File: imfvdscksim.m

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (553 lines) | stat: -rw-r--r-- 24,380 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
function imfvdscksim(xinput,sa0indx,simfindx)
% imfvdscksim(xinput,sa0indx,simfindx)
%        Save the simulated pdfs of impulse responses, vd, shocks, and A0's;
%        Ref:  Waggoner and Zha "Does Normalization Matter for Inference"
%        See note Forecast (2)
%
% xinput{1}: nfp -- total number of free parameters
% xinput{2}: nvar -- number of variables
% xinput{3}: xhat -- ML estimate of free parameters in A0
% xinput{4}: hess -- Hessian of -logLH
% xinput{5}:Indxv -- index for selected variables of interest; normall first 2 are of our interest
%        to select variables, always check idmat0 to make sure
%        it plots: (1) pdf of 1st v for every buffer, (2) scattered plot of 1st and 2nd for every buffer,
%                  (2) pdf of 1st v for all sequences; (4) scattered plot of 3rd and 4th for all sequences
%                  (5) scattered plot of 1st and 2nd for al sequences.
% xinput{6}: IndxGraph - 1: plot graphs; 0: no graphs
% xinput{7}: idmat0 -- Index for non-zero elements in A0 with column to equation
% xinput{8}: nstarts -- # of starting points in Gibbs sampling
% xinput{9}: ndraws1 -- # of 1st loop to be discarded
% xinput{10}: ndraws2 -- # of 2nd loop for saving A0 draws
% xinput{11}: imndraws=nstarts*ndraws2
% xinput{12}: a0indx -- index number for non-zero elements in A0
% xinput{13}: tdf -- degrees of freedom for t-distribution
% xinput{14}: nbuffer -- interval for printing, plotting, and saving
% xinput{15}: Sbd -- nvar-by-nvar S{1}, ..., S{n} -- kind of covariance matrix for each simultaneous equation
% xinput{16}: nSample -- the original sample size including lags
% xinput{17}: IndxNmlr -- index for which normalization rule to choose
% xinput{18}: IndxGibbs -- index for WZ Gibbs; 1; Gibbs; 0: Metropolis
% xinput{19}: scf -- reduction scale factor for Metropolis jumping kernel
% xinput{20}: H_sr -- covariance matrix for free elements in A0 (nfp-by-nfp)
% xinput{21}: fss -- effective sample size == nSample-lags+# of dummy observations
% xinput{22}: idfile1 -- calls "iden6std."   Save stds. of both data and impulse responses in idfile1
% xinput{23}: xxhpc -- chol(X'X+inv(H_p_tilde)): upper triangular but its transpose
%                                      is lower triagular Choleski
% xinput{24}: ImfErr -- if 1, impulse response simulation; if 0, disable this simulation
% xinput{25}: ninv -- number of bins pre-specified to put each draw of impulse response
%                            into a proper bin (or small interval)
% xinput{26}: imstp -- # of steps for impulse responses
% xinput{27}: forep -- forecast periods (# of steps)
% xinput{28}: yact -- actual data (in log except R, U, etc.)
% xinput{29}: yactqg -- quarterly annualized growth in actual data
% xinput{30}: yactCalyg -- calendar annual growth in actual data
% xinput{31}: imfml -- imstp-by-nvar^2 ML impulse responses
% xinput{32}: forepq -- forecast periods for quarterly growth
% xinput{33}: forepy -- forecast periods for annual growth
% xinput{34}: ncoef -- k: # of coeffients per equation
% xinput{35}: Bhml -- ML reduced form parameter B (nvar-by-k)
% xinput{36}: lags -- # of lags
% xinput{37}: Psuedo -- 1: for Pseudo out-of-sample; 0: for in-sample (or real-time out-of-sample)
% xinput{38}: q_m = 4 or 12 -- quarterly (4) or monthly (12)
% xinput{39}: imf3ml -- ML impulse responses with row--steps, column--nvar responses,
%                 3rd dimension--nvar shocks
% xinput{40}: vlistlog -- sub index for log in vlist
% xinput{41}: vlistper -- sub index for percent in vlist
% xinput{42}: phi -- X in the form of y = X*B+U. Row: nSmaple-lags+ndobs. Column: ncoef
% xinput{43}: actup -- acutal periods for backing out structural shocks
% xinput{44}: A0ml -- ML A0; column-equation
% xinput{45}: Bhml -- ML Bh (k-by-nvar)
% xinput{46}: yrEnd -- the end year for the estimation period
% xinput{47}: qmEnd -- the end month or quarter for the estimation period
% xinput{48}: yrStart -- the start year for the estimation period
% xinput{49}: qmStart -- the start month or quarter for the estimation period
% sa0indx:  special a0 index.  1: use this; 0: disenable
% simfindx:   special impulse response index.  1: use it; 0: disenable
%------------------
% E.G.:   imfcntmulti: (ninv+2,imstp*nvar^2,nstarts) matrix
%           cnt: count; for impulse responses; multi (nstarts) sequences
% All output is saved in outB_W, including Range5, invc, ninv, imfcntmulti,
%      sckcorcntmulti, Avhxcntmulti, lzvdcntmulti
%
% Written by TAZ 1999
%
% Copyright (C) 1997-2012 Tao Zha
%
% This free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% If you did not received a copy of the GNU General Public License
% with this software, see <http://www.gnu.org/licenses/>.
%


nfp=xinput{1}; nvar=xinput{2}; xhat=xinput{3}; hess=xinput{4}; Indxv=xinput{5};
IndxGraph=xinput{6}; idmat0=xinput{7}; nstarts=xinput{8}; ndraws1=xinput{9}; ndraws2=xinput{10};
imndraws=xinput{11}; a0indx=xinput{12}; tdf=xinput{13}; nbuffer=xinput{14}; Sbd=xinput{15};
nSample = xinput{16}; IndxNmlr=xinput{17}; IndxGibbs=xinput{18}; scf=xinput{19}; H_sr=xinput{20};
fss=xinput{21}; idfile1=xinput{22}; xxhpc=xinput{23}; ImfErr=xinput{24}; ninv=xinput{25};
imstp=xinput{26}; forep=xinput{27}; yact=xinput{28}; yactqg=xinput{29}; yactCalyg=xinput{30};
imfml=xinput{31}; forepq=xinput{32}; forepy=xinput{33}; ncoef=xinput{34}; Bhml=xinput{35};
lags=xinput{36}; Psuedo=xinput{37}; q_m=xinput{38}; imf3ml=xinput{39}; vlistlog=xinput{40};
vlistper=xinput{41}; phi=xinput{42}; actup=xinput{43}; A0ml=xinput{44}; Bhml=xinput{45};
yrEnd=xinput{46}; qmEnd=xinput{47}; yrStart=xinput{48}; qmStart=xinput{49};


if Psuedo
   disp('Make sure (1) Psuedo=0 in msstart.m and (2) "actuap=nSample-lags" for strucutral shocks')
   disp('Press ctrl-c to abort now')
end

A0_h = zeros(nvar);
A0gbs = A0_h;    % drawn A0 in Gibbs sampling
Avhxml = xhat;   % ML estimate
Avhxmean = zeros(nfp,1);
Avhxs = Avhxmean;

A0xhat = zeros(nvar);
A0xhat(a0indx) = xhat;
%  A0hatw = zeros(nvar^2,nbuffer);

countJump = zeros(nstarts,1);
imstpyer = floor(imstp/q_m);   % yearly

imfmean = zeros(imstp,nvar^2);
imfs = imfmean;
imfyermean = zeros(imstpyer,nvar^2);
imfyers = imfyermean;
imfyer3ml = zeros(imstpyer,nvar,nvar);
imfyer3_h = zeros(imstpyer,nvar,nvar);


imfcntmulti = zeros(ninv+2,imstp*nvar^2,nstarts);
          % cnt: count; for impulse responses; multi (nstarts) sequences
Avhxcntmulti = zeros(ninv+2,nfp,nstarts);
          % cnt: count; for A0; multi (nstarts) sequences
imfyercntmulti = zeros(ninv+2,imstpyer*nvar^2,nstarts);
          % cnt: count; for impulse responses; multi (nstarts) sequences
lzvdcntmulti = zeros(ninv+2,imstp*nvar^2,nstarts);
          % cnt: count; for lz vd; multi (nstarts) sequences
lzvdyercntmulti = zeros(ninv+2,imstpyer*nvar^2,nstarts);
          % cnt: count; for lz vd; multi (nstarts) sequences
sckcorcntmulti = zeros(ninv+2,nvar^2,nstarts);

%---------------------------------------------------
%  Specify the range for counting the empirical distribution
%
%** load the standard deviations of 6 variables, one for log(y), one for gq, and
%**   the third one for yg
eval(['load ' idfile1 '.prn -ascii']);
eval(['ABstd=' idfile1 ';']);
Range5 = cell(9,1);  % 8: log, qg, yg, imf, Avhx, imfyer (yearly), lzvd,
                     % lzvdyer, sckcorv,

%@@@ Tony's trick to expand the matrix
%
%** In order of log(y), qg, and yg for Range5{i} for i=1:3
Range5{1} =zeros(forep,nvar,2);  % 2: min and max
Range5{1}(:,:,1) = repmat(yact(length(yact(:,1)),:)-10*ABstd(1,:),[forep 1]);  % min, 30 std.
Range5{1}(:,:,2) = repmat(yact(length(yact(:,1)),:)+10*ABstd(1,:),[forep 1]);  % max, 30 std.
%
Range5{2} =zeros(forepq,nvar,2);  % 2: min and max
Range5{2}(:,:,1) = repmat(yactqg(length(yactqg(:,1)),:)-10*ABstd(2,:),[forepq 1]);  % min, 30 std.
Range5{2}(:,:,2) = repmat(yactqg(length(yactqg(:,1)),:)+10*ABstd(2,:),[forepq 1]);  % max, 30 std.
%
Range5{3} =zeros(forepy,nvar,2);  % 2: min and max
Range5{3}(:,:,1) = repmat(yactCalyg(length(yactCalyg(:,1)),:)-10*ABstd(3,:),[forepy 1]);  % min, 30 std.
Range5{3}(:,:,2) = repmat(yactCalyg(length(yactCalyg(:,1)),:)+10*ABstd(3,:),[forepy 1]);  % max, 30 std.
%
Range5{4} =zeros(imstp,nvar^2,2);  % 2: min and max
imfscale = repmat(ABstd(4,:),[1 nvar]);  % because nvar variables to 1, ..., nvar shocks
Range5{4}(:,:,1) = repmat(imfml(1,:)-5*imfscale,[imstp 1]);  % min, 5 std.
Range5{4}(:,:,2) = repmat(imfml(1,:)+5*imfscale,[imstp 1]);  % max, 5 std.
         % Range5(4)(:,:,1): imstp-by-nvar^2.  Column: nvar responses to 1st shock,
         %                        nvar responses to 2nd shock, ...
%
%*** for parameters A0's
Range5{5} =zeros(nfp,2);  % 2: min and max
Avhxscale = abs(Avhxml);
Range5{5}(:,1) = Avhxml-5*Avhxscale;  % min, 5 std.
Range5{5}(:,2) = Avhxml+5*Avhxscale;  % max, 5 std.

%
%*** for yearly impulse responses
yer3 = zeros(1+imstpyer,nvar,nvar);
for k=1:imstpyer
   yer3(k+1,:,:) = mean(imf3ml(1+q_m*(k-1):q_m*k,:,:),1);  % annual average
       % yer3: row--steps, column--nvar responses, 3rd dimension--nvar shocks
end
imfyer3ml(:,vlistlog,:) = ( exp(yer3(2:1+imstpyer,vlistlog,:)-yer3(1:imstpyer,vlistlog,:)) - 1 ).*100;
imfyer3ml(:,vlistper,:) = yer3(2:1+imstpyer,vlistper,:) .* 100;
     % imfyer3ml: row--steps, column--nvar responses, 3rd dimension--nvar shocks
tmp = max(squeeze(max(imfyer3ml,[],1)),[],2);   % nvar-by-1
tmp = tmp';               % 1-by-nvar (variables)
imfyerml = reshape(imfyer3ml,imstpyer,nvar^2);
imfyermlmax = max(abs(imfyerml));     % for error bands (imfyercnt) later
%*** for annual impulse responses
Range5{6} =zeros(imstpyer,nvar^2,2);  % 2: min and max
tmp = repmat(tmp,[1 nvar]);  % because nvar variables to 1, ..., nvar shocks
imfyerscl = repmat(tmp,[imstpyer,1]);  % imstpyer-by-nvar^2
Range5{6}(:,:,1) = imfyerml-5*imfyerscl;  % min, 5 std.
Range5{6}(:,:,2) = imfyerml+5*imfyerscl;  % max, 5 std.
         % Range5(6)(:,:,1): imstpyer-by-nvar^2.  Column: nvar responses to 1st shock,
         %                        nvar responses to 2nd shock, ...

%*** lz variance decomposition (nunlike the traditional, non-cumulative).
tmp0=abs(imf3ml);
tmp1 = repmat(sum(tmp0,3),[1 1 nvar]);   % imstp-by-nvar^2
             % imf3: row--steps, column--nvar responses, 3rd dimension--nvar shocks
lzvd3ml = 100*(tmp0./tmp1);
lzvdml = reshape(lzvd3ml,imstp,nvar^2);
%** for lz vd (non-cumulative)
Range5{7} =zeros(imstp,nvar^2,2);  % 2: min and max
Range5{7}(:,:,1) = zeros(imstp,nvar^2);    % min, 5 std.
Range5{7}(:,:,2) = 100*ones(imstp,nvar^2);  % max, 5 std.
         % Range5(7)(:,:,1): imstp-by-nvar^2.  Column: nvar responses to 1st shock,
         %                        nvar responses to 2nd shock, ...

%*** lz annual variance decomposition (nunlike the traditional, non-cumulative).
tmp0=abs(imfyer3ml);
tmp1 = repmat(sum(tmp0,3),[1 1 nvar]);   % imstp-by-nvar^2
             % imf3: row--steps, column--nvar responses, 3rd dimension--nvar shocks
lzvdyer3ml = 100*(tmp0./tmp1);
lzvdyerml = reshape(lzvdyer3ml,imstpyer,nvar^2);
%** for lz annual vd
Range5{8} =zeros(imstpyer,nvar^2,2);  % 2: min and max
Range5{8}(:,:,1) = zeros(imstpyer,nvar^2);    % min, 5 std.
Range5{8}(:,:,2) = 100*ones(imstpyer,nvar^2);  % max, 5 std.
         % Range5(8)(:,:,1): imstpyer-by-nvar^2.  Column: nvar responses to 1st shock,
         %                                 nvar responses to 2nd shock, ...

%**** Correlations among structural shocks
philr = phi(size(phi,1)-actup+1,:);   % +1 is absolutely needed
yexa = yact(1:actup,:);
Estrexaml = fidcndexa(yexa,philr,A0ml,Bhml,nvar,lags,actup);  % actup-by-nvar
sckvarml = (Estrexaml'*Estrexaml)/actup;
sckcorml = corr(sckvarml);
%** for shock correlation sckcor
Range5{9} =zeros(nvar,nvar,2);  % 2: min and max
Range5{9}(:,:,1) = (-1)*ones(nvar,nvar);    % min, 5 std.
Range5{9}(:,:,2) = ones(nvar,nvar);  % max, 5 std.
         % Range5(9)(:,:,1): nvar^2.  Correlation among structural shocks




%**
invc = cell(9,1);     % interval length (used for counting later).
for i=[1:4 6:9]
   invc{i} = Range5{i}(:,:,2) - Range5{i}(:,:,1);
end
invc{5} = Range5{5}(:,2) - Range5{5}(:,1);
%
imfhbin =  invc{4} ./ ninv;  % bin size for each point of impulse responses
imfloor = Range5{4}(:,:,1);  % lowest point next to -infinity
Avhxhbin = invc{5} ./ ninv;  % bin size for each point of A0
Avhxfloor = Range5{5}(:,1);  % lowest point next to -infinity
imfyerhbin =  invc{6} ./ ninv;  % bin size for each point of annual impulse responses
imfyerfloor = Range5{6}(:,:,1);  % lowest point next to -infinity
lzvdhbin =  invc{7} ./ ninv;  % bin size for each point of variance decompositions
lzvdfloor = Range5{7}(:,:,1);  % lowest point next to -infinity
lzvdyerhbin =  invc{8} ./ ninv;  % bin size for each point of annul variance decompositions
lzvdyerfloor = Range5{8}(:,:,1);  % lowest point next to -infinity
sckcorhbin =  invc{9} ./ ninv;  % bin size for each point of shock correlations
sckcorfloor = Range5{9}(:,:,1);  % lowest point next to -infinity




%*** <<>> Specific requests
%*** compute prob(parameter>0) or joint prob. of sign matches in MP and MD
if sa0indx
   csix1a0 = [-1 -1 1 1 1 -1 1]';  % for 7 parameters in MP and MD
                                  % from 7th to 13th in Avhx_norm
   nspeca0 = 7+3;   % number of specific requests
         % additional 3: 1 for all MP parameters; 2 for all MD parameters;
         %               3 for all paramters in MP and MD
   cspeca0 = zeros(nspeca0,1);
end
%
if simfindx
   csix1imf = [-1 -1 1 -1 -1 1]';   % for 6 variables to MP shock
                                    % maybe at different horizons (esp. for inflation)
   csix1pimf = [1 1 1 24 36 24]';   % the periods for the 6 varialbes to MP shock
                                    % Pcm, M2, FFR, y, P, U.
   nspecimf = nvar+2;      % number of specific requests
               % additional 1: 1 for opposite signs of M2 and R
   cspecimf = zeros(nspecimf,1);
end




%===================================
%  Here begins with the big loop
%===================================
H1 = chol(hess);  % upper triangular so that H1' is a lower triangular decomp
baseW = H_sr;  %inv(H1);  %H_sr;   % covariance matrix without scaling
nswitch=0;  %<<>> total number of sign switches
A0inxhat = inv(A0xhat);   % inverse of ML estimate
a0indx0 = find(idmat0==0);    % index for all zero's in A0;
nn=[nvar lags imstp];

[cT,vR,kdf] = gibbsglb(Sbd,idmat0,nvar,fss);

tic
for starts = 1:nstarts
   starts
   if starts == 1
      A0gbs(a0indx) = xhat;   % from "load ..."
      if ~IndxGibbs   % Metropolist
         Avhx = xhat;
         hAvhx = a0asfun(Avhx,Sbd,fss,nvar,a0indx);
         hAvhx = -hAvhx;      % converted to logLH
      end
   else
      Avhx = baseW*randn(nfp,1);  %H_sr*randn(nfp,1);   % D: discarded sequence
      csq=randn(tdf,1);
      csq=sum(csq .* csq);
      Avhx = xhat+Avhx/sqrt(csq/tdf);
      %** Normalization by the choice of IndxNmlr
      A0gbs(a0indx) = Avhx;
      if ~IndxNmlr(5)
         [A0gbs,jnk] = nmlzvar(A0gbs,A0xhat,A0inxhat,IndxNmlr,nswitch,[]);
      else
         A0ingbs = inv(A0gbs);
         [A0gbs,jnk,jnk1] = nmlzvar(A0gbs,A0xhat,A0inxhat,IndxNmlr,nswitch,A0ingbs);
      end
      %
      if ~IndxGibbs   % Metropolist
         Avhx = A0gbs(a0indx);
         hAvhx = a0asfun(Avhx,Sbd,fss,nvar,a0indx);
         hAvhx = -hAvhx;      % converted to logLH
      end
   end
   %
   cJump = 0;

   imfcnt = zeros(ninv+2,imstp*nvar^2);   % cnt: count; for impulse responses
   Avhxcnt = zeros(ninv+2,nfp);         % cnt: count; for A0's
   imfyercnt = zeros(ninv+2,imstpyer*nvar^2);   % cnt: count; for impulse responses
   lzvdcnt = zeros(ninv+2,imstp*nvar^2);   % cnt: count; for lz vd (non-cumulative)
   lzvdyercnt = zeros(ninv+2,imstpyer*nvar^2);   % cnt: count; for lz annual vd (non-cumulative)
   sckcorcnt = zeros(ninv+2,nvar^2);   % cnt: count; for shock correlations

   for draws = 1:ndraws1
      if IndxGibbs
         A0gbs = gibbsvar(A0gbs,cT,vR,nvar,fss,kdf);
      else     % Metropolis
         [Avhx,hAvhx,cJump] = smtplis(Avhx,hAvhx,tdf,cJump,scf,...
                       baseW,nfp,Sbd,fss,nvar,a0indx);
      end
   end

   wdraws=(starts-1)*ndraws2+0;
   for draws = 1:ndraws2
      drawsc = (starts-1)*ndraws2+draws;
      if IndxGibbs
         A0gbs = gibbsvar(A0gbs,cT,vR,nvar,fss,kdf);
         A0gbs(a0indx0) = 0; % set all zeros in A0gbs clean to avoid possible cumulative round-off errors
      else        % Metropolis
         [Avhx,hAvhx,cJump] = smtplis(Avhx,hAvhx,tdf,cJump,scf,...
                       baseW,nfp,Sbd,fss,nvar,a0indx);
         A0gbs(a0indx) = Avhx;
      end

      %*** call normalization so that A0_h is normalized
      if ~IndxNmlr(5)
         [A0_h,nswitch] = nmlzvar(A0gbs,A0xhat,A0inxhat,IndxNmlr,nswitch,[]);
         A0_hin = inv(A0_h);
      else
         A0ingbs = inv(A0gbs);
         [A0_h,nswitch,A0_hin] = nmlzvar(A0gbs,A0xhat,A0inxhat,IndxNmlr,nswitch,A0ingbs);
      end
      Avhx_norm = A0_h(a0indx);

      if sa0indx
         for k=1:7
            cspeca0(k) = cspeca0(k) + ((csix1a0(k)*Avhx_norm(6+k))>0);
         end
         %*** Joint tests
         j1=csix1a0;
         j2=Avhx_norm;
         %** MP equation
         mpall = ((j1(2)*j2(8))/(j1(3)*j2(9)))<0; % & ((j1(1)*j2(7))/(j1(3)*j2(9)))<0;

         cspeca0(8) = cspeca0(8) + mpall;
         %** MD equation
         mdall = ((j1(4)*j2(10))/(j1(5)*j2(11)))<0; %& ((j1(4)*j2(10))/(j1(6)*j2(12)))<0;
         cspeca0(9) = cspeca0(9) + mdall;
         mpdall = mpall & mdall;
         cspeca0(10) = cspeca0(10) + mpdall;
      end

      %
      % *** normal draws for posterior Aplus conditional on A0h
      %
      %** the mean is Aplushm, and the covariance is inv(xxhp)=Lxxhpc*Lxxhpc'
      Apindm = randn(ncoef,nvar);
      %
      if ~all(all(finite(Bhml)))
         Aplushm=zeros(ncoef,nvar);
         for i=1:nvar
            Aplushm(:,i)=Gb{i}*A0_h(:,i);    % see Zha's forecast (1) p.9
                   % Here, Gb is used to compute A+ where A+(i) = Gb(i)*a0(i)
         end
         Bh_h = (Aplushm + xxhpc\Apindm)*A0_hin;
      else
         Bh_h = Bhml + (xxhpc\Apindm)*A0_hin;
      end

      if ImfErr
         swish_h = A0_hin';     % Switching back to the form A0*y(t) = e(t)
         imf_h = zimpulse(Bh_h,swish_h,nn);   % in the form that is congenial to RATS
         imf3_h=reshape(imf_h,size(imf_h,1),nvar,nvar);
             % imf3: row--steps, column--nvar responses, 3rd dimension--nvar shocks
         imfmean = imfmean + imf_h;  % posterior mean
         imfs = imfs + imf_h.^2;   % posterior 2nd moment
         imfcnt = empdfsort(imfcnt,imf_h,imfloor,imfhbin,ninv);
                       % sorted counts (prob.) in bins

         %**** annula impulse responses
         for k=1:imstpyer
            yer3(k+1,:,:) = mean(imf3_h(1+q_m*(k-1):q_m*k,:,:),1);  % annual average
               % yer3:  initialized earlier already
               % yer3: row--steps, column--nvar responses, 3rd dimension--nvar shocks
         end
         imfyer3_h(:,vlistlog,:) = ( exp(yer3(2:1+imstpyer,vlistlog,:)-yer3(1:imstpyer,vlistlog,:)) - 1 ).*100;
         imfyer3_h(:,vlistper,:) = yer3(2:1+imstpyer,vlistper,:) .* 100;
               % imfyer3_h: row--steps, column--nvar responses, 3rd dimension--nvar shocks
         imfyer_h = reshape(imfyer3_h,imstpyer,nvar^2);
         imfyermean = imfyermean + imfyer_h;  % posterior mean
         imfyers = imfyers + imfyer_h.^2;   % posterior 2nd moment
         imfyercnt = empdfsort(imfyercnt,imfyer_h,imfyerfloor,imfyerhbin,ninv);
                       % sorted counts (prob.) in bins

         %**** Leeper-Zha variance decomposition (non-cumulative)
         tmp0=abs(imf3_h);
         tmp = repmat(sum(tmp0,3),[1 1 nvar]);   % imstp-by-nvar^2
                      % imf3: row--steps, column--nvar responses, 3rd dimension--nvar shocks
         lzvd3_h = 100*(tmp0./tmp);
         lzvd_h = reshape(lzvd3_h,imstp,nvar^2);
         lzvdcnt = empdfsort(lzvdcnt,lzvd_h,lzvdfloor,lzvdhbin,ninv);
                       % sorted counts (prob.) in bins

         %**** Leeper-Zha annual variance decomposition (non-cumulative)
         tmp0=abs(imfyer3_h);
         tmp = repmat(sum(tmp0,3),[1 1 nvar]);   % imstp-by-nvar^2
                      % imf3: row--steps, column--nvar responses, 3rd dimension--nvar shocks
         lzvdyer3_h = 100*(tmp0./tmp);
         lzvdyer_h = reshape(lzvdyer3_h,imstpyer,nvar^2);
         lzvdyercnt = empdfsort(lzvdyercnt,lzvdyer_h,lzvdyerfloor,lzvdyerhbin,ninv);
                       % sorted counts (prob.) in bins

         %**** Correlations among structural shocks
         Estrexa_h = fidcndexa(yexa,philr,A0_h,Bh_h,nvar,lags,actup);  % actup-by-nvar
         sckvar_h = (Estrexa_h'*Estrexa_h)/actup;
         sckcor_h = corr(sckvar_h);
         sckcorcnt = empdfsort(sckcorcnt,sckcor_h,sckcorfloor,sckcorhbin,ninv);

         if simfindx
            for k=1:6
               cspecimf(k) = cspecimf(k) + ((csix1a0(k)*imf_h(1,nvar+k))>0);
                                 % 1st dim in imf_h: periods
            end
            %*** Joint tests
            j1=csix1imf;
            j2=imf_h;
            j3=csix1pimf;
            %** M2 and R in MP equation
            mpall = ((j1(2)*j2(j3(2),nvar+2))/(j1(3)*j2(j3(3),nvar+3)))>0; % & ((j1(1)*j2(7))/(j1(3)*j2(9)))<0;
                          % 1st dim in j2: periods
            cspecimf(nvar+1) = cspecimf(nvar+1) + mpall;
            %** R and P in MP equation
            mpall = ((j1(3)*j2(j3(3),nvar+3))/(j1(5)*j2(j3(5),nvar+5)))>0; %
                          % 1st dim in j2: periods
            cspecimf(nvar+2) = cspecimf(nvar+2) + mpall;
            %
            %  %** MD equation
            %  mdall = ((j1(4)*j2(10))/(j1(5)*j2(11)))<0; %& ((j1(4)*j2(10))/(j1(6)*j2(12)))<0;
            %  cspeca0(9) = cspeca0(9) + mdall;
            %  mpdall = mpall & mdall;
            %  cspeca0(10) = cspeca0(10) + mpdall;
         end
      end

      Avhxmean = Avhxmean + Avhx_norm;      % 1st step to overall mean of parameter
      Avhxs = Avhxs + Avhx_norm.^2;   % 1st step to overall 2nd moment of parameter
      Avhxcnt = empdfsort(Avhxcnt,Avhx_norm,Avhxfloor,Avhxhbin,ninv);


      %  A0hatw(:,drawsc-wdraws) = A0_h(:);
      if ~mod(draws,nbuffer)
         starts
         draws
         wdraws=drawsc
         %  fwriteid = fopen('outA0.bin','a');
         %  count = fwrite(fwriteid,A0hatw,'double');
         %  status = fclose('all');
      end
   end
   %
   imfcntmulti(:,:,starts) = imfcnt;
   Avhxcntmulti(:,:,starts) = Avhxcnt;
   imfyercntmulti(:,:,starts) = imfyercnt;
   lzvdcntmulti(:,:,starts) = lzvdcnt;
   lzvdyercntmulti(:,:,starts) = lzvdyercnt;
   sckcorcntmulti(:,:,starts) = sckcorcnt;

   if ~IndxGibbs
      countJump(starts,1) = cJump;
   end
end
timend = toc
timeminutes=timend/60

if ~IndxGibbs
   countJump = countJump/ndraws2
end

Avhxmean = Avhxmean/(imndraws);
Avhxs = Avhxs/(imndraws);
Avhxs = sqrt(Avhxs - Avhxmean.^2);    % stardard deviation
A0hm = zeros(nvar);
A0hm(a0indx) = Avhxmean   % mean
A0hs = zeros(nvar);
A0hs(a0indx) = Avhxs;   % standar deviation

imfmean = imfmean/(imndraws);
imfs = imfs/imndraws;
imfs = sqrt(imfs - imfmean.^2);   % standard deviation

imfyermean = imfyermean/(imndraws);
imfyers = imfyers/imndraws;
imfyers = sqrt(imfyers - imfyermean.^2);   % standard deviation


save outB_W nstarts ndraws1 ndraws2 imndraws timeminutes Avhxml Avhxmean Avhxs ...
               Avhxcntmulti A0xhat A0hm A0hs IndxGibbs countJump nvar Range5 ...
               ninv invc nfp a0indx nswitch actup nSample lags yrEnd qmEnd ...
               yrStart qmStart q_m sckcorml sckcorcntmulti

if ImfErr
   if simfindx
      cspecimf = cspecimf/imndraws;
      save outB_W cspecimf -append
   end
   save outB_W imfml imfmean imfs imfcntmulti imstp cspecimf ...
         imfyerml imfyermean imfyers imfyercntmulti imstpyer ...
         lzvdml lzvdcntmulti lzvdyerml lzvdyercntmulti -append
end
%
if sa0indx
   cspeca0 = cspeca0/imndraws;
   save outB_W cspeca0 -append
end