1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
@q $Id: korder.cweb 1831 2008-05-18 20:13:42Z kamenik $ @>
@q Copyright 2004, Ondra Kamenik @>
@ Start of {\tt korder.cpp} file.
@c
#include "kord_exception.h"
#include "korder.h"
@<|PLUMatrix| copy constructor@>;
@<|PLUMatrix::calcPLU| code@>;
@<|PLUMatrix::multInv| code@>;
@<|MatrixA| constructor code@>;
@<|MatrixS| constructor code@>;
@<|KOrder| member access method specializations@>;
@<|KOrder::sylvesterSolve| unfolded specialization@>;
@<|KOrder::sylvesterSolve| folded specialization@>;
@<|KOrder::switchToFolded| code@>;
@<|KOrder| constructor code@>;
@
@<|PLUMatrix| copy constructor@>=
PLUMatrix::PLUMatrix(const PLUMatrix& plu)
: TwoDMatrix(plu), inv(plu.inv), ipiv(new lapack_int[nrows()])
{
memcpy(ipiv, plu.ipiv, nrows()*sizeof(lapack_int));
}
@ Here we set |ipiv| and |inv| members of the |PLUMatrix| depending on
its content. It is assumed that subclasses will call this method at
the end of their constructors.
@<|PLUMatrix::calcPLU| code@>=
void PLUMatrix::calcPLU()
{
lapack_int info;
lapack_int rows = nrows();
inv = (const Vector&)getData();
dgetrf(&rows, &rows, inv.base(), &rows, ipiv, &info);
}
@ Here we just call the LAPACK machinery to multiply by the inverse.
@<|PLUMatrix::multInv| code@>=
void PLUMatrix::multInv(TwoDMatrix& m) const
{
KORD_RAISE_IF(m.nrows() != ncols(),
"The matrix is not square in PLUMatrix::multInv");
lapack_int info;
lapack_int mcols = m.ncols();
lapack_int mrows = m.nrows();
double* mbase = m.getData().base();
dgetrs("N", &mrows, &mcols, inv.base(), &mrows, ipiv,
mbase, &mrows, &info);
KORD_RAISE_IF(info != 0,
"Info!=0 in PLUMatrix::multInv");
}
@ Here we construct the matrix $A$. Its dimension is |ny|, and it is
$$A=\left[f_{y}\right]+
\left[0 \left[f_{y^{**}_+}\right]\cdot\left[g^{**}_{y^*}\right] 0\right]$$,
where the first zero spans |nstat| columns, and last zero spans
|nforw| columns.
@<|MatrixA| constructor code@>=
MatrixA::MatrixA(const FSSparseTensor& f, const IntSequence& ss,
const TwoDMatrix& gy, const PartitionY& ypart)
: PLUMatrix(ypart.ny())
{
zeros();
IntSequence c(1); c[0] = 1;
FGSTensor f_y(f, ss, c, TensorDimens(ss, c));
add(1.0, f_y);
ConstTwoDMatrix gss_ys(ypart.nstat+ypart.npred, ypart.nyss(), gy);
c[0] = 0;
FGSTensor f_yss(f, ss, c, TensorDimens(ss, c));
TwoDMatrix sub(*this, ypart.nstat, ypart.nys());
sub.multAndAdd(ConstTwoDMatrix(f_yss), gss_ys);
calcPLU();
}
@ Here we construct the matrix $S$. Its dimension is |ny|, and it is
$$S=\left[f_{y}\right]+
\left[0\quad\left[f_{y^{**}_+}\right]\cdot\left[g^{**}_{y^*}\right]\quad
0\right]+ \left[0\quad 0\quad\left[f_{y^{**}_+}\right]\right]$$
It is, in fact, the matrix $A$ plus the third summand. The first zero
in the summand spans |nstat| columns, the second zero spans |npred|
columns.
@<|MatrixS| constructor code@>=
MatrixS::MatrixS(const FSSparseTensor& f, const IntSequence& ss,
const TwoDMatrix& gy, const PartitionY& ypart)
: PLUMatrix(ypart.ny())
{
zeros();
IntSequence c(1); c[0] = 1;
FGSTensor f_y(f, ss, c, TensorDimens(ss, c));
add(1.0, f_y);
ConstTwoDMatrix gss_ys(ypart.nstat+ypart.npred, ypart.nyss(), gy);
c[0] = 0;
FGSTensor f_yss(f, ss, c, TensorDimens(ss, c));
TwoDMatrix sub(*this, ypart.nstat, ypart.nys());
sub.multAndAdd(ConstTwoDMatrix(f_yss), gss_ys);
TwoDMatrix sub2(*this, ypart.nstat+ypart.npred, ypart.nyss());
sub2.add(1.0, f_yss);
calcPLU();
}
@ Here is the constructor of the |KOrder| class. We pass what we have
to. The partitioning of the $y$ vector, a sparse container with model
derivatives, then the first order approximation, these are $g_y$ and
$g_u$ matrices, and covariance matrix of exogenous shocks |v|.
We build the members, it is nothing difficult. Note that we do not make
a physical copy of sparse tensors, so during running the class, the
outer world must not change them.
In the body, we have to set |nvs| array, and initialize $g$ and $G$
containers to comply to preconditions of |performStep|.
@<|KOrder| constructor code@>=
KOrder::KOrder(int num_stat, int num_pred, int num_both, int num_forw,
const TensorContainer<FSSparseTensor>& fcont,
const TwoDMatrix& gy, const TwoDMatrix& gu, const TwoDMatrix& v,
Journal& jr)
: ypart(num_stat, num_pred, num_both, num_forw),@/
ny(ypart.ny()), nu(gu.ncols()), maxk(fcont.getMaxDim()),@/
nvs(4),@/
_ug(4), _fg(4), _ugs(4), _fgs(4), _ugss(4), _fgss(4), @/
_uG(4), _fG(4),@/
_uZstack(&_uG, ypart.nyss(), &_ug, ny, ypart.nys(), nu),@/
_fZstack(&_fG, ypart.nyss(), &_fg, ny, ypart.nys(), nu),@/
_uGstack(&_ugs, ypart.nys(), nu),@/
_fGstack(&_fgs, ypart.nys(), nu),@/
_um(maxk, v), _fm(_um), f(fcont),@/
matA(*(f.get(Symmetry(1))), _uZstack.getStackSizes(), gy, ypart),@/
matS(*(f.get(Symmetry(1))), _uZstack.getStackSizes(), gy, ypart),@/
matB(*(f.get(Symmetry(1))), _uZstack.getStackSizes()),@/
journal(jr)@/
{
KORD_RAISE_IF(gy.ncols() != ypart.nys(),
"Wrong number of columns in gy in KOrder constructor");
KORD_RAISE_IF(v.ncols() != nu,
"Wrong number of columns of Vcov in KOrder constructor");
KORD_RAISE_IF(nu != v.nrows(),
"Wrong number of rows of Vcov in KOrder constructor");
KORD_RAISE_IF(maxk < 2,
"Order of approximation must be at least 2 in KOrder constructor");
KORD_RAISE_IF(gy.nrows() != ypart.ny(),
"Wrong number of rows in gy in KOrder constructor");
KORD_RAISE_IF(gu.nrows() != ypart.ny(),
"Wrong number of rows in gu in KOrder constructor");
KORD_RAISE_IF(gu.ncols() != nu,
"Wrong number of columns in gu in KOrder constructor");
// set nvs:
nvs[0] = ypart.nys(); nvs[1] = nu; nvs[2] = nu; nvs[3] = 1;
@<put $g_y$ and $g_u$ to the container@>;
@<put $G_y$, $G_u$ and $G_{u'}$ to the container@>;@q'@>
}
@ Note that $g_\sigma$ is zero by the nature and we do not insert it to
the container. We insert a new physical copies.
@<put $g_y$ and $g_u$ to the container@>=
UGSTensor* tgy = new UGSTensor(ny, TensorDimens(Symmetry(1,0,0,0), nvs));
tgy->getData() = gy.getData();
insertDerivative<unfold>(tgy);
UGSTensor* tgu = new UGSTensor(ny, TensorDimens(Symmetry(0,1,0,0), nvs));
tgu->getData() = gu.getData();
insertDerivative<unfold>(tgu);
@ Also note that since $g_\sigma$ is zero, so $G_\sigma$.
@<put $G_y$, $G_u$ and $G_{u'}$ to the container@>=
UGSTensor* tGy = faaDiBrunoG<unfold>(Symmetry(1,0,0,0));
G<unfold>().insert(tGy);
UGSTensor* tGu = faaDiBrunoG<unfold>(Symmetry(0,1,0,0));
G<unfold>().insert(tGu);
UGSTensor* tGup = faaDiBrunoG<unfold>(Symmetry(0,0,1,0));
G<unfold>().insert(tGup);
@ Here we have an unfolded specialization of |sylvesterSolve|. We
simply create the sylvester object and solve it. Note that the $g^*_y$
is not continuous in memory as assumed by the sylvester code, so we
make a temporary copy and pass it as matrix $C$.
If the $B$ matrix is empty, in other words there are now forward
looking variables, then the system becomes $AX=D$ which is solved by
simple |matA.multInv()|.
If one wants to display the diagnostic messages from the Sylvester
module, then after the |sylv.solve()| one needs to call
|sylv.getParams().print("")|.
@<|KOrder::sylvesterSolve| unfolded specialization@>=
template<>@/
void KOrder::sylvesterSolve<KOrder::unfold>(ctraits<unfold>::Ttensor& der) const
{
JournalRecordPair pa(journal);
pa << "Sylvester equation for dimension = " << der.getSym()[0] << endrec;
if (ypart.nys() > 0 && ypart.nyss() > 0) {
KORD_RAISE_IF(! der.isFinite(),
"RHS of Sylverster is not finite");
TwoDMatrix gs_y(*(gs<unfold>().get(Symmetry(1,0,0,0))));
GeneralSylvester sylv(der.getSym()[0], ny, ypart.nys(),
ypart.nstat+ypart.npred,
matA.getData().base(), matB.getData().base(),
gs_y.getData().base(), der.getData().base());
sylv.solve();
} else if (ypart.nys() > 0 && ypart.nyss() == 0) {
matA.multInv(der);
}
}
@ Here is the folded specialization of sylvester. We unfold the right
hand side. Then we solve it by the unfolded version of
|sylvesterSolve|, and fold it back and copy to output vector.
@<|KOrder::sylvesterSolve| folded specialization@>=
template<>@/
void KOrder::sylvesterSolve<KOrder::fold>(ctraits<fold>::Ttensor& der) const
{
ctraits<unfold>::Ttensor tmp(der);
sylvesterSolve<unfold>(tmp);
ctraits<fold>::Ttensor ftmp(tmp);
der.getData() = (const Vector&)(ftmp.getData());
}
@
@<|KOrder::switchToFolded| code@>=
void KOrder::switchToFolded()
{
JournalRecordPair pa(journal);
pa << "Switching from unfolded to folded" << endrec;
int maxdim = g<unfold>().getMaxDim();
for (int dim = 1; dim <= maxdim; dim++) {
SymmetrySet ss(dim, 4);
for (symiterator si(ss); !si.isEnd(); ++si) {
if ((*si)[2] == 0 && g<unfold>().check(*si)) {
FGSTensor* ft = new FGSTensor(*(g<unfold>().get(*si)));
insertDerivative<fold>(ft);
if (dim > 1) {
gss<unfold>().remove(*si);
gs<unfold>().remove(*si);
g<unfold>().remove(*si);
}
}
if (G<unfold>().check(*si)) {
FGSTensor* ft = new FGSTensor(*(G<unfold>().get(*si)));
G<fold>().insert(ft);
if (dim > 1) {
G<fold>().remove(*si);
}
}
}
}
}
@ These are the specializations of container access methods. Nothing
interesting here.
@<|KOrder| member access method specializations@>=
template<> ctraits<KOrder::unfold>::Tg& KOrder::g<KOrder::unfold>()
{@+ return _ug;@+}
template<>@; const ctraits<KOrder::unfold>::Tg& KOrder::g<KOrder::unfold>()@+const@;
{@+ return _ug;@+}
template<> ctraits<KOrder::fold>::Tg& KOrder::g<KOrder::fold>()
{@+ return _fg;@+}
template<> const ctraits<KOrder::fold>::Tg& KOrder::g<KOrder::fold>()@+const@;
{@+ return _fg;@+}
template<> ctraits<KOrder::unfold>::Tgs& KOrder::gs<KOrder::unfold>()
{@+ return _ugs;@+}
template<> const ctraits<KOrder::unfold>::Tgs& KOrder::gs<KOrder::unfold>()@+const@;
{@+ return _ugs;@+}
template<> ctraits<KOrder::fold>::Tgs& KOrder::gs<KOrder::fold>()
{@+ return _fgs;@+}
template<> const ctraits<KOrder::fold>::Tgs& KOrder::gs<KOrder::fold>()@+const@;
{@+ return _fgs;@+}
template<> ctraits<KOrder::unfold>::Tgss& KOrder::gss<KOrder::unfold>()
{@+ return _ugss;@+}
template<> const ctraits<KOrder::unfold>::Tgss& KOrder::gss<KOrder::unfold>()@+const@;
{@+ return _ugss;@+}
template<> ctraits<KOrder::fold>::Tgss& KOrder::gss<KOrder::fold>()
{@+ return _fgss;@+}
template<> const ctraits<KOrder::fold>::Tgss& KOrder::gss<KOrder::fold>()@+const@;
{@+ return _fgss;@+}
template<> ctraits<KOrder::unfold>::TG& KOrder::G<KOrder::unfold>()
{@+ return _uG;@+}
template<> const ctraits<KOrder::unfold>::TG& KOrder::G<KOrder::unfold>()@+const@;
{@+ return _uG;@+}
template<> ctraits<KOrder::fold>::TG& KOrder::G<KOrder::fold>()
{@+ return _fG;@+}
template<> const ctraits<KOrder::fold>::TG& KOrder::G<KOrder::fold>()@+const@;
{@+ return _fG;@+}
template<> ctraits<KOrder::unfold>::TZstack& KOrder::Zstack<KOrder::unfold>()
{@+ return _uZstack;@+}
template<> const ctraits<KOrder::unfold>::TZstack& KOrder::Zstack<KOrder::unfold>()@+const@;
{@+ return _uZstack;@+}
template<> ctraits<KOrder::fold>::TZstack& KOrder::Zstack<KOrder::fold>()
{@+ return _fZstack;@+}
template<> const ctraits<KOrder::fold>::TZstack& KOrder::Zstack<KOrder::fold>()@+const@;
{@+ return _fZstack;@+}
template<> ctraits<KOrder::unfold>::TGstack& KOrder::Gstack<KOrder::unfold>()
{@+ return _uGstack;@+}
template<> const ctraits<KOrder::unfold>::TGstack& KOrder::Gstack<KOrder::unfold>()@+const@;
{@+ return _uGstack;@+}
template<> ctraits<KOrder::fold>::TGstack& KOrder::Gstack<KOrder::fold>()
{@+ return _fGstack;@+}
template<> const ctraits<KOrder::fold>::TGstack& KOrder::Gstack<KOrder::fold>()@+const@;
{@+ return _fGstack;@+}
template<> ctraits<KOrder::unfold>::Tm& KOrder::m<KOrder::unfold>()
{@+ return _um;@+}
template<> const ctraits<KOrder::unfold>::Tm& KOrder::m<KOrder::unfold>()@+const@;
{@+ return _um;@+}
template<> ctraits<KOrder::fold>::Tm& KOrder::m<KOrder::fold>()
{@+ return _fm;@+}
template<> const ctraits<KOrder::fold>::Tm& KOrder::m<KOrder::fold>()@+const@;
{@+ return _fm;@+}
@ End of {\tt korder.cpp} file.
|