1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
|
/* $Header: /var/lib/cvs/dynare_cpp/sylv/cc/QuasiTriangular.cpp,v 1.1.1.1 2004/06/04 13:00:31 kamenik Exp $ */
/* Tag $Name: $ */
#include "QuasiTriangular.h"
#include "SylvException.h"
#include "SchurDecomp.h"
#include <dynblas.h>
#include <cstdio>
#include <cmath>
using namespace std;
double DiagonalBlock::getDeterminant() const
{
return (*alpha)*(*alpha) + getSBeta();
}
double DiagonalBlock::getSBeta() const
{
return -(*beta1)*(*beta2);
}
double DiagonalBlock::getSize() const
{
if (real)
return abs(*alpha);
else
return sqrt(getDeterminant());
}
// this function makes Diagonal inconsistent, it should only be used
// on temorary matrices, which will not be used any more, e.g. in
// QuasiTriangular::solve (we need fast performance)
void DiagonalBlock::setReal()
{
*beta1 = 0;
*beta2 = 0;
real = true;
}
void DiagonalBlock::checkBlock(const double* d, int d_size)
{
const double* a1 = d + jbar*d_size+jbar;
const double* b1 = a1 + d_size;
const double* b2 = a1 + 1;
const double* a2 = b1 + 1;
if (a1 != alpha.a1)
throw SYLV_MES_EXCEPTION("Bad alpha1.");
if (!real && b1 != beta1)
throw SYLV_MES_EXCEPTION("Bad beta1.");
if (!real && b2 != beta2)
throw SYLV_MES_EXCEPTION("Bad beta2.");
if (!real && a2 != alpha.a2)
throw SYLV_MES_EXCEPTION("Bad alpha2.");
}
Diagonal::Diagonal(double* data, int d_size)
{
int nc = getNumComplex(data, d_size); // return nc <= d_size/2
num_all = d_size - nc;
num_real = d_size - 2*nc;
int jbar = 0;
int j = 0;
while (j < num_all) {
int id = jbar*d_size + jbar; // index of diagonal block in data
int ill = id + 1; // index of element below the diagonal
int iur = id + d_size; // index of element right to diagonal
int idd = id + d_size + 1; // index of element next on diagonal
if ((jbar < d_size-1) && !isZero(data[ill])) {
// it is not last column and we have nonzero below diagonal
DiagonalBlock b(jbar, false, &data[id], &data[idd],
&data[iur], &data[ill]);
blocks.push_back(b);
jbar++;
} else {
// it is last column or we have zero below diagonal
DiagonalBlock b(jbar, true, &data[id], &data[id], NULL, NULL);
blocks.push_back(b);
}
jbar++;
j++;
}
}
Diagonal::Diagonal(double* data, const Diagonal& d)
{
num_all = d.num_all;
num_real = d.num_real;
int d_size = d.getSize();
for (const_diag_iter it = d.begin(); it != d.end(); ++it) {
const DiagonalBlock& dit = *it;
double* beta1 = NULL;
double* beta2 = NULL;
int id = dit.getIndex()*(d_size+1);
int idd = id;
if (! dit.isReal()) {
beta1 = &data[id+d_size];
beta2 = &data[id+1];
idd = id + d_size + 1;
}
DiagonalBlock b(dit.getIndex(), dit.isReal(),
&data[id], &data[idd], beta1, beta2);
blocks.push_back(b);
}
}
void Diagonal::copy(const Diagonal& d)
{
num_all = d.num_all;
num_real = d.num_real;
blocks = d.blocks;
}
int Diagonal::getNumComplex(const double* data, int d_size)
{
int num_complex = 0;
int in = 1;
for (int i = 0; i < d_size-1; i++, in = in + d_size + 1) {
if (! isZero(data[in])) {
num_complex++;
if (in < d_size - 2 && ! isZero(data[in + d_size +1])) {
throw SYLV_MES_EXCEPTION("Matrix is not quasi-triangular");
}
}
}
return num_complex;
}
void Diagonal::changeBase(double* p)
{
int d_size = getSize();
for (diag_iter it = begin(); it != end(); ++it) {
const DiagonalBlock& b = *it;
int jbar = b.getIndex();
int base = d_size*jbar + jbar;
if (b.isReal()) {
DiagonalBlock bnew(jbar, true, &p[base], &p[base],
NULL, NULL);
*it = bnew;
} else {
DiagonalBlock bnew(jbar, false, &p[base], &p[base+d_size+1],
&p[base+d_size], &p[base+1]);
*it = bnew;
}
}
}
void Diagonal::getEigenValues(Vector& eig) const
{
int d_size = getSize();
if (eig.length() != 2*d_size) {
char mes[500];
sprintf(mes, "Wrong length of vector for eigenvalues len=%d, should be=%d.\n",
eig.length(), 2*d_size);
throw SYLV_MES_EXCEPTION(mes);
}
for (const_diag_iter it = begin(); it != end(); ++it) {
const DiagonalBlock& b = *it;
int ind = b.getIndex();
eig[2*ind] = *(b.getAlpha());
if (b.isReal()) {
eig[2*ind+1] = 0.0;
} else {
double beta = sqrt(b.getSBeta());
eig[2*ind+1] = beta;
eig[2*ind+2] = eig[2*ind];
eig[2*ind+3] = -beta;
}
}
}
/* swaps logically blocks 'it', and '++it'. remember to move also
* addresses, alpha, beta1, beta2. This is a dirty (but most
* effective) way how to do it. */
void Diagonal::swapLogically(diag_iter it)
{
diag_iter itp = it;
++itp;
if ((*it).isReal() && !(*itp).isReal()) {
// first is real, second is complex
double* d1 = (*it).alpha.a1;
double* d2 = (*itp).alpha.a1;
double* d3 = (*itp).alpha.a2;
// swap
DiagonalBlock new_it((*it).jbar, d1, d2);
*it = new_it;
DiagonalBlock new_itp((*itp).jbar+1, d3);
*itp = new_itp;
} else if (!(*it).isReal() && (*itp).isReal()) {
// first is complex, second is real
double* d1 = (*it).alpha.a1;
double* d2 = (*it).alpha.a2;
double* d3 = (*itp).alpha.a1;
// swap
DiagonalBlock new_it((*it).jbar, d1);
*it = new_it;
DiagonalBlock new_itp((*itp).jbar-1, d2, d3);
*itp = new_itp;
}
}
void Diagonal::checkConsistency(diag_iter it)
{
if (!(*it).isReal() && isZero((*it).getBeta2())) {
(*it).getBeta2() = 0.0; // put exact zero
int jbar = (*it).getIndex();
double* d2 = (*it).alpha.a2;
(*it).alpha.a2 = (*it).alpha.a1;
(*it).real = true;
(*it).beta1 = 0;
(*it).beta2 = 0;
DiagonalBlock b(jbar+1, d2);
blocks.insert((++it).iter(), b);
num_real += 2;
num_all++;
}
}
double Diagonal::getAverageSize(diag_iter start, diag_iter end)
{
double res = 0;
int num = 0;
for (diag_iter run = start; run != end; ++run) {
num++;
res += (*run).getSize();
}
if (num > 0)
res = res/num;
return res;
}
Diagonal::diag_iter Diagonal::findClosestBlock(diag_iter start, diag_iter end, double a)
{
diag_iter closest = start;
double minim = 1.0e100;
for (diag_iter run = start; run != end; ++run) {
double dist = abs(a - (*run).getSize());
if (dist < minim) {
minim = dist;
closest = run;
}
}
return closest;
}
Diagonal::diag_iter Diagonal::findNextLargerBlock(diag_iter start, diag_iter end, double a)
{
diag_iter closest = start;
double minim = 1.0e100;
for (diag_iter run = start; run != end; ++run) {
double dist = (*run).getSize() - a;
if ((0 <= dist) && (dist < minim)) {
minim = dist;
closest = run;
}
}
return closest;
}
void Diagonal::print() const
{
printf("Num real: %d, num complex: %d\n",getNumReal(), getNumComplex());
for (const_diag_iter it = begin(); it != end(); ++it) {
if ((*it).isReal()) {
printf("real: jbar=%d, alpha=%f\n", (*it).getIndex(), *((*it).getAlpha()));
}
else {
printf("complex: jbar=%d, alpha=%f, beta1=%f, beta2=%f\n",
(*it).getIndex(), *((*it).getAlpha()), (*it).getBeta1(), (*it).getBeta2());
}
}
}
double Diagonal::EPS = 1.0e-300;
bool Diagonal::isZero(double p)
{
return (abs(p)<EPS);
}
QuasiTriangular::const_col_iter
QuasiTriangular::col_begin(const DiagonalBlock& b) const
{
int jbar = b.getIndex();
int d_size = diagonal.getSize();
return const_col_iter(&getData()[jbar*d_size], d_size, b.isReal(), 0);
}
QuasiTriangular::col_iter
QuasiTriangular::col_begin(const DiagonalBlock& b)
{
int jbar = b.getIndex();
int d_size = diagonal.getSize();
return col_iter(&getData()[jbar*d_size], d_size, b.isReal(), 0);
}
QuasiTriangular::const_row_iter
QuasiTriangular::row_begin(const DiagonalBlock& b) const
{
int jbar = b.getIndex();
int d_size = diagonal.getSize();
int off = jbar*d_size+jbar+d_size;
int col = jbar+1;
if (!b.isReal()) {
off = off + d_size;
col++;
}
return const_row_iter(&getData()[off], d_size, b.isReal(), col);
}
QuasiTriangular::row_iter
QuasiTriangular::row_begin(const DiagonalBlock& b)
{
int jbar = b.getIndex();
int d_size = diagonal.getSize();
int off = jbar*d_size+jbar+d_size;
int col = jbar+1;
if (!b.isReal()) {
off = off + d_size;
col++;
}
return row_iter(&getData()[off], d_size, b.isReal(), col);
}
QuasiTriangular::const_col_iter
QuasiTriangular::col_end(const DiagonalBlock& b) const
{
int jbar = b.getIndex();
int d_size = diagonal.getSize();
return const_col_iter(getData().base()+jbar*d_size+jbar, d_size, b.isReal(),
jbar);
}
QuasiTriangular::col_iter
QuasiTriangular::col_end(const DiagonalBlock& b)
{
int jbar = b.getIndex();
int d_size = diagonal.getSize();
return col_iter(&getData()[jbar*d_size+jbar], d_size, b.isReal(), jbar);
}
QuasiTriangular::const_row_iter
QuasiTriangular::row_end(const DiagonalBlock& b) const
{
int jbar = b.getIndex();
int d_size = diagonal.getSize();
return const_row_iter(&getData()[d_size*d_size+jbar], d_size, b.isReal(),
d_size);
}
QuasiTriangular::row_iter
QuasiTriangular::row_end(const DiagonalBlock& b)
{
int jbar = b.getIndex();
int d_size = diagonal.getSize();
return row_iter(&getData()[d_size*d_size+jbar], d_size, b.isReal(), d_size);
}
QuasiTriangular::QuasiTriangular(double r, const QuasiTriangular& t)
: SqSylvMatrix(t.numRows()), diagonal(getData().base(), t.diagonal)
{
setMatrix(r, t);
}
QuasiTriangular::QuasiTriangular(double r, const QuasiTriangular& t,
double rr, const QuasiTriangular& tt)
: SqSylvMatrix(t.numRows()), diagonal(getData().base(), t.diagonal)
{
setMatrix(r, t);
addMatrix(rr, tt);
}
QuasiTriangular::QuasiTriangular(const QuasiTriangular& t)
: SqSylvMatrix(t), diagonal(getData().base(), t.diagonal)
{
}
QuasiTriangular::QuasiTriangular(const double* d, int d_size)
: SqSylvMatrix(d, d_size), diagonal(getData().base(), d_size)
{}
QuasiTriangular::~QuasiTriangular()
{
}
QuasiTriangular::QuasiTriangular(int p, const QuasiTriangular& t)
: SqSylvMatrix(t.numRows()), diagonal(getData().base(), t.diagonal)
{
Vector aux(t.getData());
blas_int d_size = diagonal.getSize();
double alpha = 1.0;
double beta = 0.0;
dgemm("N", "N", &d_size, &d_size, &d_size, &alpha, aux.base(),
&d_size, t.getData().base(), &d_size, &beta, getData().base(), &d_size);
}
QuasiTriangular::QuasiTriangular(const SchurDecomp& decomp)
: SqSylvMatrix(decomp.getT()),
diagonal(getData().base(), decomp.getDim())
{
}
/* this pads matrix with intial columns with zeros */
QuasiTriangular::QuasiTriangular(const SchurDecompZero& decomp)
: SqSylvMatrix(decomp.getDim())
{
// nullify first decomp.getZeroCols() columns
int zeros = decomp.getZeroCols()*decomp.getDim();
Vector zv(getData(), 0, zeros);
zv.zeros();
// fill right upper part with decomp.getRU()
for (int i = 0; i < decomp.getRU().numRows(); i++) {
for (int j = 0; j < decomp.getRU().numCols(); j++) {
getData()[(j+decomp.getZeroCols())*decomp.getDim()+i] = decomp.getRU().get(i,j);
}
}
// fill right lower part with decomp.getT()
for (int i = 0; i < decomp.getT().numRows(); i++) {
for (int j = 0; j < decomp.getT().numCols(); j++) {
getData()[(j+decomp.getZeroCols())*decomp.getDim()+decomp.getZeroCols()+i] =
decomp.getT().get(i,j);
}
}
// construct diagonal
Diagonal* const d = new Diagonal(getData().base(), decomp.getDim());
diagonal = *d;
delete d;
}
void QuasiTriangular::setMatrix(double r, const QuasiTriangular& t)
{
getData().zeros();
getData().add(r, t.getData());
}
void QuasiTriangular::setMatrixViaIter(double r, const QuasiTriangular& t)
{
register double rr = r;
diag_iter dil = diag_begin();
const_diag_iter dir = t.diag_begin();
for ( ; dil != diag_end(); ++dil, ++dir) {
(*dil).getAlpha() = rr*(*(*dir).getAlpha());
if (! (*dil).isReal()) {
(*dil).getBeta1() = rr*(*dir).getBeta1();
(*dil).getBeta2() = rr*(*dir).getBeta2();
}
col_iter cil = col_begin(*dil);
const_col_iter cir = t.col_begin(*dir);
for ( ; cil != col_end(*dil); ++cil, ++cir) {
if ((*dil).isReal()) {
*cil = rr*(*cir);
} else {
cil.a() = rr*cir.a();
cil.b() = rr*cir.b();
}
}
}
}
void QuasiTriangular::addMatrix(double r, const QuasiTriangular& t)
{
getData().add(r, t.getData());
}
void QuasiTriangular::addMatrixViaIter(double r, const QuasiTriangular& t)
{
register double rr = r;
diag_iter dil = diag_begin();
const_diag_iter dir = t.diag_begin();
for ( ; dil != diag_end(); ++dil, ++dir) {
(*dil).getAlpha() = (*(*dil).getAlpha()) + rr*(*(*dir).getAlpha());
if (! (*dil).isReal()) {
(*dil).getBeta1() += rr*(*dir).getBeta1();
(*dil).getBeta2() += rr*(*dir).getBeta2();
}
col_iter cil = col_begin(*dil);
const_col_iter cir = t.col_begin(*dir);
for ( ; cil != col_end(*dil); ++cil, ++cir) {
if ((*dil).isReal()) {
*cil += rr*(*cir);
} else {
cil.a() += rr*cir.a();
cil.b() += rr*cir.b();
}
}
}
}
void QuasiTriangular::addUnit()
{
for (diag_iter di = diag_begin(); di != diag_end(); ++di) {
(*di).getAlpha() = *((*di).getAlpha()) + 1.0;
}
}
void QuasiTriangular::solve(Vector& x, const ConstVector& b, double& eig_min)
{
x = b;
solvePre(x, eig_min);
}
void QuasiTriangular::solveTrans(Vector& x, const ConstVector& b, double& eig_min)
{
x = b;
solvePreTrans(x, eig_min);
}
void QuasiTriangular::solvePre(Vector& x, double& eig_min)
{
addUnit();
for (diag_iter di = diag_begin(); di != diag_end(); ++di) {
double eig_size;
if (!(*di).isReal()) {
eig_size = (*di).getDeterminant();
eliminateLeft((*di).getIndex()+1, (*di).getIndex(), x);
} else {
eig_size = *(*di).getAlpha()*(*(*di).getAlpha());
}
if (eig_size < eig_min)
eig_min = eig_size;
}
blas_int nn = diagonal.getSize();
blas_int lda = diagonal.getSize();
blas_int incx = x.skip();
dtrsv("U", "N", "N", &nn, getData().base(), &lda, x.base(), &incx);
}
void QuasiTriangular::solvePreTrans(Vector& x, double& eig_min)
{
addUnit();
for (diag_iter di = diag_begin(); di != diag_end(); ++di) {
double eig_size;
if (!(*di).isReal()) {
eig_size = (*di).getDeterminant();
eliminateRight((*di).getIndex()+1, (*di).getIndex(), x);
} else {
eig_size = *(*di).getAlpha()*(*(*di).getAlpha());
}
if (eig_size < eig_min)
eig_min = eig_size;
}
blas_int nn = diagonal.getSize();
blas_int lda = diagonal.getSize();
blas_int incx = x.skip();
dtrsv("U", "T", "N", &nn, getData().base(), &lda, x.base(), &incx);
}
/* calculates x = Tb */
void QuasiTriangular::multVec(Vector& x, const ConstVector& b) const
{
x = b;
blas_int nn = diagonal.getSize();
blas_int lda = diagonal.getSize();
blas_int incx = x.skip();
dtrmv("U", "N", "N", &nn, getData().base(), &lda, x.base(), &incx);
for (const_diag_iter di = diag_begin(); di != diag_end(); ++di) {
if (!(*di).isReal()) {
int jbar = (*di).getIndex();
x[jbar+1] += (*di).getBeta2()*(b[jbar]);
}
}
}
void QuasiTriangular::multVecTrans(Vector& x, const ConstVector& b) const
{
x = b;
blas_int nn = diagonal.getSize();
blas_int lda = diagonal.getSize();
blas_int incx = x.skip();
dtrmv("U", "T", "N", &nn, getData().base(), &lda, x.base(), &incx);
for (const_diag_iter di = diag_begin(); di != diag_end(); ++di) {
if (!(*di).isReal()) {
int jbar = (*di).getIndex();
x[jbar] += (*di).getBeta2()*b[jbar+1];
}
}
}
void QuasiTriangular::multaVec(Vector& x, const ConstVector& b) const
{
Vector tmp((const Vector&) x); // new copy
multVec(x, b);
x.add(1.0, tmp);
}
void QuasiTriangular::multaVecTrans(Vector& x, const ConstVector& b) const
{
Vector tmp((const Vector&) x); // new copy
multVecTrans(x, b);
x.add(1.0, tmp);
}
/* calculates x=x+(T\otimes I)b, where size of I is given by b (KronVector) */
void QuasiTriangular::multaKron(KronVector& x, const ConstKronVector& b) const
{
int id = b.getN()*power(b.getM(), b.getDepth()-1);
ConstGeneralMatrix b_resh(b.base(), id, b.getM());
GeneralMatrix x_resh(x.base(), id, b.getM());
x_resh.multAndAdd(b_resh, ConstGeneralMatrix(*this), "trans");
}
/* calculates x=x+(T'\otimes I)b, where size of I is given by b (KronVector) */
void
QuasiTriangular::multaKronTrans(KronVector& x, const ConstKronVector& b) const
{
int id = b.getN()*power(b.getM(), b.getDepth()-1);
ConstGeneralMatrix b_resh(b.base(), id, b.getM());
GeneralMatrix x_resh(x.base(), id, b.getM());
x_resh.multAndAdd(b_resh, ConstGeneralMatrix(*this));
}
void QuasiTriangular::multKron(KronVector& x) const
{
KronVector b((const KronVector&)x); // make copy
x.zeros();
multaKron(x, b);
}
void
QuasiTriangular::multKronTrans(KronVector& x) const
{
KronVector b((const KronVector&)x); // make copy
x.zeros();
multaKronTrans(x, b);
}
void QuasiTriangular::multLeftOther(GeneralMatrix& a) const
{
a.multLeft(*this);
}
void QuasiTriangular::multLeftOtherTrans(GeneralMatrix& a) const
{
a.multLeftTrans(*this);
}
void QuasiTriangular::swapDiagLogically(diag_iter it)
{
diagonal.swapLogically(it);
}
void QuasiTriangular::checkDiagConsistency(diag_iter it)
{
diagonal.checkConsistency(it);
}
double QuasiTriangular::getAverageDiagSize(diag_iter start, diag_iter end)
{
return diagonal.getAverageSize(start, end);
}
QuasiTriangular::diag_iter
QuasiTriangular::findClosestDiagBlock(diag_iter start, diag_iter end, double a)
{
return diagonal.findClosestBlock(start, end, a);
}
QuasiTriangular::diag_iter
QuasiTriangular::findNextLargerBlock(diag_iter start, diag_iter end, double a)
{
return diagonal.findNextLargerBlock(start, end, a);
}
int QuasiTriangular::getNumOffdiagonal() const
{
return diagonal.getSize()*(diagonal.getSize()-1)/2 - diagonal.getNumComplex();
}
|