File: first_order.cweb

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (310 lines) | stat: -rw-r--r-- 10,694 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
@q $Id: first_order.cweb 2351 2009-09-03 14:58:03Z kamenik $ @>
@q Copyright 2004, Ondra Kamenik @>

@ Start of {\tt first\_order.cpp} file.

@c

#include "kord_exception.h"
#include "first_order.h"

#include <dynlapack.h>

double qz_criterium = 1.000001;
@<|order_eigs| function code@>;
@<|FirstOrder::solve| code@>;
@<|FirstOrder::journalEigs| code@>;

@ This is a function which selects the eigenvalues pair used by
|dgges|. See documentation to DGGES for details. Here we want
to select (return true) the pairs for which $\alpha<\beta$.

@<|order_eigs| function code@>=
lapack_int order_eigs(const double* alphar, const double* alphai, const double* beta)
{
	return (*alphar * *alphar + *alphai * *alphai < *beta * *beta * qz_criterium * qz_criterium);
}


@ Here we solve the linear approximation. The result are the matrices
$g_{y^*}$ and $g_u$. The method solves the first derivatives of $g$ so
that the following equation would be true:
$$E_t[F(y^*_{t-1},u_t,u_{t+1},\sigma)] =
E_t[f(g^{**}(g^*(y_{t-1}^*,u_t,\sigma), u_{t+1}, \sigma), g(y_{t-1}^*,u_t,\sigma),
y^*_{t-1},u_t)]=0$$
where $f$ is a given system of equations.

It is known that $g_{y^*}$ is given by $F_{y^*}=0$, $g_u$ is given by
$F_u=0$, and $g_\sigma$ is zero. The only input to the method are the
derivatives |fd| of the system $f$, and partitioning of the vector $y$
(from object).

@<|FirstOrder::solve| code@>=
void FirstOrder::solve(const TwoDMatrix& fd)
{
	JournalRecordPair pa(journal);
	pa << "Recovering first order derivatives " << endrec;

	::qz_criterium = FirstOrder::qz_criterium;

	@<solve derivatives |gy|@>;
	@<solve derivatives |gu|@>;
	journalEigs();

	if (! gy.isFinite() || ! gu.isFinite()) {
		throw KordException(__FILE__, __LINE__,
						  "NaN or Inf asserted in first order derivatives in FirstOrder::solve");
	}
}

@ The derivatives $g_{y^*}$ are retrieved from the equation
$F_{y^*}=0$. The calculation proceeds as follows:

\orderedlist

\li For each variable appearing at both $t-1$ and $t-1$ we add a dummy
variable, so that the predetermined variables and forward looking would
be disjoint. This is, the matrix of the first derivatives of the
system written as:
$$\left[\matrix{f_{y^{**}_+}&f_{ys}&f_{yp}&f_{yb}&f_{yf}&f_{y^*_-}}\right],$$
where $f_{ys}$, $f_{yp}$, $f_{yb}$, and $f_{yf}$ are derivatives wrt
static, predetermined, both, forward looking at time $t$, is rewritten
to the matrix:
$$\left[
\matrix{f_{y^{**}_+}&f_{ys}&f_{yp}&f_{yb}&0&f_{yf}&f_{y^*_-}\cr
        0           &0     &0     &I   &-I&0    &0}
 \right],$$
where the second line has number of rows equal to the number of both variables.

\li Next, provided that forward looking and predetermined are
disjoint, the equation $F_{y^*}=0$ is written as:
$$\left[f_+{y^{**}_+}\right]\left[g_{y^*}^{**}\right]\left[g_{y^*}^*\right]
+\left[f_{ys}\right]\left[g^s_{y^*}\right]
+\left[f_{y^*}\right]\left[g^*_{y^*}\right]
+\left[f_{y^{**}}\right]\left[g^{**}_{y^*}\right]+\left[f_{y^*_-}\right]=0$$
This is rewritten as
$$\left[\matrix{f_{y^*}&0&f_{y^{**}_+}}\right]
\left[\matrix{I\cr g^s_{y^*}\cr g^{**}_{y^*}}\right]\left[g_{y^*}^*\right]+ 
\left[\matrix{f_{y^*_-}&f_{ys}&f_{y^{**}}}\right]
\left[\matrix{I\cr g^s_{y^*}\cr g^{**}_{y^*}}\right]=0
$$
Now, in the above equation, there are the auxiliary variables standing
for copies of both variables at time $t+1$. This equation is then
rewritten as:
$$
\left[\matrix{f_{yp}&f_{yb}&0&f_{y^{**}_+}\cr 0&I&0&0}\right]
\left[\matrix{I\cr g^s_{y^*}\cr g^{**}_{y^*}}\right]\left[g_{y^*}^*\right]+ 
\left[\matrix{f_{y^*_-}&f_{ys}&0&f_{yf}\cr 0&0&-I&0}\right]
\left[\matrix{I\cr g^s_{y^*}\cr g^{**}_{y^*}}\right]=0
$$
The two matrices are denoted as $D$ and $-E$, so the equation takes the form:
$$D\left[\matrix{I\cr g^s_{y^*}\cr g^{**}_{y^*}}\right]\left[g_{y^*}^*\right]=
E\left[\matrix{I\cr g^s_{y^*}\cr g^{**}_{y^*}}\right]$$

\li Next we solve the equation by Generalized Schur decomposition:
$$
\left[\matrix{T_{11}&T_{12}\cr 0&T_{22}}\right]
\left[\matrix{Z_{11}^T&Z_{21}^T\cr Z_{12}^T&Z_{22}^T}\right]
\left[\matrix{I\cr X}\right]\left[g_{y^*}^*\right]=
\left[\matrix{S_{11}&S_{12}\cr 0&S_{22}}\right]
\left[\matrix{Z_{11}^T&Z_{21}^T\cr Z_{12}^T&Z_{22}^T}\right]
\left[\matrix{I\cr X}\right]
$$
We reorder the eigenvalue pair so that $S_{ii}/T_{ii}$ with modulus
less than one would be in the left-upper part.

\li The Blanchard--Kahn stability argument implies that the pairs
with modulus less that one will be in and only in $S_{11}/T_{11}$.
The exploding paths will be then eliminated when
$$
\left[\matrix{Z_{11}^T&Z_{21}^T\cr Z_{12}^T&Z_{22}^T}\right]
\left[\matrix{I\cr X}\right]=
\left[\matrix{Y\cr 0}\right]
$$
From this we have, $Y=Z_{11}^{-1}$, and $X=Z_{21}Y$, or equivalently
$X=-Z_{22}^{-T}Z_{12}^T$.  From the equation, we get
$\left[g_{y^*}^*\right]=Y^{-1}T_{11}^{-1}S_{11}Y$, which is
$Z_{11}T_{11}^{-1}S_{11}Z_{11}^{-1}$.

\li We then copy the derivatives to storage |gy|. Note that the
derivatives of both variables are in $X$ and in
$\left[g_{y^*}^*\right]$, so we check whether the two submatrices are
the same. The difference is only numerical error.

\endorderedlist

@<solve derivatives |gy|@>=
	@<setup submatrices of |f|@>;
	@<form matrix $D$@>;
	@<form matrix $E$@>;
	@<solve generalized Schur@>;
	@<make submatrices of right space@>;
	@<calculate derivatives of static and forward@>;
	@<calculate derivatives of predetermined@>;
	@<copy derivatives to |gy|@>;
	@<check difference for derivatives of both@>;


@ Here we setup submatrices of the derivatives |fd|.
@<setup submatrices of |f|@>=
	int off = 0;
	ConstTwoDMatrix fyplus(fd, off, ypart.nyss());
	off += ypart.nyss();
	ConstTwoDMatrix fyszero(fd, off, ypart.nstat);
	off += ypart.nstat;
	ConstTwoDMatrix fypzero(fd, off, ypart.npred);
	off += ypart.npred;
	ConstTwoDMatrix fybzero(fd, off, ypart.nboth);
	off += ypart.nboth;
	ConstTwoDMatrix fyfzero(fd, off, ypart.nforw);
	off += ypart.nforw;
	ConstTwoDMatrix fymins(fd, off, ypart.nys());
	off += ypart.nys();
	ConstTwoDMatrix fuzero(fd, off, nu);
	off += nu;

@ 
@<form matrix $D$@>=
	lapack_int n = ypart.ny()+ypart.nboth;
	TwoDMatrix matD(n, n);
	matD.zeros();
	matD.place(fypzero, 0, 0);
	matD.place(fybzero, 0, ypart.npred);
	matD.place(fyplus, 0, ypart.nys()+ypart.nstat);
	for (int i = 0; i < ypart.nboth; i++)
		matD.get(ypart.ny()+i, ypart.npred+i) = 1.0;

@ 
@<form matrix $E$@>=
	TwoDMatrix matE(n, n);
	matE.zeros();
	matE.place(fymins, 0, 0);
	matE.place(fyszero, 0, ypart.nys());
	matE.place(fyfzero, 0, ypart.nys()+ypart.nstat+ypart.nboth);
	for (int i = 0; i < ypart.nboth; i++)
		matE.get(ypart.ny()+i, ypart.nys()+ypart.nstat+i) = -1.0;
	matE.mult(-1.0);

@ 
@<solve generalized Schur@>=
	TwoDMatrix vsl(n, n);
	TwoDMatrix vsr(n, n);
	lapack_int lwork = 100*n+16;
	Vector work(lwork);
	lapack_int *bwork = new lapack_int[n];
	lapack_int info;
	lapack_int sdim2 = sdim;
	dgges("N", "V", "S", order_eigs, &n, matE.getData().base(), &n,
				 matD.getData().base(), &n, &sdim2, alphar.base(), alphai.base(),
				 beta.base(), vsl.getData().base(), &n, vsr.getData().base(), &n,
				 work.base(), &lwork, bwork, &info);
        if(info){
            throw KordException(__FILE__,__LINE__,
                                "DGGES returns an error in FirstOrder::solve");
        }
	sdim = sdim2;
	bk_cond = (sdim == ypart.nys());
	delete[] bwork;


@ Here we setup submatrices of the matrix $Z$.
@<make submatrices of right space@>=
	ConstGeneralMatrix z11(vsr, 0, 0, ypart.nys(), ypart.nys());
	ConstGeneralMatrix z12(vsr, 0, ypart.nys(), ypart.nys(), n-ypart.nys());
	ConstGeneralMatrix z21(vsr, ypart.nys(), 0, n-ypart.nys(), ypart.nys());
	ConstGeneralMatrix z22(vsr, ypart.nys(), ypart.nys(), n-ypart.nys(), n-ypart.nys());
	
@ Here we calculate $X=-Z_{22}^{-T}Z_{12}^T$, where $X$ is |sfder| in the code.
@<calculate derivatives of static and forward@>=
	GeneralMatrix sfder(z12, "transpose");
	z22.multInvLeftTrans(sfder);
	sfder.mult(-1);

@ Here we calculate
$g_{y^*}^*=Z_{11}T^{-1}_{11}S_{11}Z_{11}^{-1}
=Z_{11}T^{-1}_{11}(Z_{11}^{-T}S^T_{11})^T$.

@<calculate derivatives of predetermined@>=
    ConstGeneralMatrix s11(matE, 0, 0, ypart.nys(), ypart.nys());
	ConstGeneralMatrix t11(matD, 0, 0, ypart.nys(), ypart.nys());
	GeneralMatrix dumm(s11, "transpose");
	z11.multInvLeftTrans(dumm);
	GeneralMatrix preder(dumm, "transpose");
	t11.multInvLeft(preder);
	preder.multLeft(z11);

@ 
@<copy derivatives to |gy|@>=
	gy.place(preder, ypart.nstat, 0);
	GeneralMatrix sder(sfder, 0, 0, ypart.nstat, ypart.nys());
	gy.place(sder, 0, 0);
	GeneralMatrix fder(sfder, ypart.nstat+ypart.nboth, 0, ypart.nforw, ypart.nys());
	gy.place(fder, ypart.nstat+ypart.nys(), 0);

@ 
@<check difference for derivatives of both@>=
	GeneralMatrix bder((const GeneralMatrix&)sfder, ypart.nstat, 0, ypart.nboth, ypart.nys());
	GeneralMatrix bder2(preder, ypart.npred, 0, ypart.nboth, ypart.nys());
	bder.add(-1, bder2);
	b_error = bder.getData().getMax();

@ The equation $F_u=0$ can be written as
$$
\left[f_{y^{**}_+}\right]\left[g^{**}_{y^*}\right]\left[g_u^*\right]+
\left[f_y\right]\left[g_u\right]+\left[f_u\right]=0
$$
and rewritten as
$$
\left[f_y +
\left[\matrix{0&f_{y^{**}_+}g^{**}_{y^*}&0}\right]\right]g_u=f_u
$$
This is exactly done here. The matrix
$\left[f_y +\left[\matrix{0&f_{y^{**}_+}g^{**}_{y^*}&0}\right]\right]$ is |matA|
in the code.

@<solve derivatives |gu|@>=
	GeneralMatrix matA(ypart.ny(), ypart.ny());
	matA.zeros();
	ConstGeneralMatrix gss(gy, ypart.nstat+ypart.npred, 0, ypart.nyss(), ypart.nys());
	GeneralMatrix aux(fyplus, gss);
	matA.place(aux, 0, ypart.nstat);
	ConstGeneralMatrix fyzero(fd, 0, ypart.nyss(), ypart.ny(), ypart.ny());
	matA.add(1.0, fyzero);
	gu.zeros();
	gu.add(-1.0, fuzero);
	ConstGeneralMatrix(matA).multInvLeft(gu);

@ 
@<|FirstOrder::journalEigs| code@>=
void FirstOrder::journalEigs()
{
	if (bk_cond) {
		JournalRecord jr(journal);
		jr << "Blanchard-Kahn conditition satisfied, model stable" << endrec;
	} else {
		JournalRecord jr(journal);
		jr << "Blanchard-Kahn condition not satisfied, model not stable: sdim=" << sdim 
		   << " " << "npred=" << ypart.nys() << endrec;
	}
	if (!bk_cond) {
		for (int i = 0; i < alphar.length(); i++) {
			if (i == sdim || i == ypart.nys()) {
				JournalRecord jr(journal);
				jr << "---------------------------------------------------- ";
				if (i == sdim)
					jr << "sdim";
				else
					jr << "npred";
				jr << endrec;
			}
			JournalRecord jr(journal);
			double mod = sqrt(alphar[i]*alphar[i]+alphai[i]*alphai[i]);
			mod = mod/round(100000*std::abs(beta[i]))*100000;
			jr << i << "\t(" << alphar[i] << "," << alphai[i] << ") / " << beta[i]
			   << "  \t" << mod << endrec; 
		}
	}
}


@ End of {\tt first\_order.cpp} file.