File: approximation.cweb

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (421 lines) | stat: -rw-r--r-- 14,237 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
@q $Id: approximation.cweb 2344 2009-02-09 20:36:08Z michel $ @>
@q Copyright 2005, Ondra Kamenik @>

@ Start of {\tt approximation.cpp} file.

@c
#include "kord_exception.h"
#include "approximation.h"
#include "first_order.h"
#include "korder_stoch.h"

@<|ZAuxContainer| constructor code@>;
@<|ZAuxContainer::getType| code@>;
@<|Approximation| constructor code@>;
@<|Approximation| destructor code@>;
@<|Approximation::getFoldDecisionRule| code@>;
@<|Approximation::getUnfoldDecisionRule| code@>;
@<|Approximation::approxAtSteady| code@>;
@<|Approximation::walkStochSteady| code@>;
@<|Approximation::saveRuleDerivs| code@>;
@<|Approximation::calcStochShift| code@>;
@<|Approximation::check| code@>;
@<|Approximation::calcYCov| code@>;

@ 
@<|ZAuxContainer| constructor code@>=
ZAuxContainer::ZAuxContainer(const _Ctype* gss, int ngss, int ng, int ny, int nu)
	: StackContainer<FGSTensor>(4,1)
{
	stack_sizes[0] = ngss; stack_sizes[1] = ng;
	stack_sizes[2] = ny; stack_sizes[3] = nu;
	conts[0] = gss;
	calculateOffsets();
}


@ The |getType| method corresponds to
$f(g^{**}(y^*,u',\sigma),0,0,0)$. For the first argument we return
|matrix|, for other three we return |zero|.

@<|ZAuxContainer::getType| code@>=
ZAuxContainer::itype ZAuxContainer::getType(int i, const Symmetry& s) const
{
	if (i == 0)
		if (s[2] > 0)
			return zero;
		else
			return matrix;
	return zero;
}


@ 
@<|Approximation| constructor code@>=
Approximation::Approximation(DynamicModel& m, Journal& j, int ns, bool dr_centr, double qz_crit)
	: model(m), journal(j), rule_ders(NULL), rule_ders_ss(NULL), fdr(NULL), udr(NULL),
	  ypart(model.nstat(), model.npred(), model.nboth(), model.nforw()),
	  mom(UNormalMoments(model.order(), model.getVcov())), nvs(4), steps(ns),
	  dr_centralize(dr_centr), qz_criterium(qz_crit), ss(ypart.ny(), steps+1)
{
	nvs[0] = ypart.nys(); nvs[1] = model.nexog();
	nvs[2] = model.nexog(); nvs[3] = 1;

	ss.nans();
}

@ 
@<|Approximation| destructor code@>=
Approximation::~Approximation()
{
	if (rule_ders_ss) delete rule_ders_ss;
	if (rule_ders) delete rule_ders;
	if (fdr) delete fdr;
	if (udr) delete udr;
}

@ This just returns |fdr| with a check that it is created.
@<|Approximation::getFoldDecisionRule| code@>=
const FoldDecisionRule& Approximation::getFoldDecisionRule() const
{
	KORD_RAISE_IF(fdr == NULL,
				  "Folded decision rule has not been created in Approximation::getFoldDecisionRule");
	return *fdr;
}


@ This just returns |udr| with a check that it is created.
@<|Approximation::getUnfoldDecisionRule| code@>=
const UnfoldDecisionRule& Approximation::getUnfoldDecisionRule() const
{
	KORD_RAISE_IF(udr == NULL,
				  "Unfolded decision rule has not been created in Approximation::getUnfoldDecisionRule");
	return *udr;
}


@ This methods assumes that the deterministic steady state is
|model.getSteady()|. It makes an approximation about it and stores the
derivatives to |rule_ders| and |rule_ders_ss|. Also it runs a |check|
for $\sigma=0$.

@<|Approximation::approxAtSteady| code@>=
void Approximation::approxAtSteady()
{
	model.calcDerivativesAtSteady();
	FirstOrder fo(model.nstat(), model.npred(), model.nboth(), model.nforw(),
				  model.nexog(), *(model.getModelDerivatives().get(Symmetry(1))),
				  journal, qz_criterium);
	KORD_RAISE_IF_X(! fo.isStable(),
					"The model is not Blanchard-Kahn stable",
					KORD_MD_NOT_STABLE);

	if (model.order() >= 2) {
		KOrder korder(model.nstat(), model.npred(), model.nboth(), model.nforw(),
					  model.getModelDerivatives(), fo.getGy(), fo.getGu(),
					  model.getVcov(), journal);
		korder.switchToFolded();
		for (int k = 2; k <= model.order(); k++)
			korder.performStep<KOrder::fold>(k);
		
		saveRuleDerivs(korder.getFoldDers());
	} else {
		FirstOrderDerivs<KOrder::fold> fo_ders(fo);
		saveRuleDerivs(fo_ders);
	}
	check(0.0);
}

@ This is the core routine of |Approximation| class.

First we solve for the approximation about the deterministic steady
state. Then we perform |steps| cycles toward the stochastic steady
state. Each cycle moves the size of shocks by |dsigma=1.0/steps|. At
the end of a cycle, we have |rule_ders| being the derivatives at
stochastic steady state for $\sigma=sigma\_so\_far+dsigma$ and
|model.getSteady()| being the steady state.

If the number of |steps| is zero, the decision rule |dr| at the bottom
is created from derivatives about deterministic steady state, with
size of $\sigma=1$. Otherwise, the |dr| is created from the
approximation about stochastic steady state with $\sigma=0$.

Within each cycle, we first make a backup of the last steady (from
initialization or from a previous cycle), then we calculate the fix
point of the last rule with $\sigma=dsigma$. This becomes a new steady
state at the $\sigma=sigma\_so\_far+dsigma$. We calculate expectations
of $g^{**}(y,\sigma\eta_{t+1},\sigma$ expressed as a Taylor expansion
around the new $\sigma$ and the new steady state. Then we solve for
the decision rule with explicit $g^{**}$ at $t+1$ and save the rule.

After we reached $\sigma=1$, the decision rule is formed.

The biproduct of this method is the matrix |ss|, whose columns are
steady states for subsequent $\sigma$s. The first column is the
deterministic steady state, the last column is the stochastic steady
state for a full size of shocks ($\sigma=1$). There are |steps+1|
columns.

@<|Approximation::walkStochSteady| code@>=
void Approximation::walkStochSteady()
{
	@<initial approximation at deterministic steady@>;
	double sigma_so_far = 0.0;
	double dsigma = (steps == 0)? 0.0 : 1.0/steps;
	for (int i = 1; i <= steps; i++) {
		JournalRecordPair pa(journal);
		pa << "Approximation about stochastic steady for sigma=" << sigma_so_far+dsigma << endrec;

		Vector last_steady((const Vector&)model.getSteady());

		@<calculate fix-point of the last rule for |dsigma|@>;
		@<calculate |hh| as expectations of the last $g^{**}$@>;
		@<form |KOrderStoch|, solve and save@>;

		check(sigma_so_far+dsigma);
		sigma_so_far += dsigma;
	}

	@<construct the resulting decision rules@>;
}

@ Here we solve for the deterministic steady state, calculate
approximation at the deterministic steady and save the steady state
to |ss|.

@<initial approximation at deterministic steady@>=
	model.solveDeterministicSteady();
	approxAtSteady();
	Vector steady0(ss, 0);
	steady0 = (const Vector&)model.getSteady();

@ We form the |DRFixPoint| object from the last rule with
$\sigma=dsigma$. Then we save the steady state to |ss|. The new steady
is also put to |model.getSteady()|.

@<calculate fix-point of the last rule for |dsigma|@>=
	DRFixPoint<KOrder::fold> fp(*rule_ders, ypart, model.getSteady(), dsigma);
	bool converged = fp.calcFixPoint(DecisionRule::horner, model.getSteady());
	JournalRecord rec(journal);
	rec << "Fix point calcs: iter=" << fp.getNumIter() << ", newton_iter="
		<< fp.getNewtonTotalIter() << ", last_newton_iter=" << fp.getNewtonLastIter() << ".";
	if (converged)
		rec << " Converged." << endrec;
	else {
		rec << " Not converged!!" << endrec;
		KORD_RAISE_X("Fix point calculation not converged", KORD_FP_NOT_CONV);
	}
	Vector steadyi(ss, i);
	steadyi = (const Vector&)model.getSteady();

@ We form the steady state shift |dy|, which is the new steady state
minus the old steady state. Then we create |StochForwardDerivs|
object, which calculates the derivatives of $g^{**}$ expectations at
new sigma and new steady.

@<calculate |hh| as expectations of the last $g^{**}$@>=
	Vector dy((const Vector&)model.getSteady());
	dy.add(-1.0, last_steady);

	StochForwardDerivs<KOrder::fold> hh(ypart, model.nexog(), *rule_ders_ss, mom, dy,
										dsigma, sigma_so_far);
	JournalRecord rec1(journal);
	rec1 << "Calculation of g** expectations done" << endrec;


@ We calculate derivatives of the model at the new steady, form
|KOrderStoch| object and solve, and save the rule.

@<form |KOrderStoch|, solve and save@>=
	model.calcDerivativesAtSteady();
	KOrderStoch korder_stoch(ypart, model.nexog(), model.getModelDerivatives(),
							 hh, journal);
	for (int d = 1; d <= model.order(); d++) {
		korder_stoch.performStep<KOrder::fold>(d);
	}
	saveRuleDerivs(korder_stoch.getFoldDers());


@ 
@<construct the resulting decision rules@>=
	if (fdr) {
		delete fdr;
		fdr = NULL;
	}
	if (udr) {
		delete udr;
		udr = NULL;
	}

	fdr = new FoldDecisionRule(*rule_ders, ypart, model.nexog(),
							   model.getSteady(), 1.0-sigma_so_far);
	if (steps == 0 && dr_centralize) {
		@<centralize decision rule for zero steps@>;
	}


@ 
@<centralize decision rule for zero steps@>=
	DRFixPoint<KOrder::fold> fp(*rule_ders, ypart, model.getSteady(), 1.0);
	bool converged = fp.calcFixPoint(DecisionRule::horner, model.getSteady());
	JournalRecord rec(journal);
	rec << "Fix point calcs: iter=" << fp.getNumIter() << ", newton_iter="
		<< fp.getNewtonTotalIter() << ", last_newton_iter=" << fp.getNewtonLastIter() << ".";
	if (converged)
		rec << " Converged." << endrec;
	else {
		rec << " Not converged!!" << endrec;
		KORD_RAISE_X("Fix point calculation not converged", KORD_FP_NOT_CONV);
	}

	{
		JournalRecordPair recp(journal);
		recp << "Centralizing about fix-point." << endrec;
		FoldDecisionRule* dr_backup = fdr;
		fdr = new FoldDecisionRule(*dr_backup, model.getSteady());
		delete dr_backup;
	}


@ Here we simply make a new hardcopy of the given rule |rule_ders|,
and make a new container of in-place subtensors of the derivatives
corresponding to forward looking variables. The given container comes
from a temporary object and will be destroyed.
 
@<|Approximation::saveRuleDerivs| code@>=
void Approximation::saveRuleDerivs(const FGSContainer& g)
{
	if (rule_ders) {
		delete rule_ders;
		delete rule_ders_ss;
	}
	rule_ders = new FGSContainer(g);
	rule_ders_ss = new FGSContainer(4);
	for (FGSContainer::iterator run = (*rule_ders).begin(); run != (*rule_ders).end(); ++run) {
		FGSTensor* ten = new FGSTensor(ypart.nstat+ypart.npred, ypart.nyss(), *((*run).second));
		rule_ders_ss->insert(ten);
	}
}

@ This method calculates a shift of the system equations due to
integrating shocks at a given $\sigma$ and current steady state. More precisely, if
$$F(y,u,u',\sigma)=f(g^{**}(g^*(y,u,\sigma),u',\sigma),g(y,u,\sigma),y,u)$$
then the method returns a vector
$$\sum_{d=1}{1\over d!}\sigma^d\left[F_{u'^d}\right]_{\alpha_1\ldots\alpha_d}
\Sigma^{\alpha_1\ldots\alpha_d}$$

For a calculation of $\left[F_{u'^d}\right]$ we use |@<|ZAuxContainer|
class declaration@>|, so we create its object. In each cycle we
calculate $\left[F_{u'^d}\right]$@q'@>, and then multiply with the shocks,
and add the ${\sigma^d\over d!}$ multiple to the result.

@<|Approximation::calcStochShift| code@>=
void Approximation::calcStochShift(Vector& out, double at_sigma) const
{
	KORD_RAISE_IF(out.length() != ypart.ny(),
				  "Wrong length of output vector for Approximation::calcStochShift");
	out.zeros();

	ZAuxContainer zaux(rule_ders_ss, ypart.nyss(), ypart.ny(),
					   ypart.nys(), model.nexog());

	int dfac = 1;
	for (int d = 1; d <= rule_ders->getMaxDim(); d++, dfac*=d) {
		if ( KOrder::is_even(d)) {
			Symmetry sym(0,d,0,0);
			@<calculate $F_{u'^d}$ via |ZAuxContainer|@>;@q'@>
			@<multiply with shocks and add to result@>;
		}
	}
}

@ 
@<calculate $F_{u'^d}$ via |ZAuxContainer|@>=
	FGSTensor* ten = new FGSTensor(ypart.ny(), TensorDimens(sym, nvs));
	ten->zeros();
	for (int l = 1; l <= d; l++) {
		const FSSparseTensor* f = model.getModelDerivatives().get(Symmetry(l));
		zaux.multAndAdd(*f, *ten);
	}

@
@<multiply with shocks and add to result@>=
	FGSTensor* tmp = new FGSTensor(ypart.ny(), TensorDimens(Symmetry(0,0,0,0), nvs));
	tmp->zeros();
	ten->contractAndAdd(1, *tmp, *(mom.get(Symmetry(d))));

	out.add(pow(at_sigma,d)/dfac, tmp->getData());
	delete ten;
	delete tmp;


@ This method calculates and reports
$$f(\bar y)+\sum_{d=1}{1\over d!}\sigma^d\left[F_{u'^d}\right]_{\alpha_1\ldots\alpha_d}
\Sigma^{\alpha_1\ldots\alpha_d}$$
at $\bar y$, zero shocks and $\sigma$. This number should be zero.

We evaluate the error both at a given $\sigma$ and $\sigma=1.0$.

@<|Approximation::check| code@>=
void Approximation::check(double at_sigma) const
{
	Vector stoch_shift(ypart.ny());
	Vector system_resid(ypart.ny());
	Vector xx(model.nexog());
	xx.zeros();
	model.evaluateSystem(system_resid, model.getSteady(), xx);
	calcStochShift(stoch_shift, at_sigma);
	stoch_shift.add(1.0, system_resid);
	JournalRecord rec1(journal);
	rec1 << "Error of current approximation for shocks at sigma " << at_sigma
		 << " is " << stoch_shift.getMax() << endrec;
	calcStochShift(stoch_shift, 1.0);
	stoch_shift.add(1.0, system_resid);
	JournalRecord rec2(journal);
	rec2 << "Error of current approximation for full shocks is " << stoch_shift.getMax() << endrec;
}

@ The method returns unconditional variance of endogenous variables
based on the first order. The first order approximation looks like
$$\hat y_t=g_{y^*}\hat y^*_{t-1}+g_uu_t$$
where $\hat y$ denotes a deviation from the steady state. It can be written as
$$\hat y_t=\left[0\, g_{y^*}\, 0\right]\hat y_{t-1}+g_uu_t$$
which yields unconditional covariance $V$ for which
$$V=GVG^T + g_u\Sigma g_u^T,$$
where $G=[0\, g_{y^*}\, 0]$ and $\Sigma$ is the covariance of the shocks. 

For solving this Lyapunov equation we use the Sylvester module, which
solves equation of the type
$$AX+BX(C\otimes\cdots\otimes C)=D$$
So we invoke the Sylvester solver for the first dimension with $A=I$,
$B=-G$, $C=G^T$ and $D=g_u\Sigma g_u^T$.


@<|Approximation::calcYCov| code@>=
TwoDMatrix* Approximation::calcYCov() const
{
	const TwoDMatrix& gy = *(rule_ders->get(Symmetry(1,0,0,0)));
	const TwoDMatrix& gu = *(rule_ders->get(Symmetry(0,1,0,0)));
	TwoDMatrix G(model.numeq(), model.numeq());
	G.zeros();
	G.place(gy, 0, model.nstat());
	TwoDMatrix B((const TwoDMatrix&)G);
	B.mult(-1.0);
	TwoDMatrix C(G, "transpose");
	TwoDMatrix A(model.numeq(), model.numeq());
	A.zeros();
	for (int i = 0; i < model.numeq(); i++)
		A.get( i,i)	= 1.0;

	TwoDMatrix guSigma(gu, model.getVcov());
	TwoDMatrix guTrans(gu, "transpose");
	TwoDMatrix* X = new TwoDMatrix(guSigma, guTrans);
	
	GeneralSylvester gs(1, model.numeq(), model.numeq(), 0,
						A.base(), B.base(), C.base(), X->base());
	gs.solve();

	return X;
}

@ End of {\tt approximation.cpp} file.