1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
/* $Header: /var/lib/cvs/dynare_cpp/sylv/cc/BlockDiagonal.cpp,v 1.1.1.1 2004/06/04 13:00:20 kamenik Exp $ */
/* Tag $Name: $ */
#include "BlockDiagonal.h"
#include <cstdio>
#include <cstring>
BlockDiagonal::BlockDiagonal(const double* d, int d_size)
: QuasiTriangular(d, d_size),
row_len(new int[d_size]), col_len(new int[d_size])
{
for (int i = 0; i < d_size; i++) {
row_len[i] = d_size;
col_len[i] = 0;
}
}
BlockDiagonal::BlockDiagonal(const QuasiTriangular& t)
: QuasiTriangular(t),
row_len(new int[t.numRows()]), col_len(new int[t.numRows()])
{
for (int i = 0; i < t.numRows(); i++) {
row_len[i] = t.numRows();
col_len[i] = 0;
}
}
BlockDiagonal::BlockDiagonal(int p, const BlockDiagonal& b)
: QuasiTriangular(p, b),
row_len(new int[b.numRows()]), col_len(new int[b.numRows()])
{
memcpy(row_len, b.row_len, b.numRows()*sizeof(int));
memcpy(col_len, b.col_len, b.numRows()*sizeof(int));
}
BlockDiagonal::BlockDiagonal(const BlockDiagonal& b)
: QuasiTriangular(b),
row_len(new int[b.numRows()]), col_len(new int[b.numRows()])
{
memcpy(row_len, b.row_len, b.numRows()*sizeof(int));
memcpy(col_len, b.col_len, b.numRows()*sizeof(int));
}
/* put zeroes to right upper submatrix whose first column is defined
* by 'edge' */
void BlockDiagonal::setZerosToRU(diag_iter edge)
{
int iedge = (*edge).getIndex();
for (int i = 0; i < iedge; i++)
for (int j = iedge; j < numCols(); j++)
get(i,j) = 0.0;
}
/* Updates row_len and col_len so that there are zeroes in upper right part, this
* |T1 0 |
* |0 T2|. The first column of T2 is given by diagonal iterator 'edge'.
* Note the semantics of row_len and col_len. row_len[i] is distance
* of the right-most non-zero element of i-th row from the left, and
* col_len[j] is distance of top-most non-zero element of j-th column
* to the top. (First element has distance 1).
*/
void BlockDiagonal::setZeroBlockEdge(diag_iter edge)
{
setZerosToRU(edge);
int iedge = (*edge).getIndex();
for (diag_iter run = diag_begin(); run != edge; ++run) {
int ind = (*run).getIndex();
if (row_len[ind] > iedge) {
row_len[ind] = iedge;
if (!(*run).isReal())
row_len[ind+1] = iedge;
}
}
for (diag_iter run = edge; run != diag_end(); ++run) {
int ind = (*run).getIndex();
if (col_len[ind] < iedge) {
col_len[ind] = iedge;
if (!(*run).isReal())
col_len[ind+1] = iedge;
}
}
}
BlockDiagonal::const_col_iter
BlockDiagonal::col_begin(const DiagonalBlock& b) const
{
int jbar = b.getIndex();
int d_size = diagonal.getSize();
return const_col_iter(&getData()[jbar*d_size + col_len[jbar]], d_size,
b.isReal(), col_len[jbar]);
}
BlockDiagonal::col_iter
BlockDiagonal::col_begin(const DiagonalBlock& b)
{
int jbar = b.getIndex();
int d_size = diagonal.getSize();
return col_iter(&getData()[jbar*d_size + col_len[jbar]], d_size,
b.isReal(), col_len[jbar]);
}
BlockDiagonal::const_row_iter
BlockDiagonal::row_end(const DiagonalBlock& b) const
{
int jbar = b.getIndex();
int d_size = diagonal.getSize();
return const_row_iter(&getData()[d_size*row_len[jbar]+jbar], d_size,
b.isReal(), row_len[jbar]);
}
BlockDiagonal::row_iter
BlockDiagonal::row_end(const DiagonalBlock& b)
{
int jbar = b.getIndex();
int d_size = diagonal.getSize();
return row_iter(&getData()[d_size*row_len[jbar]+jbar], d_size,
b.isReal(), row_len[jbar]);
}
int BlockDiagonal::getNumZeros() const
{
int sum = 0;
for (int i = 0; i < diagonal.getSize(); i++) {
sum += diagonal.getSize() - row_len[i];
}
return sum;
}
QuasiTriangular::const_diag_iter
BlockDiagonal::findBlockStart(const_diag_iter from) const
{
if (from != diag_end()) {
++from;
while (from != diag_end() &&
col_len[(*from).getIndex()] != (*from).getIndex())
++from;
}
return from;
}
int BlockDiagonal::getLargestBlock() const
{
int largest = 0;
const_diag_iter start = diag_begin();
const_diag_iter end = findBlockStart(start);
while (start != diag_end()) {
int si = (*start).getIndex();
int ei = diagonal.getSize();
if (end != diag_end())
ei = (*end).getIndex();
if (largest < ei-si)
largest = ei-si;
start = end;
end = findBlockStart(start);
}
return largest;
}
void BlockDiagonal::savePartOfX(int si, int ei, const KronVector& x, Vector& work)
{
for (int i = si; i < ei; i++) {
ConstKronVector xi(x, i);
Vector target(work, (i-si)*xi.length(), xi.length());
target = xi;
}
}
void BlockDiagonal::multKronBlock(const_diag_iter start, const_diag_iter end,
KronVector& x, Vector& work) const
{
int si = (*start).getIndex();
int ei = diagonal.getSize();
if (end != diag_end())
ei = (*end).getIndex();
savePartOfX(si, ei, x, work);
for (const_diag_iter di = start; di != end; ++di) {
int jbar = (*di).getIndex();
if ((*di).isReal()) {
KronVector xi(x, jbar);
xi.zeros();
Vector wi(work, (jbar-si)*xi.length(), xi.length());
xi.add(*((*di).getAlpha()), wi);
for (const_row_iter ri = row_begin(*di); ri != row_end(*di); ++ri) {
int col = ri.getCol();
Vector wj(work, (col-si)*xi.length(), xi.length());
xi.add(*ri, wj);
}
} else {
KronVector xi(x, jbar);
KronVector xii(x, jbar+1);
xi.zeros();
xii.zeros();
Vector wi(work, (jbar-si)*xi.length(), xi.length());
Vector wii(work, (jbar+1-si)*xi.length(), xi.length());
xi.add(*((*di).getAlpha()), wi);
xi.add((*di).getBeta1(), wii);
xii.add((*di).getBeta2(), wi);
xii.add(*((*di).getAlpha()), wii);
for (const_row_iter ri = row_begin(*di); ri != row_end(*di); ++ri) {
int col = ri.getCol();
Vector wj(work, (col-si)*xi.length(), xi.length());
xi.add(ri.a(), wj);
xii.add(ri.b(), wj);
}
}
}
}
void BlockDiagonal::multKronBlockTrans(const_diag_iter start, const_diag_iter end,
KronVector& x, Vector& work) const
{
int si = (*start).getIndex();
int ei = diagonal.getSize();
if (end != diag_end())
ei = (*end).getIndex();
savePartOfX(si, ei, x, work);
for (const_diag_iter di = start; di != end; ++di) {
int jbar = (*di).getIndex();
if ((*di).isReal()) {
KronVector xi(x, jbar);
xi.zeros();
Vector wi(work, (jbar-si)*xi.length(), xi.length());
xi.add(*((*di).getAlpha()), wi);
for (const_col_iter ci = col_begin(*di); ci != col_end(*di); ++ci) {
int row = ci.getRow();
Vector wj(work, (row-si)*xi.length(), xi.length());
xi.add(*ci, wj);
}
} else {
KronVector xi(x, jbar);
KronVector xii(x, jbar+1);
xi.zeros();
xii.zeros();
Vector wi(work, (jbar-si)*xi.length(), xi.length());
Vector wii(work, (jbar+1-si)*xi.length(), xi.length());
xi.add(*((*di).getAlpha()), wi);
xi.add((*di).getBeta2(), wii);
xii.add((*di).getBeta1(), wi);
xii.add(*((*di).getAlpha()), wii);
for (const_col_iter ci = col_begin(*di); ci != col_end(*di); ++ci) {
int row = ci.getRow();
Vector wj(work, (row-si)*xi.length(), xi.length());
xi.add(ci.a(), wj);
xii.add(ci.b(), wj);
}
}
}
}
void BlockDiagonal::multKron(KronVector& x) const
{
int largest = getLargestBlock();
Vector work(largest*x.getN()*power(x.getM(),x.getDepth()-1));
const_diag_iter start = diag_begin();
const_diag_iter end = findBlockStart(start);
while (start != diag_end()) {
multKronBlock(start, end, x, work);
start = end;
end = findBlockStart(start);
}
}
void BlockDiagonal::multKronTrans(KronVector& x) const
{
int largest = getLargestBlock();
Vector work(largest*x.getN()*power(x.getM(),x.getDepth()-1));
const_diag_iter start = diag_begin();
const_diag_iter end = findBlockStart(start);
while (start != diag_end()) {
multKronBlockTrans(start, end, x, work);
start = end;
end = findBlockStart(start);
}
}
void BlockDiagonal::printInfo() const
{
printf("Block sizes:");
int num_blocks = 0;
const_diag_iter start = diag_begin();
const_diag_iter end = findBlockStart(start);
while (start != diag_end()) {
int si = (*start).getIndex();
int ei = diagonal.getSize();
if (end != diag_end())
ei = (*end).getIndex();
printf(" %d", ei-si);
num_blocks++;
start = end;
end = findBlockStart(start);
}
printf("\nNum blocks: %d\n", num_blocks);
printf("There are %d zeros out of %d\n",
getNumZeros(), getNumOffdiagonal());
}
int BlockDiagonal::getNumBlocks() const
{
int num_blocks = 0;
const_diag_iter start = diag_begin();
const_diag_iter end = findBlockStart(start);
while (start != diag_end()) {
num_blocks++;
start = end;
end = findBlockStart(start);
}
return num_blocks;
}
// Local Variables:
// mode:C++
// End:
|