1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
|
function [Gb,Sbd,Bh,SpH,fss,ndobs,phi,y,nvar,ncoef,xxhpc,a0indx,na0p,...
idmat0,idmatpp,H0invmulti,Hpinvmulti,xxhp] = szasbvar(idfile,q_m,lags,xdgel,mu)
% [Gb,Sbd,Bh,SpH,fss,ndobs,phi,y,nvar,ncoef,xxhpc,a0indx,na0p,...
% idmat0,idmatpp,H0invmulti,Hpinvmulti] = szasbvar(idfile,q_m,lags,xdgel,mu)
%
% Estimating the Bayesian VAR of Sims and Zha with asymmetric prior (as)
%
% idfile: Identification filename with rows corresponding to equations.
% But all the output will be transposed to columns
% corresponding to equations.
% q_m: quarter or month
% lags: the maximum length of lag
% nhp: number of haperparameters
% xdgel: the general matrix of the original data (no manipulation involved)
% with sample size including lags
% mu: 6-by-1 vector of hyperparameters (the following numbers for Atlanta Fed's forecast)
% mu(1): overall tightness and also for A0; (0.57)
% mu(2): relative tightness for A+; (0.13)
% mu(3): relative tightness for the constant term; (0.1)
% mu(4): tightness on lag decay; (1)
% mu(5): weight on nvar sums of coeffs dummy observations (unit roots); (5)
% mu(6): weight on single dummy initial observation including constant
% (cointegration, unit roots, and stationarity); (5)
% --------------------
% --------------------
% Gb: cell(nvar,1). Each cell, when postmultiplied by A0(:,i), is used to compute A+(:,i)
% where A+ is k-by-m, where k--ncnoef, m--nvar, if asymmetric prior.
% In particular, Aplus(:,i)=Gb{i}*A0(:,i), so Bh = Aplus/A0
% Sbd: cell(nvar,1). Sbd=diag(S(1), ..., S(m)). Already divided by 'fss' for the
% posterior of a0 or A0(:) in Waggoner and Zha when one has asymmetric prior.
% Note,"bd" stands for block diagonal.
% Bh: reduced form B, k(mp+1)-by-m, column--equation. Bh=NaN if asymmetric prior.
% In the form of y=X*B+U where B=[B1|B2| ...|Bp|C]
% where Bi: m-by-m (i=1,..,p--lag length), C: 1-by-ml, constant.
% SpH: divided by T, the final S in the Waggoner-Zha exponential part of p(A0|y)
% SpH=NaN if asymmetric prior
% fss: in-sample-size (for forecasting). Including dummy observations
% ndobs: number of dummy observations, ndobs=nvar+1
% phi: X in the form of y = X*B+U. Row: nSmaple-lags+ndobs. Column: ncoef
% y: y in the form y = X*B+U. Including the dummy observations too,
% T-lags+ndobs-by-nvar.
% nvar: number of variables
% ncoef: number of coefficients in *each* equation. RHS coefficients only, nvar*lags+1
% xxhpc: chol(X'X+inv(H_p_tilde)): upper triangular but its transpose
% is lower triagular Choleski
% a0indx: the index number for free parameters in A0. Column meaning equation
% na0p: number of free parameters in A0
% idmat0: identification matrix for A0 with asymmetric prior; column -- equation.
% idmatpp: asymmetric prior variance for A+ without constant; column -- equation.
% H0invmulti: nvar-by-nvar-by-nvar; inv(H0) for different equations under asymmetric prior
% Hpinvmulti: ncoef-by-ncoef-by-nvar; inv(H+) for different equations under asymmetric prior
% xxhp: ncoef-by-nocef, X'X+inv(H_p_tilde)
%
% Revisions by CAS 9/27/96: If we transmit idmat, rather than a0indx, we can scale
% the elements of idmat0 or idmatp so that it carries information about relative
% prior variances.
% Revsions by TZ, 10/13/96: Efficiency improvement by streamlining the previous
% code according to the general setup in Sims and Zha's IER and according
% to Zha's notes Forecast (0) (p.3) and Forecast (1) (p.9).
% Quick Revisions: May 2003. See H1p_1 on lines 406-409.
%
% NOTE1: "nSample" is something I deleted as an input recently, so it may not
% be compatible with old programs, 10/15/98 by TZ.
% NOTE2: I put "mu" as an input arg and delete "nhp" as an input arg, so it may
% not be compatible with old programs, 03/06/99 by TZ
% NOTE3: added three output arguments: H0invmulti and Hpinvmulti and xxhp. 9/27/99
%
% Copyright (C) 1997-2012 Christopher A. Sims and Tao Zha
%
% This free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% If you did not received a copy of the GNU General Public License
% with this software, see <http://www.gnu.org/licenses/>.
%
%
%@@@ Prepared for Bayesian VAR of Sims and Zha
%
%* Load identification and obtain idmat0
eval(['load ' idfile '.prn -ascii']);
eval(['idmat0=' idfile ';']);
idmat0=idmat0'; % so that each column corresponds to an equation
a0indx=find(idmat0); % column meaning equation
na0p = length(a0indx); % number of free parameters in A0
nhp = length(mu); % total number of hyperparameters
nfp = na0p + nhp; % total number of free parameters (including hyperparameters)
[nvar,neqn]=size(idmat0);
%
idmatpp = ones(nvar*lags,nvar); % pp: plus without constant. Column -- equation
%>>>>>> B: asymmetric prior variance for idmatpp <<<<<<<<
%
%for i = 1:lags
% rowif = (i-1)*nvar+1;
% rowil = i*nvar;
% idmatw0 = 0.5; % weight assigned to idmat0 in the formation of idmatpp
% if (i==1)
% idmatpp(rowif:rowil,:)=(1-idmatw0)*ones(nvar)+idmatw0*idmat0; % first lag
% % note: idmat1 is already transposed. Column -- equation
% else
% %idmatpp(rowif:rowil,1:nvar) = (1-idmatw0)*ones(nvar)+idmatw0*idmat0;
% % <<<<<<< toggle +
% % Note: already transposed, since idmat0 is transposed.
% % Meaning: column implies equation
% idmatpp(rowif:rowil,1:nvar) = ones(nvar);
% % >>>>>>> toggle -
% end
%end
%
%>>>>>> E: asymmetric prior variance for idmatpp <<<<<<<<
%$$$ available computations
%
%@@@ original
% total number of the sample under study, including lags, etc. -- original sample size
nSample = size(xdgel,1); % the sample size (including lags, of course)
sb = lags+1; % original beginning without dummies
sl = nSample; % original last period without dummies
ssp = nSample - lags; % original number of observations
%
ndobs=nvar+1; % number of dummy observations
ncoef = nvar*lags+1; % number of coefficients in *each* equation, RHS coefficients only.
%*** initializing for global variables
%%GlbAph=zeros(nvar,ncoef);
%Aplus=zeros(ncoef,nvar);
Gb = cell(nvar,1); % Storing potential reduced-form Bh (k-by-m) or prepared
% for computing Aplus (k-by-m), where k--ncnoef, m--nvar
Sbd = cell(nvar,1); % Storing for diag(S(1), ..., S(m)) for the posterior of a0
% or vec(A0) when one has asymmetric prior. Note,
% "bd" stands for block diagonal.
SpH = ones(nvar,nvar);
%* flp: forecast last period (with dummies);
%* fbp: forecast beginning period (with dummies).
flp = sl+ndobs;
%fbp = ndobs+lags+1; % <<>> true begining by skipping dummies
fss = flp-lags; % forecast sample size (with dummies).
% ** hyperparameters
% mu = zeros(nhp,1);
% mu(1) = 0.57;
% mu(2) = 0.13;
% mu(3) = 0.1;
% mu(4) = 1;
% mu(5) = 5; %10;
% mu(6) = 5; %10;
%
% mu(1): overall tightness and also for A0;
% mu(2): relative tightness for A+;
% mu(3): relative tightness for the constant term;
% mu(4): tightness on lag decay;
% mu(5): weight on nvar sums of coeffs dummy observations (unit roots);
% mu(6): weight on single dummy initial observation including constant (cointegration, unit
% roots, and stationarity).
% ** monthly lag decay in order to match quarterly decay: a*exp(bl) where
% ** l is the monthly lag. Suppose quarterly decay is 1/x where x=1,2,3,4.
% ** Let the decay of l1 (a*exp(b*l1)) match that of x1 (say, beginning: 1/1)
% ** and the decay of l2 (a*exp(b*l2)) match that of x2 (say, end: 1/5),
% ** we can solve for a and b which are
% ** b = (log_x1-log_x2)/(l1-l2), and a = x1*exp(-b*l1).
if q_m==12
l1 = 1; % 1st month == 1st quarter
xx1 = 1; % 1st quarter
l2 = lags; % last month
xx2 = 1/((ceil(lags/3))^mu(4)); % last quarter
%xx2 = 1/6; % last quarter
% 3rd quarter: i.e., we intend to let decay of the 6th month match
% that of the 3rd quarter, so that the 6th month decays a little
% faster than the second quarter which is 1/2.
if lags==1
b = 0;
else
b = (log(xx1)-log(xx2))/(l1-l2);
end
a = xx1*exp(-b*l1);
end
%
% ** now run the VAR with
%
% **** nvar prior dummy observations with the sum of coefficients
% ** construct X for Y = X*B + U where phi = X: (T-lags)*k, Y: (T-lags)*nvar
% ** columns: k = # of [nvar for 1st lag, ..., nvar for last lag, const]
% ** Now, T=T+ndobs -- added with "ndobs" dummy observations
%
phi = zeros(fss,ncoef);
const = ones(fss,1);
const(1:nvar) = zeros(nvar,1);
phi(:,ncoef) = const; % the first nvar periods: no or zero constant!
%
xdgelint = mean(xdgel(1:lags,:),1); % mean of the first lags initial conditions
%* Dummies
for k=1:nvar
for m=1:lags
phi(ndobs,nvar*(m-1)+k) = xdgelint(k);
phi(k,nvar*(m-1)+k) = xdgelint(k);
% <<>> multiply hyperparameter later
end
end
%* True data
for k=1:lags
phi(ndobs+1:fss,nvar*(k-1)+1:nvar*k) = xdgel(sb-k:sl-k,:);
% row: T-lags; column: [nvar for 1st lag, ..., nvar for last lag, const]
% Thus, # of columns is nvar*lags+1 = ncoef.
end
%
% ** Y with "ndobs" dummies added
y = zeros(fss,nvar);
%* Dummies
for k=1:nvar
y(ndobs,k) = xdgelint(k);
y(k,k) = xdgelint(k);
% multiply hyperparameter later
end
%* True data
y(ndobs+1:fss,:) = xdgel(sb:sl,:);
%
% *** specify the prior for each equation separately, SZ method,
% ***
% *** obtaining the residuals for the univariate processes:
% *** a total of "nvar" equations
% *** obtain the posterior peak of A0 which is Sims iden1 (Sims 1986)
% ** get the residuals from univariate regressions.
%
sgh = zeros(nvar,1); % square root
sgsh = sgh; % square
yu = xdgel;
C = ones(nSample,1);
for k=1:nvar
[Bk,ek,junk1,junk2,junk3,junk4] = sye([yu(:,k) C],lags);
clear Bk junk1 junk2 junk3 junk4;
sgsh(k) = ek'*ek/ssp;
%% sgh(k) = ek'*ek/(fss-7); to match "sqrt(ess)" in RATS univariate regression
sgh(k) = sqrt(sgsh(k));
end
% ** prior variance for alpha0, same for all equations!!!
al0b = zeros(nvar*neqn,1); % prior mean for all A0
sg0bid = zeros(nvar,1); % Sigma0_bar diagonal only
for j=1:nvar
sg0bid(j) = 1/sgsh(j); % sgsh = sigmai^2
end
% ** prior variance for alpha_plus, same for all equations
sgpbid = zeros(ncoef,1); % Sigma_plus_bar, diagonal
for i = 1:lags
if (q_m==12)
lagdecay = a*exp(b*i);
end
%
for j = 1:nvar
if (q_m==12)
% exponential decay to match quarterly decay
sgpbid((i-1)*nvar+j) = lagdecay^2/sgsh(j);
%%sgpbid((i-1)*nvar+j) = (1/i)^2/sgsh(j);
elseif (q_m==4)
sgpbid((i-1)*nvar+j) = (1/i^mu(4))^2/sgsh(j);
else
error('Incompatibility with lags, check the possible errors!!!')
%warning('Incompatibility with lags, check the possible errors!!!')
%return
end
end
end
%%A0bd = sqrt(sg0bid);
% commented out by T.A. Zha, 10/3/96, to avoid double-counting of scaling and the problem
% of potential multiple peaks.
A0bd = zeros(nvar,1);
A0b = sparse(1:nvar,1:nvar,A0bd,nvar,nvar);
A0b = A0b'; % making a column in A0b correspond to an equation
%
%=================================================
% Computing the (prior) covariance matrix for the posterior of A0, no data yet
%=================================================
%
%
% ** weight prior dummy observations
%phi(1:nvar,:) = (mu(5)^2/mu(1)^2)*phi(1:nvar,:);
%y(1:nvar,:) = (mu(5)^2/mu(1)^2)*y(1:nvar,:);
%phi(ndobs,:) = mu
% modified by CAS 8/6/96. The dummy obs weights are naturally in std units, not var units.
%
phi(1:nvar,:) = 1*mu(5)*phi(1:nvar,:); % standard Sims and Zha prior
y(1:nvar,:) = mu(5)*y(1:nvar,:); % standard Sims and Zha prior
%----- The following prior designed for GLZ
%phi(1,:) = 1.00*mu(5)*phi(1,:);
%phi(2:nvar,:) = 1.02*mu(7)*phi(2:nvar,:);
%y(1,:) = mu(5)*y(1,:);
%y(2:nvar,:) = mu(7)*y(2:nvar,:);
%----------------------------
%
phi(nvar+1,:) = mu(6)*phi(nvar+1,:);
y(nvar+1,:) = mu(6)*y(nvar+1,:);
% ** set up the conditional prior variance sg0bi and sgpbi.
sg0bida = mu(1)^2*sg0bid;
sgpbida = mu(1)^2*mu(2)^2*sgpbid;
sgpbida(ncoef) = mu(1)^2*mu(3)^2;
sgppbd = sgpbida(nvar+1:ncoef); % corresponding to A++, in a Sims-Zha paper
%%sgppbdi = 1./sgppbd;
%sgppb = diag(sgppbd);
Hptd = zeros(ncoef);
Hptdi=Hptd;
%%Hptd(nvar+1:ncoef,nvar+1:ncoef)=diag(sgppbd);
%%Hptdi(nvar+1:ncoef,nvar+1:ncoef)=diag(sgppbdi);
Hptd(ncoef,ncoef)=sgppbd(ncoef-nvar);
Hptdi(ncoef,ncoef)=1/sgppbd(ncoef-nvar);
% condtional on A0i, H_plus_tilde
% ** some common terms
[u d v]=svd(phi,0); %trial
% xtx = phi'*phi; %trial
vd=v.*(ones(size(v,2),1)*diag(d)'); %trial
xtx=vd*vd';
% M = eye(fss) - phi*(xtx\phi'); % not used except in line below %trial
yu = y'*u; %trial
cxyxx=yu*yu'; %trial
yty=y'*y;
ymy=yty-cxyxx; %trial
%ymy = y'*M*y;
%cxy = phi'*y; %trial
cxy = vd*yu'; %trial
cyx = cxy';
%cxpy = xtx\cxy; %not used further except in line below
%cxyxx = cxy'*cxpy;
% ** estimate A+_hat conditional on A0, ncoef*nvar, but not using full prior
%GlbAph = cxpy*A0h;
%=================================================
% Computing the final covariance matrix (S1,...,Sm) for the posterior of A0,
% with the data, and final Gb=(G1,...,Gm) for A+ if asymmetric prior or for
% B if symmetric prior for A+
%=================================================
%
H0invmulti=zeros(nvar,nvar,nvar); % inv(H0) for different equations under asymmetric prior
Hpinvmulti=zeros(ncoef,ncoef,nvar); % inv(H+) for different equations under asymmetric prior
for i = 1:nvar
stri = find(idmat0(:,i));
% CAS change 9/24/96, to avoid slim chance of an exact zero in x vector
% at some point during an optimization.
%strm = length(stri); % TZ, 11/27/97, no use any more
%A0hb = A0h(stri,i)-A0b(stri,i);
% ** set up the conditional prior variance sg0bi and sgpbi.
% sg0bd = zeros(stri,1); Commented out by CAS, 9/24/96. Looks like this
% meant to have strm where it has stri, and in any case it is "overwritten" below.
%------------------------------
% Introduce prior information on which variables "belong" in various equations.
% In this first trial, we just introduce this information here, in a model-specific way.
% Eventually this info has to be passed parametricly. In our first shot, we just damp down
% all coefficients except those on the diagonal.
factor0=idmat0(:,i);
sg0bd = sg0bida; % added by TZ, 2/26/98. I think at each equation, sg0bd must
% be refreshed. Note, this only works for the prior variance Sg(i)
% of a0(i) being diagonal. If the prior variance Sg(i) is not
% diagonal, we have to work on inv(Sg(i)) or sg0bdi directly.
sg0bd(stri) = sg0bida(stri).*factor0(stri);
sg0bdi = 1./sg0bd;
%
factor1=idmatpp(1:nvar,i);
sg1bd = sgpbida(1:nvar).*factor1;
sg1bdi = 1./sg1bd;
%
if lags>1
factorpp=idmatpp(nvar+1:ncoef-1,i);
sgpp_cbd = sgppbd(1:ncoef-nvar-1) .* factorpp;
sgpp_cbdi = 1./sgpp_cbd;
end
% ** set up the unconditional prior variance on A0i and A+i
%XX = zeros(nvar,strm);
%XX(stri,:) = eye(strm); % XX in Gelman, etel, on p479
% Commented out by TZ, 11/27/97. Streamline. No need for these any more.
% * final conditional prior variance on A+i give that on A0i, and
% * unconditional variance on A0+
H0td = diag(sg0bd); % unconditional
% H_~: td: tilde for ~
% ** inverse and chol decomp
H0tdi = diag(sg0bdi);
H0invmulti(:,:,i)=H0tdi;
%
Hptd(1:nvar,1:nvar)=diag(sg1bd);
Hptdi(1:nvar,1:nvar)=diag(sg1bdi);
if lags>1
Hptd(nvar+1:ncoef-1,nvar+1:ncoef-1)=diag(sgpp_cbd);
Hptdi(nvar+1:ncoef-1,nvar+1:ncoef-1)=diag(sgpp_cbdi);
% condtional on A0i, H_plus_tilde
end
Hpinvmulti(:,:,i)=Hptdi;
% common terms
xxhp = xtx+Hptdi;
%Lxxhpc = chol(inv(xxhp))'; % lower triangular
xxhpc = chol(xxhp); % upper triangular but its transpose is lower triagular Choleski
%A0hbH = A0hb'*H0tdi;
%====== The following two lines seem incorrect. The third line is supposed to correc the mistake. May 2003.
% H1p_1 = zeros(ncoef,nvar);
% H1p_1(1:nvar,:) = Hptdi(1:nvar,1:nvar);
H1p_1 = Hptdi(:,1:nvar);
%%Hm = (cyx+H1p_1')*(xxhp\(cxy+H1p_1));
Hm1 = (cyx+H1p_1')/xxhp; % if symmetric prior, Bh=Hm1' -- reduced form k-by-m.
Gb{i} = Hm1'; % k-by-m, where k--ncoef, m--nvar.
% If asymmetric prior, Gb is used to compute A+ where A+(i) = Gb(i)*a0(i)
% where a0(i) is m-by-1 for the ith column of A0 or the ith equation.
%Hm2 = cxy+H1p_1;
Hm = Hm1*(cxy+H1p_1);
%GlbAph(i,:) = A0h(stri,i)'*XX'*Hm1; % alpha_plus_*_transpose
%%alpMpyh = A0h(stri,i)'*XX'*(yty+Hptdi(1:nvar,1:nvar)-Hm)*XX;
%Hss = XX'*(yty+Hptdi(1:nvar,1:nvar)-Hm)*XX;
Hss = yty+Hptdi(1:nvar,1:nvar)-Hm;
Sbd{i} = (H0tdi+Hss)./fss; % m-by-m, where m--nvar. If asymmetric prior, Scd is
% usde to form diag(Sbd{1}, ..., Sbd{m}) for a0 or vec(A0) in the
% posterior of A0. Note, "bd" stands for block diagonal and divided by
% "fss" already to make it compatible with SpH used in "a0lhfun" and make it
% it easier according to the notations by Waggoner and Zha
end
%%=========================================
%% check if there is asymmetric prior on both A+ and A0
%%=========================================
%
spindx=1; % A+ index for asymmetric prior
s0indx=1; % A0 index for asymmetric prior
for i=2:nvar
diffGb = Gb{i}-Gb{i-1};
diffSbd = Sbd{i}-Sbd{i-1};
if ~any(any(diffGb))
spindx=spindx+1;
end
if ~any(any(diffSbd))
s0indx=s0indx+1;
end
end
%
if (spindx==nvar)
Bh = Gb{1}; % reduced-form parameter. Note: does not depend on A0
else
Bh = NaN;
end
%
if (s0indx==nvar)
SpH = (H0tdi+Hss)/fss; % the final S in the exponential part of p(A0|y)
% divided by nobs in order to make Choleski decomp without optimization
% or in the form conformable to Waggoner and Zha
else
SpH=NaN;
end
%----------------------------------------------
%
% ***
% *** Form the inverse of covarinace to draw from t- or Gaussian distribution
% ***
%SpHs = SpH*fss; % for the Wishart draw
%SpHsc = chol(SpHs); % upper triangular where Sphsc' is
% % lower triangular Choleski, for Wishart draw
%SpHsic = chol(inv(SpHs))'; % inverse Choleski decomposition -- lower triangular
%A0hin = chol(SpH); % upper triangular, inverse of A0h, each column
% corresponds to an equation.
%@@@ The following can be used for other purposes such as forecasting
%
%swish = A0hin'; % each row corresponds to an equation
%A0h = inv(A0hin); % each column corresponds to an equation
%xa0 = A0h(a0indx);
%%*** form Bh (ncoef*nvar)
%Aplus = Hm1t*A0h; % estimate of Aplus -- the same as Astrar
%Bhp = Hm1t;
|