A0,Bhml,phil,nn,actup,...
%                xdata,nvar,nSample,nSampleCal,forep,forepq,forepy,q_m,...
%					 qmEnd,vlist,vlistlog,vlistper,lmqyIndx)
%
%  (Out-of-sample) historical decompostions: alternative approach to history.m in 3 aspects
%         (1) compute the percentage (not the value itself)
%         (2) NOT cumulative HD (THIS is NOT correct, TAZ, 03/17/99)
%         (3) conditional on time t (not time 0).
%         (4) condtional and uncondtional forecasts
%
% HDindx:  k-by-1 cell where k groups of shocks; index number for particular shocks
% A0h:  nvar-by-nvar for y(t)A0 = X*A+ + E, where column means equation
% Bh: the (posterior) estimate of B for y(t) = X*Bh + E*inv(A0)
% phil: the 1-by-(nvar*lags+1) data matrix where k=nvar*lags+1
%                 (last period plus lags before the beginning of forecast)
% nn: [nvar,lags,forep], forep: forecast periods (monthly)
% actup:  actual data periods (monthly) before the beginning of forecasts
% xdata:   oringal data set, up to the period before (peudo-) out-of-sample forecasting,
%                 all logged except R, U, etc.
% Estrexa:  forep-by-nvar -- backed out structural shocks for out-of-sample forecast
% nvar:  number of variables
% nSample:  sample size (including lags or initial periods)
% nSampleCal:  sample size in terms of calendar years
% forep:   forecast periods (monthly)
% forepq:  forecast periods (quarterly)
% forepy:  forecast periods (yearly)
% q_m:   quarterly or monthly for the underlying model
% qmEnd:  last q_m before out-of-sample forecasting
% vlist:  a list of variables
% vlistlog: sub list of variables that are in log
% vlistper: sub list of variables that are in percent
% lmyqIndx:  4-by-1 1 or 0's. Index for m log, m level, qg, and yg; 1: yes; 0: no;
%             if lmyqIndx(1)==1, both monthly log and monthly level are returned
%--------------
% HDratio:  5-by-k cells, where k groups (see HDindx) of shocks associated with decomposition;
%           5: monthly log, monthly level, mg, qg, and calendar yg in this order;
%           each cell is forep(q)(y)-by-nvar
% HDvalue:  same dimension as HDratio but with the values (differences between
%                 conditional and unconditional forecasts
% yhatn:  same dimension as HDratio but with conditional forecasts
% yforen: 5-by-1 cells and each cell is forep(q)(y)-by-nvar unconditional forecasts
%
% October 1998 by Tao Zha.
% Last change 3/19/99 on the dimension of "Estrexa" so that previous programs may not be
%        compatible.
%
% Copyright (C) 1997-2012 Tao Zha
%
% This free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% If you did not received a copy of the GNU General Public License
% with this software, see <http://www.gnu.org/licenses/>.
%

nyout = 1+nargout('fore_cal');
              % +1 because we want the original logged variables as well.
[nHD,jnk] = size(HDindx);
yhat=cell(nHD,1);
yhatn = cell(nyout,nHD);
         % row: output such as l, mg, qg, or yg; column: how many decomps



%--------------------------------------------------------------------------
%  Unconditional point forecasts for log, monthly levle, mg, qg, and yg.
%--------------------------------------------------------------------------
yforeml = forecast(Bhml,phil,nn);
yforen = cell(nyout,1);
yforen{1} = yforeml;
oputstr = '[';   % output string
for n=2:nyout
	if n<nyout
		oputstr = [oputstr 'yforen{' num2str(n) '},'];
	else
		oputstr = [oputstr 'yforen{' num2str(n) '}'];
	end
end
oputstr =[oputstr ']'];
%
eval([oputstr ' = fore_cal(yforeml,xdata,nvar,nSample,nSampleCal,forep,'...
                'forepq,forepy,q_m,qmEnd,vlist,vlistlog,vlistper,lmqyIndx);']);



%--------------------------------------------------------------------------
%  Conditional forecasts on specified paths of shocks
%      for log, monthly levle, mg, qg, and yg.
%--------------------------------------------------------------------------
for k=1:nHD
	Estr = zeros(forep,nvar);     % out of sample
   Estr(:,HDindx{k}) = Estrexa(:,HDindx{k});    % out of sample, MS
	yhat{k} = forefixe(A0,Bhml,phil,nn,Estr);
	yhatn{1,k} = yhat{k};         % original logged variables
	%
	oputstr = '[';   % output string
	for n=2:nyout
		if n<nyout
			oputstr = [oputstr 'yhatn{' num2str(n) ',k},'];
		else
			oputstr = [oputstr 'yhatn{' num2str(n) ',k}'];
		end
	end
	oputstr =[oputstr ']'];
	%
	eval([oputstr ' = fore_cal(yhat{k},xdata,nvar,nSample,nSampleCal,forep,'...
	                'forepq,forepy,q_m,qmEnd,vlist,vlistlog,vlistper,lmqyIndx);']);
end



%--------------------------------------------------------------------------
%  Historical decompositions: both values and raitos (%)
%--------------------------------------------------------------------------
HDratio=cell(nyout,nHD);
HDvalue=HDratio;
for n=2:nyout
	if lmqyIndx(n-1)
		if (n-1==1)
	  		yhatotal = zeros(size(yhatn{1,k}));
	  		for k=1:nHD
	  			HDvalue{1,k} = yhatn{1,k}-yforen{1};
	  			yhatotal = yhatotal + abs(HDvalue{1,k});
	           		     % a sum of absolute values.  One can also use square
	  		end
	  		%
	  		for k=1:nHD
	  			HDratio{1,k} = abs(HDvalue{1,k})*100 ./ yhatotal;
	  		end
		end
		%
		yhatotal = zeros(size(yhatn{n,k}));
		for k=1:nHD
			HDvalue{n,k} = yhatn{n,k}-yforen{n};
			yhatotal = yhatotal + abs(HDvalue{n,k});
         		     % a sum of absolute values.  One can also use square
		end
		%
		for k=1:nHD
			HDratio{n,k} = abs(HDvalue{n,k})*100 ./ yhatotal;
		end
	end
end


%** check.  This first may not be zeros, but the second (monthly log) must be zeros.
%HDvalue{5,1}+HDvalue{5,2}-...
%      (yactCalyg(size(yactCalyg,1)-3:size(yactCalyg,1),:)-yforeCalygml)
%HDvalue{1,1}+HDvalue{1,2}-...
%      (yact(size(yact,1)-forep+1:size(yact,1),:)-yforen{1,1})