1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
|
function imfvdscksim(xinput,sa0indx,simfindx)
% imfvdscksim(xinput,sa0indx,simfindx)
% Save the simulated pdfs of impulse responses, vd, shocks, and A0's;
% Ref: Waggoner and Zha "Does Normalization Matter for Inference"
% See note Forecast (2)
%
% xinput{1}: nfp -- total number of free parameters
% xinput{2}: nvar -- number of variables
% xinput{3}: xhat -- ML estimate of free parameters in A0
% xinput{4}: hess -- Hessian of -logLH
% xinput{5}:Indxv -- index for selected variables of interest; normall first 2 are of our interest
% to select variables, always check idmat0 to make sure
% it plots: (1) pdf of 1st v for every buffer, (2) scattered plot of 1st and 2nd for every buffer,
% (2) pdf of 1st v for all sequences; (4) scattered plot of 3rd and 4th for all sequences
% (5) scattered plot of 1st and 2nd for al sequences.
% xinput{6}: IndxGraph - 1: plot graphs; 0: no graphs
% xinput{7}: idmat0 -- Index for non-zero elements in A0 with column to equation
% xinput{8}: nstarts -- # of starting points in Gibbs sampling
% xinput{9}: ndraws1 -- # of 1st loop to be discarded
% xinput{10}: ndraws2 -- # of 2nd loop for saving A0 draws
% xinput{11}: imndraws=nstarts*ndraws2
% xinput{12}: a0indx -- index number for non-zero elements in A0
% xinput{13}: tdf -- degrees of freedom for t-distribution
% xinput{14}: nbuffer -- interval for printing, plotting, and saving
% xinput{15}: Sbd -- nvar-by-nvar S{1}, ..., S{n} -- kind of covariance matrix for each simultaneous equation
% xinput{16}: nSample -- the original sample size including lags
% xinput{17}: IndxNmlr -- index for which normalization rule to choose
% xinput{18}: IndxGibbs -- index for WZ Gibbs; 1; Gibbs; 0: Metropolis
% xinput{19}: scf -- reduction scale factor for Metropolis jumping kernel
% xinput{20}: H_sr -- covariance matrix for free elements in A0 (nfp-by-nfp)
% xinput{21}: fss -- effective sample size == nSample-lags+# of dummy observations
% xinput{22}: idfile1 -- calls "iden6std." Save stds. of both data and impulse responses in idfile1
% xinput{23}: xxhpc -- chol(X'X+inv(H_p_tilde)): upper triangular but its transpose
% is lower triagular Choleski
% xinput{24}: ImfErr -- if 1, impulse response simulation; if 0, disable this simulation
% xinput{25}: ninv -- number of bins pre-specified to put each draw of impulse response
% into a proper bin (or small interval)
% xinput{26}: imstp -- # of steps for impulse responses
% xinput{27}: forep -- forecast periods (# of steps)
% xinput{28}: yact -- actual data (in log except R, U, etc.)
% xinput{29}: yactqg -- quarterly annualized growth in actual data
% xinput{30}: yactCalyg -- calendar annual growth in actual data
% xinput{31}: imfml -- imstp-by-nvar^2 ML impulse responses
% xinput{32}: forepq -- forecast periods for quarterly growth
% xinput{33}: forepy -- forecast periods for annual growth
% xinput{34}: ncoef -- k: # of coeffients per equation
% xinput{35}: Bhml -- ML reduced form parameter B (nvar-by-k)
% xinput{36}: lags -- # of lags
% xinput{37}: Psuedo -- 1: for Pseudo out-of-sample; 0: for in-sample (or real-time out-of-sample)
% xinput{38}: q_m = 4 or 12 -- quarterly (4) or monthly (12)
% xinput{39}: imf3ml -- ML impulse responses with row--steps, column--nvar responses,
% 3rd dimension--nvar shocks
% xinput{40}: vlistlog -- sub index for log in vlist
% xinput{41}: vlistper -- sub index for percent in vlist
% xinput{42}: phi -- X in the form of y = X*B+U. Row: nSmaple-lags+ndobs. Column: ncoef
% xinput{43}: actup -- acutal periods for backing out structural shocks
% xinput{44}: A0ml -- ML A0; column-equation
% xinput{45}: Bhml -- ML Bh (k-by-nvar)
% xinput{46}: yrEnd -- the end year for the estimation period
% xinput{47}: qmEnd -- the end month or quarter for the estimation period
% xinput{48}: yrStart -- the start year for the estimation period
% xinput{49}: qmStart -- the start month or quarter for the estimation period
% sa0indx: special a0 index. 1: use this; 0: disenable
% simfindx: special impulse response index. 1: use it; 0: disenable
%------------------
% E.G.: imfcntmulti: (ninv+2,imstp*nvar^2,nstarts) matrix
% cnt: count; for impulse responses; multi (nstarts) sequences
% All output is saved in outB_W, including Range5, invc, ninv, imfcntmulti,
% sckcorcntmulti, Avhxcntmulti, lzvdcntmulti
%
% Written by TAZ 1999
%
% Copyright (C) 1997-2012 Tao Zha
%
% This free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% If you did not received a copy of the GNU General Public License
% with this software, see <http://www.gnu.org/licenses/>.
%
nfp=xinput{1}; nvar=xinput{2}; xhat=xinput{3}; hess=xinput{4}; Indxv=xinput{5};
IndxGraph=xinput{6}; idmat0=xinput{7}; nstarts=xinput{8}; ndraws1=xinput{9}; ndraws2=xinput{10};
imndraws=xinput{11}; a0indx=xinput{12}; tdf=xinput{13}; nbuffer=xinput{14}; Sbd=xinput{15};
nSample = xinput{16}; IndxNmlr=xinput{17}; IndxGibbs=xinput{18}; scf=xinput{19}; H_sr=xinput{20};
fss=xinput{21}; idfile1=xinput{22}; xxhpc=xinput{23}; ImfErr=xinput{24}; ninv=xinput{25};
imstp=xinput{26}; forep=xinput{27}; yact=xinput{28}; yactqg=xinput{29}; yactCalyg=xinput{30};
imfml=xinput{31}; forepq=xinput{32}; forepy=xinput{33}; ncoef=xinput{34}; Bhml=xinput{35};
lags=xinput{36}; Psuedo=xinput{37}; q_m=xinput{38}; imf3ml=xinput{39}; vlistlog=xinput{40};
vlistper=xinput{41}; phi=xinput{42}; actup=xinput{43}; A0ml=xinput{44}; Bhml=xinput{45};
yrEnd=xinput{46}; qmEnd=xinput{47}; yrStart=xinput{48}; qmStart=xinput{49};
if Psuedo
disp('Make sure (1) Psuedo=0 in msstart.m and (2) "actuap=nSample-lags" for strucutral shocks')
disp('Press ctrl-c to abort now')
end
A0_h = zeros(nvar);
A0gbs = A0_h; % drawn A0 in Gibbs sampling
Avhxml = xhat; % ML estimate
Avhxmean = zeros(nfp,1);
Avhxs = Avhxmean;
A0xhat = zeros(nvar);
A0xhat(a0indx) = xhat;
% A0hatw = zeros(nvar^2,nbuffer);
countJump = zeros(nstarts,1);
imstpyer = floor(imstp/q_m); % yearly
imfmean = zeros(imstp,nvar^2);
imfs = imfmean;
imfyermean = zeros(imstpyer,nvar^2);
imfyers = imfyermean;
imfyer3ml = zeros(imstpyer,nvar,nvar);
imfyer3_h = zeros(imstpyer,nvar,nvar);
imfcntmulti = zeros(ninv+2,imstp*nvar^2,nstarts);
% cnt: count; for impulse responses; multi (nstarts) sequences
Avhxcntmulti = zeros(ninv+2,nfp,nstarts);
% cnt: count; for A0; multi (nstarts) sequences
imfyercntmulti = zeros(ninv+2,imstpyer*nvar^2,nstarts);
% cnt: count; for impulse responses; multi (nstarts) sequences
lzvdcntmulti = zeros(ninv+2,imstp*nvar^2,nstarts);
% cnt: count; for lz vd; multi (nstarts) sequences
lzvdyercntmulti = zeros(ninv+2,imstpyer*nvar^2,nstarts);
% cnt: count; for lz vd; multi (nstarts) sequences
sckcorcntmulti = zeros(ninv+2,nvar^2,nstarts);
%---------------------------------------------------
% Specify the range for counting the empirical distribution
%
%** load the standard deviations of 6 variables, one for log(y), one for gq, and
%** the third one for yg
eval(['load ' idfile1 '.prn -ascii']);
eval(['ABstd=' idfile1 ';']);
Range5 = cell(9,1); % 8: log, qg, yg, imf, Avhx, imfyer (yearly), lzvd,
% lzvdyer, sckcorv,
%@@@ Tony's trick to expand the matrix
%
%** In order of log(y), qg, and yg for Range5{i} for i=1:3
Range5{1} =zeros(forep,nvar,2); % 2: min and max
Range5{1}(:,:,1) = repmat(yact(length(yact(:,1)),:)-10*ABstd(1,:),[forep 1]); % min, 30 std.
Range5{1}(:,:,2) = repmat(yact(length(yact(:,1)),:)+10*ABstd(1,:),[forep 1]); % max, 30 std.
%
Range5{2} =zeros(forepq,nvar,2); % 2: min and max
Range5{2}(:,:,1) = repmat(yactqg(length(yactqg(:,1)),:)-10*ABstd(2,:),[forepq 1]); % min, 30 std.
Range5{2}(:,:,2) = repmat(yactqg(length(yactqg(:,1)),:)+10*ABstd(2,:),[forepq 1]); % max, 30 std.
%
Range5{3} =zeros(forepy,nvar,2); % 2: min and max
Range5{3}(:,:,1) = repmat(yactCalyg(length(yactCalyg(:,1)),:)-10*ABstd(3,:),[forepy 1]); % min, 30 std.
Range5{3}(:,:,2) = repmat(yactCalyg(length(yactCalyg(:,1)),:)+10*ABstd(3,:),[forepy 1]); % max, 30 std.
%
Range5{4} =zeros(imstp,nvar^2,2); % 2: min and max
imfscale = repmat(ABstd(4,:),[1 nvar]); % because nvar variables to 1, ..., nvar shocks
Range5{4}(:,:,1) = repmat(imfml(1,:)-5*imfscale,[imstp 1]); % min, 5 std.
Range5{4}(:,:,2) = repmat(imfml(1,:)+5*imfscale,[imstp 1]); % max, 5 std.
% Range5(4)(:,:,1): imstp-by-nvar^2. Column: nvar responses to 1st shock,
% nvar responses to 2nd shock, ...
%
%*** for parameters A0's
Range5{5} =zeros(nfp,2); % 2: min and max
Avhxscale = abs(Avhxml);
Range5{5}(:,1) = Avhxml-5*Avhxscale; % min, 5 std.
Range5{5}(:,2) = Avhxml+5*Avhxscale; % max, 5 std.
%
%*** for yearly impulse responses
yer3 = zeros(1+imstpyer,nvar,nvar);
for k=1:imstpyer
yer3(k+1,:,:) = mean(imf3ml(1+q_m*(k-1):q_m*k,:,:),1); % annual average
% yer3: row--steps, column--nvar responses, 3rd dimension--nvar shocks
end
imfyer3ml(:,vlistlog,:) = ( exp(yer3(2:1+imstpyer,vlistlog,:)-yer3(1:imstpyer,vlistlog,:)) - 1 ).*100;
imfyer3ml(:,vlistper,:) = yer3(2:1+imstpyer,vlistper,:) .* 100;
% imfyer3ml: row--steps, column--nvar responses, 3rd dimension--nvar shocks
tmp = max(squeeze(max(imfyer3ml,[],1)),[],2); % nvar-by-1
tmp = tmp'; % 1-by-nvar (variables)
imfyerml = reshape(imfyer3ml,imstpyer,nvar^2);
imfyermlmax = max(abs(imfyerml)); % for error bands (imfyercnt) later
%*** for annual impulse responses
Range5{6} =zeros(imstpyer,nvar^2,2); % 2: min and max
tmp = repmat(tmp,[1 nvar]); % because nvar variables to 1, ..., nvar shocks
imfyerscl = repmat(tmp,[imstpyer,1]); % imstpyer-by-nvar^2
Range5{6}(:,:,1) = imfyerml-5*imfyerscl; % min, 5 std.
Range5{6}(:,:,2) = imfyerml+5*imfyerscl; % max, 5 std.
% Range5(6)(:,:,1): imstpyer-by-nvar^2. Column: nvar responses to 1st shock,
% nvar responses to 2nd shock, ...
%*** lz variance decomposition (nunlike the traditional, non-cumulative).
tmp0=abs(imf3ml);
tmp1 = repmat(sum(tmp0,3),[1 1 nvar]); % imstp-by-nvar^2
% imf3: row--steps, column--nvar responses, 3rd dimension--nvar shocks
lzvd3ml = 100*(tmp0./tmp1);
lzvdml = reshape(lzvd3ml,imstp,nvar^2);
%** for lz vd (non-cumulative)
Range5{7} =zeros(imstp,nvar^2,2); % 2: min and max
Range5{7}(:,:,1) = zeros(imstp,nvar^2); % min, 5 std.
Range5{7}(:,:,2) = 100*ones(imstp,nvar^2); % max, 5 std.
% Range5(7)(:,:,1): imstp-by-nvar^2. Column: nvar responses to 1st shock,
% nvar responses to 2nd shock, ...
%*** lz annual variance decomposition (nunlike the traditional, non-cumulative).
tmp0=abs(imfyer3ml);
tmp1 = repmat(sum(tmp0,3),[1 1 nvar]); % imstp-by-nvar^2
% imf3: row--steps, column--nvar responses, 3rd dimension--nvar shocks
lzvdyer3ml = 100*(tmp0./tmp1);
lzvdyerml = reshape(lzvdyer3ml,imstpyer,nvar^2);
%** for lz annual vd
Range5{8} =zeros(imstpyer,nvar^2,2); % 2: min and max
Range5{8}(:,:,1) = zeros(imstpyer,nvar^2); % min, 5 std.
Range5{8}(:,:,2) = 100*ones(imstpyer,nvar^2); % max, 5 std.
% Range5(8)(:,:,1): imstpyer-by-nvar^2. Column: nvar responses to 1st shock,
% nvar responses to 2nd shock, ...
%**** Correlations among structural shocks
philr = phi(size(phi,1)-actup+1,:); % +1 is absolutely needed
yexa = yact(1:actup,:);
Estrexaml = fidcndexa(yexa,philr,A0ml,Bhml,nvar,lags,actup); % actup-by-nvar
sckvarml = (Estrexaml'*Estrexaml)/actup;
sckcorml = corr(sckvarml);
%** for shock correlation sckcor
Range5{9} =zeros(nvar,nvar,2); % 2: min and max
Range5{9}(:,:,1) = (-1)*ones(nvar,nvar); % min, 5 std.
Range5{9}(:,:,2) = ones(nvar,nvar); % max, 5 std.
% Range5(9)(:,:,1): nvar^2. Correlation among structural shocks
%**
invc = cell(9,1); % interval length (used for counting later).
for i=[1:4 6:9]
invc{i} = Range5{i}(:,:,2) - Range5{i}(:,:,1);
end
invc{5} = Range5{5}(:,2) - Range5{5}(:,1);
%
imfhbin = invc{4} ./ ninv; % bin size for each point of impulse responses
imfloor = Range5{4}(:,:,1); % lowest point next to -infinity
Avhxhbin = invc{5} ./ ninv; % bin size for each point of A0
Avhxfloor = Range5{5}(:,1); % lowest point next to -infinity
imfyerhbin = invc{6} ./ ninv; % bin size for each point of annual impulse responses
imfyerfloor = Range5{6}(:,:,1); % lowest point next to -infinity
lzvdhbin = invc{7} ./ ninv; % bin size for each point of variance decompositions
lzvdfloor = Range5{7}(:,:,1); % lowest point next to -infinity
lzvdyerhbin = invc{8} ./ ninv; % bin size for each point of annul variance decompositions
lzvdyerfloor = Range5{8}(:,:,1); % lowest point next to -infinity
sckcorhbin = invc{9} ./ ninv; % bin size for each point of shock correlations
sckcorfloor = Range5{9}(:,:,1); % lowest point next to -infinity
%*** <<>> Specific requests
%*** compute prob(parameter>0) or joint prob. of sign matches in MP and MD
if sa0indx
csix1a0 = [-1 -1 1 1 1 -1 1]'; % for 7 parameters in MP and MD
% from 7th to 13th in Avhx_norm
nspeca0 = 7+3; % number of specific requests
% additional 3: 1 for all MP parameters; 2 for all MD parameters;
% 3 for all paramters in MP and MD
cspeca0 = zeros(nspeca0,1);
end
%
if simfindx
csix1imf = [-1 -1 1 -1 -1 1]'; % for 6 variables to MP shock
% maybe at different horizons (esp. for inflation)
csix1pimf = [1 1 1 24 36 24]'; % the periods for the 6 varialbes to MP shock
% Pcm, M2, FFR, y, P, U.
nspecimf = nvar+2; % number of specific requests
% additional 1: 1 for opposite signs of M2 and R
cspecimf = zeros(nspecimf,1);
end
%===================================
% Here begins with the big loop
%===================================
H1 = chol(hess); % upper triangular so that H1' is a lower triangular decomp
baseW = H_sr; %inv(H1); %H_sr; % covariance matrix without scaling
nswitch=0; %<<>> total number of sign switches
A0inxhat = inv(A0xhat); % inverse of ML estimate
a0indx0 = find(idmat0==0); % index for all zero's in A0;
nn=[nvar lags imstp];
[cT,vR,kdf] = gibbsglb(Sbd,idmat0,nvar,fss);
tic
for starts = 1:nstarts
starts
if starts == 1
A0gbs(a0indx) = xhat; % from "load ..."
if ~IndxGibbs % Metropolist
Avhx = xhat;
hAvhx = a0asfun(Avhx,Sbd,fss,nvar,a0indx);
hAvhx = -hAvhx; % converted to logLH
end
else
Avhx = baseW*randn(nfp,1); %H_sr*randn(nfp,1); % D: discarded sequence
csq=randn(tdf,1);
csq=sum(csq .* csq);
Avhx = xhat+Avhx/sqrt(csq/tdf);
%** Normalization by the choice of IndxNmlr
A0gbs(a0indx) = Avhx;
if ~IndxNmlr(5)
[A0gbs,jnk] = nmlzvar(A0gbs,A0xhat,A0inxhat,IndxNmlr,nswitch,[]);
else
A0ingbs = inv(A0gbs);
[A0gbs,jnk,jnk1] = nmlzvar(A0gbs,A0xhat,A0inxhat,IndxNmlr,nswitch,A0ingbs);
end
%
if ~IndxGibbs % Metropolist
Avhx = A0gbs(a0indx);
hAvhx = a0asfun(Avhx,Sbd,fss,nvar,a0indx);
hAvhx = -hAvhx; % converted to logLH
end
end
%
cJump = 0;
imfcnt = zeros(ninv+2,imstp*nvar^2); % cnt: count; for impulse responses
Avhxcnt = zeros(ninv+2,nfp); % cnt: count; for A0's
imfyercnt = zeros(ninv+2,imstpyer*nvar^2); % cnt: count; for impulse responses
lzvdcnt = zeros(ninv+2,imstp*nvar^2); % cnt: count; for lz vd (non-cumulative)
lzvdyercnt = zeros(ninv+2,imstpyer*nvar^2); % cnt: count; for lz annual vd (non-cumulative)
sckcorcnt = zeros(ninv+2,nvar^2); % cnt: count; for shock correlations
for draws = 1:ndraws1
if IndxGibbs
A0gbs = gibbsvar(A0gbs,cT,vR,nvar,fss,kdf);
else % Metropolis
[Avhx,hAvhx,cJump] = smtplis(Avhx,hAvhx,tdf,cJump,scf,...
baseW,nfp,Sbd,fss,nvar,a0indx);
end
end
wdraws=(starts-1)*ndraws2+0;
for draws = 1:ndraws2
drawsc = (starts-1)*ndraws2+draws;
if IndxGibbs
A0gbs = gibbsvar(A0gbs,cT,vR,nvar,fss,kdf);
A0gbs(a0indx0) = 0; % set all zeros in A0gbs clean to avoid possible cumulative round-off errors
else % Metropolis
[Avhx,hAvhx,cJump] = smtplis(Avhx,hAvhx,tdf,cJump,scf,...
baseW,nfp,Sbd,fss,nvar,a0indx);
A0gbs(a0indx) = Avhx;
end
%*** call normalization so that A0_h is normalized
if ~IndxNmlr(5)
[A0_h,nswitch] = nmlzvar(A0gbs,A0xhat,A0inxhat,IndxNmlr,nswitch,[]);
A0_hin = inv(A0_h);
else
A0ingbs = inv(A0gbs);
[A0_h,nswitch,A0_hin] = nmlzvar(A0gbs,A0xhat,A0inxhat,IndxNmlr,nswitch,A0ingbs);
end
Avhx_norm = A0_h(a0indx);
if sa0indx
for k=1:7
cspeca0(k) = cspeca0(k) + ((csix1a0(k)*Avhx_norm(6+k))>0);
end
%*** Joint tests
j1=csix1a0;
j2=Avhx_norm;
%** MP equation
mpall = ((j1(2)*j2(8))/(j1(3)*j2(9)))<0; % & ((j1(1)*j2(7))/(j1(3)*j2(9)))<0;
cspeca0(8) = cspeca0(8) + mpall;
%** MD equation
mdall = ((j1(4)*j2(10))/(j1(5)*j2(11)))<0; %& ((j1(4)*j2(10))/(j1(6)*j2(12)))<0;
cspeca0(9) = cspeca0(9) + mdall;
mpdall = mpall & mdall;
cspeca0(10) = cspeca0(10) + mpdall;
end
%
% *** normal draws for posterior Aplus conditional on A0h
%
%** the mean is Aplushm, and the covariance is inv(xxhp)=Lxxhpc*Lxxhpc'
Apindm = randn(ncoef,nvar);
%
if ~all(all(finite(Bhml)))
Aplushm=zeros(ncoef,nvar);
for i=1:nvar
Aplushm(:,i)=Gb{i}*A0_h(:,i); % see Zha's forecast (1) p.9
% Here, Gb is used to compute A+ where A+(i) = Gb(i)*a0(i)
end
Bh_h = (Aplushm + xxhpc\Apindm)*A0_hin;
else
Bh_h = Bhml + (xxhpc\Apindm)*A0_hin;
end
if ImfErr
swish_h = A0_hin'; % Switching back to the form A0*y(t) = e(t)
imf_h = zimpulse(Bh_h,swish_h,nn); % in the form that is congenial to RATS
imf3_h=reshape(imf_h,size(imf_h,1),nvar,nvar);
% imf3: row--steps, column--nvar responses, 3rd dimension--nvar shocks
imfmean = imfmean + imf_h; % posterior mean
imfs = imfs + imf_h.^2; % posterior 2nd moment
imfcnt = empdfsort(imfcnt,imf_h,imfloor,imfhbin,ninv);
% sorted counts (prob.) in bins
%**** annula impulse responses
for k=1:imstpyer
yer3(k+1,:,:) = mean(imf3_h(1+q_m*(k-1):q_m*k,:,:),1); % annual average
% yer3: initialized earlier already
% yer3: row--steps, column--nvar responses, 3rd dimension--nvar shocks
end
imfyer3_h(:,vlistlog,:) = ( exp(yer3(2:1+imstpyer,vlistlog,:)-yer3(1:imstpyer,vlistlog,:)) - 1 ).*100;
imfyer3_h(:,vlistper,:) = yer3(2:1+imstpyer,vlistper,:) .* 100;
% imfyer3_h: row--steps, column--nvar responses, 3rd dimension--nvar shocks
imfyer_h = reshape(imfyer3_h,imstpyer,nvar^2);
imfyermean = imfyermean + imfyer_h; % posterior mean
imfyers = imfyers + imfyer_h.^2; % posterior 2nd moment
imfyercnt = empdfsort(imfyercnt,imfyer_h,imfyerfloor,imfyerhbin,ninv);
% sorted counts (prob.) in bins
%**** Leeper-Zha variance decomposition (non-cumulative)
tmp0=abs(imf3_h);
tmp = repmat(sum(tmp0,3),[1 1 nvar]); % imstp-by-nvar^2
% imf3: row--steps, column--nvar responses, 3rd dimension--nvar shocks
lzvd3_h = 100*(tmp0./tmp);
lzvd_h = reshape(lzvd3_h,imstp,nvar^2);
lzvdcnt = empdfsort(lzvdcnt,lzvd_h,lzvdfloor,lzvdhbin,ninv);
% sorted counts (prob.) in bins
%**** Leeper-Zha annual variance decomposition (non-cumulative)
tmp0=abs(imfyer3_h);
tmp = repmat(sum(tmp0,3),[1 1 nvar]); % imstp-by-nvar^2
% imf3: row--steps, column--nvar responses, 3rd dimension--nvar shocks
lzvdyer3_h = 100*(tmp0./tmp);
lzvdyer_h = reshape(lzvdyer3_h,imstpyer,nvar^2);
lzvdyercnt = empdfsort(lzvdyercnt,lzvdyer_h,lzvdyerfloor,lzvdyerhbin,ninv);
% sorted counts (prob.) in bins
%**** Correlations among structural shocks
Estrexa_h = fidcndexa(yexa,philr,A0_h,Bh_h,nvar,lags,actup); % actup-by-nvar
sckvar_h = (Estrexa_h'*Estrexa_h)/actup;
sckcor_h = corr(sckvar_h);
sckcorcnt = empdfsort(sckcorcnt,sckcor_h,sckcorfloor,sckcorhbin,ninv);
if simfindx
for k=1:6
cspecimf(k) = cspecimf(k) + ((csix1a0(k)*imf_h(1,nvar+k))>0);
% 1st dim in imf_h: periods
end
%*** Joint tests
j1=csix1imf;
j2=imf_h;
j3=csix1pimf;
%** M2 and R in MP equation
mpall = ((j1(2)*j2(j3(2),nvar+2))/(j1(3)*j2(j3(3),nvar+3)))>0; % & ((j1(1)*j2(7))/(j1(3)*j2(9)))<0;
% 1st dim in j2: periods
cspecimf(nvar+1) = cspecimf(nvar+1) + mpall;
%** R and P in MP equation
mpall = ((j1(3)*j2(j3(3),nvar+3))/(j1(5)*j2(j3(5),nvar+5)))>0; %
% 1st dim in j2: periods
cspecimf(nvar+2) = cspecimf(nvar+2) + mpall;
%
% %** MD equation
% mdall = ((j1(4)*j2(10))/(j1(5)*j2(11)))<0; %& ((j1(4)*j2(10))/(j1(6)*j2(12)))<0;
% cspeca0(9) = cspeca0(9) + mdall;
% mpdall = mpall & mdall;
% cspeca0(10) = cspeca0(10) + mpdall;
end
end
Avhxmean = Avhxmean + Avhx_norm; % 1st step to overall mean of parameter
Avhxs = Avhxs + Avhx_norm.^2; % 1st step to overall 2nd moment of parameter
Avhxcnt = empdfsort(Avhxcnt,Avhx_norm,Avhxfloor,Avhxhbin,ninv);
% A0hatw(:,drawsc-wdraws) = A0_h(:);
if ~mod(draws,nbuffer)
starts
draws
wdraws=drawsc
% fwriteid = fopen('outA0.bin','a');
% count = fwrite(fwriteid,A0hatw,'double');
% status = fclose('all');
end
end
%
imfcntmulti(:,:,starts) = imfcnt;
Avhxcntmulti(:,:,starts) = Avhxcnt;
imfyercntmulti(:,:,starts) = imfyercnt;
lzvdcntmulti(:,:,starts) = lzvdcnt;
lzvdyercntmulti(:,:,starts) = lzvdyercnt;
sckcorcntmulti(:,:,starts) = sckcorcnt;
if ~IndxGibbs
countJump(starts,1) = cJump;
end
end
timend = toc
timeminutes=timend/60
if ~IndxGibbs
countJump = countJump/ndraws2
end
Avhxmean = Avhxmean/(imndraws);
Avhxs = Avhxs/(imndraws);
Avhxs = sqrt(Avhxs - Avhxmean.^2); % stardard deviation
A0hm = zeros(nvar);
A0hm(a0indx) = Avhxmean % mean
A0hs = zeros(nvar);
A0hs(a0indx) = Avhxs; % standar deviation
imfmean = imfmean/(imndraws);
imfs = imfs/imndraws;
imfs = sqrt(imfs - imfmean.^2); % standard deviation
imfyermean = imfyermean/(imndraws);
imfyers = imfyers/imndraws;
imfyers = sqrt(imfyers - imfyermean.^2); % standard deviation
save outB_W nstarts ndraws1 ndraws2 imndraws timeminutes Avhxml Avhxmean Avhxs ...
Avhxcntmulti A0xhat A0hm A0hs IndxGibbs countJump nvar Range5 ...
ninv invc nfp a0indx nswitch actup nSample lags yrEnd qmEnd ...
yrStart qmStart q_m sckcorml sckcorcntmulti
if ImfErr
if simfindx
cspecimf = cspecimf/imndraws;
save outB_W cspecimf -append
end
save outB_W imfml imfmean imfs imfcntmulti imstp cspecimf ...
imfyerml imfyermean imfyers imfyercntmulti imstpyer ...
lzvdml lzvdcntmulti lzvdyerml lzvdyercntmulti -append
end
%
if sa0indx
cspeca0 = cspeca0/imndraws;
save outB_W cspeca0 -append
end
|