1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
@q $Id: approximation.cweb 2344 2009-02-09 20:36:08Z michel $ @>
@q Copyright 2005, Ondra Kamenik @>
@ Start of {\tt approximation.cpp} file.
@c
#include "kord_exception.h"
#include "approximation.h"
#include "first_order.h"
#include "korder_stoch.h"
@<|ZAuxContainer| constructor code@>;
@<|ZAuxContainer::getType| code@>;
@<|Approximation| constructor code@>;
@<|Approximation| destructor code@>;
@<|Approximation::getFoldDecisionRule| code@>;
@<|Approximation::getUnfoldDecisionRule| code@>;
@<|Approximation::approxAtSteady| code@>;
@<|Approximation::walkStochSteady| code@>;
@<|Approximation::saveRuleDerivs| code@>;
@<|Approximation::calcStochShift| code@>;
@<|Approximation::check| code@>;
@<|Approximation::calcYCov| code@>;
@
@<|ZAuxContainer| constructor code@>=
ZAuxContainer::ZAuxContainer(const _Ctype* gss, int ngss, int ng, int ny, int nu)
: StackContainer<FGSTensor>(4,1)
{
stack_sizes[0] = ngss; stack_sizes[1] = ng;
stack_sizes[2] = ny; stack_sizes[3] = nu;
conts[0] = gss;
calculateOffsets();
}
@ The |getType| method corresponds to
$f(g^{**}(y^*,u',\sigma),0,0,0)$. For the first argument we return
|matrix|, for other three we return |zero|.
@<|ZAuxContainer::getType| code@>=
ZAuxContainer::itype ZAuxContainer::getType(int i, const Symmetry& s) const
{
if (i == 0)
if (s[2] > 0)
return zero;
else
return matrix;
return zero;
}
@
@<|Approximation| constructor code@>=
Approximation::Approximation(DynamicModel& m, Journal& j, int ns, bool dr_centr, double qz_crit)
: model(m), journal(j), rule_ders(NULL), rule_ders_ss(NULL), fdr(NULL), udr(NULL),
ypart(model.nstat(), model.npred(), model.nboth(), model.nforw()),
mom(UNormalMoments(model.order(), model.getVcov())), nvs(4), steps(ns),
dr_centralize(dr_centr), qz_criterium(qz_crit), ss(ypart.ny(), steps+1)
{
nvs[0] = ypart.nys(); nvs[1] = model.nexog();
nvs[2] = model.nexog(); nvs[3] = 1;
ss.nans();
}
@
@<|Approximation| destructor code@>=
Approximation::~Approximation()
{
if (rule_ders_ss) delete rule_ders_ss;
if (rule_ders) delete rule_ders;
if (fdr) delete fdr;
if (udr) delete udr;
}
@ This just returns |fdr| with a check that it is created.
@<|Approximation::getFoldDecisionRule| code@>=
const FoldDecisionRule& Approximation::getFoldDecisionRule() const
{
KORD_RAISE_IF(fdr == NULL,
"Folded decision rule has not been created in Approximation::getFoldDecisionRule");
return *fdr;
}
@ This just returns |udr| with a check that it is created.
@<|Approximation::getUnfoldDecisionRule| code@>=
const UnfoldDecisionRule& Approximation::getUnfoldDecisionRule() const
{
KORD_RAISE_IF(udr == NULL,
"Unfolded decision rule has not been created in Approximation::getUnfoldDecisionRule");
return *udr;
}
@ This methods assumes that the deterministic steady state is
|model.getSteady()|. It makes an approximation about it and stores the
derivatives to |rule_ders| and |rule_ders_ss|. Also it runs a |check|
for $\sigma=0$.
@<|Approximation::approxAtSteady| code@>=
void Approximation::approxAtSteady()
{
model.calcDerivativesAtSteady();
FirstOrder fo(model.nstat(), model.npred(), model.nboth(), model.nforw(),
model.nexog(), *(model.getModelDerivatives().get(Symmetry(1))),
journal, qz_criterium);
KORD_RAISE_IF_X(! fo.isStable(),
"The model is not Blanchard-Kahn stable",
KORD_MD_NOT_STABLE);
if (model.order() >= 2) {
KOrder korder(model.nstat(), model.npred(), model.nboth(), model.nforw(),
model.getModelDerivatives(), fo.getGy(), fo.getGu(),
model.getVcov(), journal);
korder.switchToFolded();
for (int k = 2; k <= model.order(); k++)
korder.performStep<KOrder::fold>(k);
saveRuleDerivs(korder.getFoldDers());
} else {
FirstOrderDerivs<KOrder::fold> fo_ders(fo);
saveRuleDerivs(fo_ders);
}
check(0.0);
}
@ This is the core routine of |Approximation| class.
First we solve for the approximation about the deterministic steady
state. Then we perform |steps| cycles toward the stochastic steady
state. Each cycle moves the size of shocks by |dsigma=1.0/steps|. At
the end of a cycle, we have |rule_ders| being the derivatives at
stochastic steady state for $\sigma=sigma\_so\_far+dsigma$ and
|model.getSteady()| being the steady state.
If the number of |steps| is zero, the decision rule |dr| at the bottom
is created from derivatives about deterministic steady state, with
size of $\sigma=1$. Otherwise, the |dr| is created from the
approximation about stochastic steady state with $\sigma=0$.
Within each cycle, we first make a backup of the last steady (from
initialization or from a previous cycle), then we calculate the fix
point of the last rule with $\sigma=dsigma$. This becomes a new steady
state at the $\sigma=sigma\_so\_far+dsigma$. We calculate expectations
of $g^{**}(y,\sigma\eta_{t+1},\sigma$ expressed as a Taylor expansion
around the new $\sigma$ and the new steady state. Then we solve for
the decision rule with explicit $g^{**}$ at $t+1$ and save the rule.
After we reached $\sigma=1$, the decision rule is formed.
The biproduct of this method is the matrix |ss|, whose columns are
steady states for subsequent $\sigma$s. The first column is the
deterministic steady state, the last column is the stochastic steady
state for a full size of shocks ($\sigma=1$). There are |steps+1|
columns.
@<|Approximation::walkStochSteady| code@>=
void Approximation::walkStochSteady()
{
@<initial approximation at deterministic steady@>;
double sigma_so_far = 0.0;
double dsigma = (steps == 0)? 0.0 : 1.0/steps;
for (int i = 1; i <= steps; i++) {
JournalRecordPair pa(journal);
pa << "Approximation about stochastic steady for sigma=" << sigma_so_far+dsigma << endrec;
Vector last_steady((const Vector&)model.getSteady());
@<calculate fix-point of the last rule for |dsigma|@>;
@<calculate |hh| as expectations of the last $g^{**}$@>;
@<form |KOrderStoch|, solve and save@>;
check(sigma_so_far+dsigma);
sigma_so_far += dsigma;
}
@<construct the resulting decision rules@>;
}
@ Here we solve for the deterministic steady state, calculate
approximation at the deterministic steady and save the steady state
to |ss|.
@<initial approximation at deterministic steady@>=
model.solveDeterministicSteady();
approxAtSteady();
Vector steady0(ss, 0);
steady0 = (const Vector&)model.getSteady();
@ We form the |DRFixPoint| object from the last rule with
$\sigma=dsigma$. Then we save the steady state to |ss|. The new steady
is also put to |model.getSteady()|.
@<calculate fix-point of the last rule for |dsigma|@>=
DRFixPoint<KOrder::fold> fp(*rule_ders, ypart, model.getSteady(), dsigma);
bool converged = fp.calcFixPoint(DecisionRule::horner, model.getSteady());
JournalRecord rec(journal);
rec << "Fix point calcs: iter=" << fp.getNumIter() << ", newton_iter="
<< fp.getNewtonTotalIter() << ", last_newton_iter=" << fp.getNewtonLastIter() << ".";
if (converged)
rec << " Converged." << endrec;
else {
rec << " Not converged!!" << endrec;
KORD_RAISE_X("Fix point calculation not converged", KORD_FP_NOT_CONV);
}
Vector steadyi(ss, i);
steadyi = (const Vector&)model.getSteady();
@ We form the steady state shift |dy|, which is the new steady state
minus the old steady state. Then we create |StochForwardDerivs|
object, which calculates the derivatives of $g^{**}$ expectations at
new sigma and new steady.
@<calculate |hh| as expectations of the last $g^{**}$@>=
Vector dy((const Vector&)model.getSteady());
dy.add(-1.0, last_steady);
StochForwardDerivs<KOrder::fold> hh(ypart, model.nexog(), *rule_ders_ss, mom, dy,
dsigma, sigma_so_far);
JournalRecord rec1(journal);
rec1 << "Calculation of g** expectations done" << endrec;
@ We calculate derivatives of the model at the new steady, form
|KOrderStoch| object and solve, and save the rule.
@<form |KOrderStoch|, solve and save@>=
model.calcDerivativesAtSteady();
KOrderStoch korder_stoch(ypart, model.nexog(), model.getModelDerivatives(),
hh, journal);
for (int d = 1; d <= model.order(); d++) {
korder_stoch.performStep<KOrder::fold>(d);
}
saveRuleDerivs(korder_stoch.getFoldDers());
@
@<construct the resulting decision rules@>=
if (fdr) {
delete fdr;
fdr = NULL;
}
if (udr) {
delete udr;
udr = NULL;
}
fdr = new FoldDecisionRule(*rule_ders, ypart, model.nexog(),
model.getSteady(), 1.0-sigma_so_far);
if (steps == 0 && dr_centralize) {
@<centralize decision rule for zero steps@>;
}
@
@<centralize decision rule for zero steps@>=
DRFixPoint<KOrder::fold> fp(*rule_ders, ypart, model.getSteady(), 1.0);
bool converged = fp.calcFixPoint(DecisionRule::horner, model.getSteady());
JournalRecord rec(journal);
rec << "Fix point calcs: iter=" << fp.getNumIter() << ", newton_iter="
<< fp.getNewtonTotalIter() << ", last_newton_iter=" << fp.getNewtonLastIter() << ".";
if (converged)
rec << " Converged." << endrec;
else {
rec << " Not converged!!" << endrec;
KORD_RAISE_X("Fix point calculation not converged", KORD_FP_NOT_CONV);
}
{
JournalRecordPair recp(journal);
recp << "Centralizing about fix-point." << endrec;
FoldDecisionRule* dr_backup = fdr;
fdr = new FoldDecisionRule(*dr_backup, model.getSteady());
delete dr_backup;
}
@ Here we simply make a new hardcopy of the given rule |rule_ders|,
and make a new container of in-place subtensors of the derivatives
corresponding to forward looking variables. The given container comes
from a temporary object and will be destroyed.
@<|Approximation::saveRuleDerivs| code@>=
void Approximation::saveRuleDerivs(const FGSContainer& g)
{
if (rule_ders) {
delete rule_ders;
delete rule_ders_ss;
}
rule_ders = new FGSContainer(g);
rule_ders_ss = new FGSContainer(4);
for (FGSContainer::iterator run = (*rule_ders).begin(); run != (*rule_ders).end(); ++run) {
FGSTensor* ten = new FGSTensor(ypart.nstat+ypart.npred, ypart.nyss(), *((*run).second));
rule_ders_ss->insert(ten);
}
}
@ This method calculates a shift of the system equations due to
integrating shocks at a given $\sigma$ and current steady state. More precisely, if
$$F(y,u,u',\sigma)=f(g^{**}(g^*(y,u,\sigma),u',\sigma),g(y,u,\sigma),y,u)$$
then the method returns a vector
$$\sum_{d=1}{1\over d!}\sigma^d\left[F_{u'^d}\right]_{\alpha_1\ldots\alpha_d}
\Sigma^{\alpha_1\ldots\alpha_d}$$
For a calculation of $\left[F_{u'^d}\right]$ we use |@<|ZAuxContainer|
class declaration@>|, so we create its object. In each cycle we
calculate $\left[F_{u'^d}\right]$@q'@>, and then multiply with the shocks,
and add the ${\sigma^d\over d!}$ multiple to the result.
@<|Approximation::calcStochShift| code@>=
void Approximation::calcStochShift(Vector& out, double at_sigma) const
{
KORD_RAISE_IF(out.length() != ypart.ny(),
"Wrong length of output vector for Approximation::calcStochShift");
out.zeros();
ZAuxContainer zaux(rule_ders_ss, ypart.nyss(), ypart.ny(),
ypart.nys(), model.nexog());
int dfac = 1;
for (int d = 1; d <= rule_ders->getMaxDim(); d++, dfac*=d) {
if ( KOrder::is_even(d)) {
Symmetry sym(0,d,0,0);
@<calculate $F_{u'^d}$ via |ZAuxContainer|@>;@q'@>
@<multiply with shocks and add to result@>;
}
}
}
@
@<calculate $F_{u'^d}$ via |ZAuxContainer|@>=
FGSTensor* ten = new FGSTensor(ypart.ny(), TensorDimens(sym, nvs));
ten->zeros();
for (int l = 1; l <= d; l++) {
const FSSparseTensor* f = model.getModelDerivatives().get(Symmetry(l));
zaux.multAndAdd(*f, *ten);
}
@
@<multiply with shocks and add to result@>=
FGSTensor* tmp = new FGSTensor(ypart.ny(), TensorDimens(Symmetry(0,0,0,0), nvs));
tmp->zeros();
ten->contractAndAdd(1, *tmp, *(mom.get(Symmetry(d))));
out.add(pow(at_sigma,d)/dfac, tmp->getData());
delete ten;
delete tmp;
@ This method calculates and reports
$$f(\bar y)+\sum_{d=1}{1\over d!}\sigma^d\left[F_{u'^d}\right]_{\alpha_1\ldots\alpha_d}
\Sigma^{\alpha_1\ldots\alpha_d}$$
at $\bar y$, zero shocks and $\sigma$. This number should be zero.
We evaluate the error both at a given $\sigma$ and $\sigma=1.0$.
@<|Approximation::check| code@>=
void Approximation::check(double at_sigma) const
{
Vector stoch_shift(ypart.ny());
Vector system_resid(ypart.ny());
Vector xx(model.nexog());
xx.zeros();
model.evaluateSystem(system_resid, model.getSteady(), xx);
calcStochShift(stoch_shift, at_sigma);
stoch_shift.add(1.0, system_resid);
JournalRecord rec1(journal);
rec1 << "Error of current approximation for shocks at sigma " << at_sigma
<< " is " << stoch_shift.getMax() << endrec;
calcStochShift(stoch_shift, 1.0);
stoch_shift.add(1.0, system_resid);
JournalRecord rec2(journal);
rec2 << "Error of current approximation for full shocks is " << stoch_shift.getMax() << endrec;
}
@ The method returns unconditional variance of endogenous variables
based on the first order. The first order approximation looks like
$$\hat y_t=g_{y^*}\hat y^*_{t-1}+g_uu_t$$
where $\hat y$ denotes a deviation from the steady state. It can be written as
$$\hat y_t=\left[0\, g_{y^*}\, 0\right]\hat y_{t-1}+g_uu_t$$
which yields unconditional covariance $V$ for which
$$V=GVG^T + g_u\Sigma g_u^T,$$
where $G=[0\, g_{y^*}\, 0]$ and $\Sigma$ is the covariance of the shocks.
For solving this Lyapunov equation we use the Sylvester module, which
solves equation of the type
$$AX+BX(C\otimes\cdots\otimes C)=D$$
So we invoke the Sylvester solver for the first dimension with $A=I$,
$B=-G$, $C=G^T$ and $D=g_u\Sigma g_u^T$.
@<|Approximation::calcYCov| code@>=
TwoDMatrix* Approximation::calcYCov() const
{
const TwoDMatrix& gy = *(rule_ders->get(Symmetry(1,0,0,0)));
const TwoDMatrix& gu = *(rule_ders->get(Symmetry(0,1,0,0)));
TwoDMatrix G(model.numeq(), model.numeq());
G.zeros();
G.place(gy, 0, model.nstat());
TwoDMatrix B((const TwoDMatrix&)G);
B.mult(-1.0);
TwoDMatrix C(G, "transpose");
TwoDMatrix A(model.numeq(), model.numeq());
A.zeros();
for (int i = 0; i < model.numeq(); i++)
A.get( i,i) = 1.0;
TwoDMatrix guSigma(gu, model.getVcov());
TwoDMatrix guTrans(gu, "transpose");
TwoDMatrix* X = new TwoDMatrix(guSigma, guTrans);
GeneralSylvester gs(1, model.numeq(), model.numeq(), 0,
A.base(), B.base(), C.base(), X->base());
gs.solve();
return X;
}
@ End of {\tt approximation.cpp} file.
|