1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
|
/* $Header: /var/lib/cvs/dynare_cpp/sylv/cc/TriangularSylvester.cpp,v 1.1.1.1 2004/06/04 13:00:59 kamenik Exp $ */
/* Tag $Name: $ */
#include "TriangularSylvester.h"
#include "QuasiTriangularZero.h"
#include "KronUtils.h"
#include "BlockDiagonal.h"
#include <cstdio>
#include <cmath>
double TriangularSylvester::diag_zero = 1.e-15;
double TriangularSylvester::diag_zero_sq = 1.e-30;
TriangularSylvester::TriangularSylvester(const QuasiTriangular& k,
const QuasiTriangular& f)
: SylvesterSolver(k, f),
matrixKK(matrixK->clone(2, *matrixK)),
matrixFF(new QuasiTriangular(2, *matrixF))
{
}
TriangularSylvester::TriangularSylvester(const SchurDecompZero& kdecomp,
const SchurDecomp& fdecomp)
: SylvesterSolver(kdecomp, fdecomp),
matrixKK(matrixK->clone(2, *matrixK)),
matrixFF(new QuasiTriangular(2, *matrixF))
{
}
TriangularSylvester::TriangularSylvester(const SchurDecompZero& kdecomp,
const SimilarityDecomp& fdecomp)
: SylvesterSolver(kdecomp, fdecomp),
matrixKK(matrixK->clone(2, *matrixK)),
matrixFF(new BlockDiagonal(2, *matrixF))
{
}
TriangularSylvester::~TriangularSylvester()
{
delete matrixKK;
delete matrixFF;
}
void TriangularSylvester::print() const
{
printf("matrix K (%d):\n",matrixK->getDiagonal().getSize());
matrixK->print();
printf("matrix F (%d):\n",matrixF->getDiagonal().getSize());
matrixF->print();
}
void TriangularSylvester::solve(SylvParams& pars, KronVector& d) const
{
double eig_min = 1e30;
solvi(1., d, eig_min);
pars.eig_min = sqrt(eig_min);
}
void TriangularSylvester::solvi(double r, KronVector& d, double& eig_min) const
{
if (d.getDepth() == 0) {
QuasiTriangular* t = matrixK->clone(r);
t->solvePre(d, eig_min);
delete t;
} else {
for (const_diag_iter di = matrixF->diag_begin();
di != matrixF->diag_end();
++di) {
if ((*di).isReal()) {
solviRealAndEliminate(r, di, d, eig_min);
} else {
solviComplexAndEliminate(r, di, d, eig_min);
}
}
}
}
void TriangularSylvester::solvii(double alpha, double beta1, double beta2,
KronVector& d1, KronVector& d2,
double& eig_min) const
{
KronVector d1tmp(d1);
KronVector d2tmp(d2);
linEval(alpha, beta1, beta2, d1, d2, d1tmp, d2tmp);
solviip(alpha, beta1*beta2, d1, eig_min);
solviip(alpha, beta1*beta2, d2, eig_min);
}
void TriangularSylvester::solviip(double alpha, double betas,
KronVector& d, double& eig_min) const
{
// quick exit to solvi if betas is small
if (betas < diag_zero_sq) {
solvi(alpha, d, eig_min);
solvi(alpha, d, eig_min);
return;
}
if (d.getDepth() == 0) {
double aspbs = alpha*alpha+betas;
QuasiTriangular* t= matrixK->clone(2*alpha, aspbs, *matrixKK);
t->solvePre(d, eig_min);
delete t;
} else {
const_diag_iter di = matrixF->diag_begin();
const_diag_iter dsi = matrixFF->diag_begin();
for (; di != matrixF->diag_end(); ++di, ++dsi) {
if ((*di).isReal()) {
solviipRealAndEliminate(alpha, betas, di, dsi, d, eig_min);
} else {
solviipComplexAndEliminate(alpha, betas, di, dsi, d, eig_min);
}
}
}
}
void TriangularSylvester::solviRealAndEliminate(double r, const_diag_iter di,
KronVector& d, double& eig_min) const
{
// di is real
int jbar = (*di).getIndex();
double f = *((*di).getAlpha());
KronVector dj(d, jbar);
// solve system
if (abs(r*f) > diag_zero) {
solvi(r*f, dj, eig_min);
}
// calculate y
KronVector y((const KronVector&)dj);
KronUtils::multKron(*matrixF, *matrixK, y);
y.mult(r);
double divisor = 1.0;
solviEliminateReal(di, d, y, divisor);
}
void TriangularSylvester::solviEliminateReal(const_diag_iter di, KronVector& d,
const KronVector& y, double divisor) const
{
for (const_row_iter ri = matrixF->row_begin(*di);
ri != matrixF->row_end(*di);
++ri) {
KronVector dk(d, ri.getCol());
dk.add(-(*ri)/divisor, y);
}
}
void TriangularSylvester::solviComplexAndEliminate(double r, const_diag_iter di,
KronVector& d, double& eig_min) const
{
// di is complex
int jbar = (*di).getIndex();
// pick data
double alpha = *(*di).getAlpha();
double beta1 = (*di).getBeta2();
double beta2 = -(*di).getBeta1();
double aspbs = (*di).getDeterminant();
KronVector dj(d, jbar);
KronVector djj(d, jbar+1);
// solve
if (r*r*aspbs > diag_zero_sq) {
solvii(r*alpha, r*beta1, r*beta2, dj, djj, eig_min);
}
KronVector y1(dj);
KronVector y2(djj);
KronUtils::multKron(*matrixF, *matrixK, y1);
KronUtils::multKron(*matrixF, *matrixK, y2);
y1.mult(r);
y2.mult(r);
double divisor = 1.0;
solviEliminateComplex(di, d, y1, y2, divisor);
}
void TriangularSylvester::solviEliminateComplex(const_diag_iter di, KronVector& d,
const KronVector& y1, const KronVector& y2,
double divisor) const
{
for (const_row_iter ri = matrixF->row_begin(*di);
ri != matrixF->row_end(*di);
++ri) {
KronVector dk(d, ri.getCol());
dk.add(-ri.a()/divisor, y1);
dk.add(-ri.b()/divisor, y2);
}
}
void TriangularSylvester::solviipRealAndEliminate(double alpha, double betas,
const_diag_iter di, const_diag_iter dsi,
KronVector& d, double& eig_min) const
{
// di, and dsi are real
int jbar = (*di).getIndex();
double aspbs = alpha*alpha+betas;
// pick data
double f = *((*di).getAlpha());
double fs = f*f;
KronVector dj(d, jbar);
// solve
if (fs*aspbs > diag_zero_sq) {
solviip(f*alpha, fs*betas, dj, eig_min);
}
KronVector y1((const KronVector&)dj);
KronVector y2((const KronVector&)dj);
KronUtils::multKron(*matrixF, *matrixK, y1);
y1.mult(2*alpha);
KronUtils::multKron(*matrixFF, *matrixKK, y2);
y2.mult(aspbs);
double divisor = 1.0;
double divisor2 = 1.0;
solviipEliminateReal(di, dsi, d, y1, y2, divisor, divisor2);
}
void TriangularSylvester::solviipEliminateReal(const_diag_iter di, const_diag_iter dsi,
KronVector& d,
const KronVector& y1, const KronVector& y2,
double divisor, double divisor2) const
{
const_row_iter ri = matrixF->row_begin(*di);
const_row_iter rsi = matrixFF->row_begin(*dsi);
for (; ri != matrixF->row_end(*di); ++ri, ++rsi) {
KronVector dk(d, ri.getCol());
dk.add(-(*ri)/divisor, y1);
dk.add(-(*rsi)/divisor2, y2);
}
}
void TriangularSylvester::solviipComplexAndEliminate(double alpha, double betas,
const_diag_iter di, const_diag_iter dsi,
KronVector& d, double& eig_min) const
{
// di, and dsi are complex
int jbar = (*di).getIndex();
double aspbs = alpha*alpha+betas;
// pick data
double gamma = *((*di).getAlpha());
double delta1 = (*di).getBeta2(); // swap because of transpose
double delta2 = -(*di).getBeta1();
double gspds = (*di).getDeterminant();
KronVector dj(d, jbar);
KronVector djj(d, jbar+1);
if (gspds*aspbs > diag_zero_sq) {
solviipComplex(alpha, betas, gamma, delta1, delta2, dj, djj, eig_min);
}
// here dj, djj is solution, set y1, y2, y11, y22
// y1
KronVector y1((const KronVector&) dj);
KronUtils::multKron(*matrixF, *matrixK, y1);
y1.mult(2*alpha);
// y11
KronVector y11((const KronVector&) djj);
KronUtils::multKron(*matrixF, *matrixK, y11);
y11.mult(2*alpha);
// y2
KronVector y2((const KronVector&) dj);
KronUtils::multKron(*matrixFF, *matrixKK, y2);
y2.mult(aspbs);
// y22
KronVector y22((const KronVector&) djj);
KronUtils::multKron(*matrixFF, *matrixKK, y22);
y22.mult(aspbs);
double divisor = 1.0;
solviipEliminateComplex(di, dsi, d, y1, y11, y2, y22, divisor);
}
void TriangularSylvester::solviipComplex(double alpha, double betas, double gamma,
double delta1, double delta2,
KronVector& d1, KronVector& d2,
double& eig_min) const
{
KronVector d1tmp(d1);
KronVector d2tmp(d2);
quaEval(alpha, betas, gamma, delta1, delta2,
d1, d2, d1tmp, d2tmp);
double delta = sqrt(delta1*delta2);
double beta = sqrt(betas);
double a1 = alpha*gamma - beta*delta;
double b1 = alpha*delta + gamma*beta;
double a2 = alpha*gamma + beta*delta;
double b2 = alpha*delta - gamma*beta;
solviip(a2, b2*b2, d1, eig_min);
solviip(a1, b1*b1, d1, eig_min);
solviip(a2, b2*b2, d2, eig_min);
solviip(a1, b1*b1, d2, eig_min);
}
void TriangularSylvester::solviipEliminateComplex(const_diag_iter di, const_diag_iter dsi,
KronVector& d,
const KronVector& y1, const KronVector& y11,
const KronVector& y2, const KronVector& y22,
double divisor) const
{
const_row_iter ri = matrixF->row_begin(*di);
const_row_iter rsi = matrixFF->row_begin(*dsi);
for (; ri != matrixF->row_end(*di); ++ri, ++rsi) {
KronVector dk(d, ri.getCol());
dk.add(-ri.a()/divisor, y1);
dk.add(-ri.b()/divisor, y11);
dk.add(-rsi.a()/divisor, y2);
dk.add(-rsi.b()/divisor, y22);
}
}
void TriangularSylvester::linEval(double alpha, double beta1, double beta2,
KronVector& x1, KronVector& x2,
const ConstKronVector& d1, const ConstKronVector& d2) const
{
KronVector d1tmp(d1); // make copy
KronVector d2tmp(d2); // make copy
KronUtils::multKron(*matrixF, *matrixK, d1tmp);
KronUtils::multKron(*matrixF, *matrixK, d2tmp);
x1 = d1;
x2 = d2;
Vector::mult2a(alpha, beta1, -beta2, x1, x2, d1tmp, d2tmp);
}
void TriangularSylvester::quaEval(double alpha, double betas,
double gamma, double delta1, double delta2,
KronVector& x1, KronVector& x2,
const ConstKronVector& d1, const ConstKronVector& d2) const
{
KronVector d1tmp(d1); // make copy
KronVector d2tmp(d2); // make copy
KronUtils::multKron(*matrixF, *matrixK, d1tmp);
KronUtils::multKron(*matrixF, *matrixK, d2tmp);
x1 = d1;
x2 = d2;
Vector::mult2a(2*alpha*gamma, 2*alpha*delta1, -2*alpha*delta2,
x1, x2, d1tmp, d2tmp);
d1tmp = d1; // restore to d1
d2tmp = d2; // restore to d2
KronUtils::multKron(*matrixFF, *matrixKK, d1tmp);
KronUtils::multKron(*matrixFF, *matrixKK, d2tmp);
double aspbs = alpha*alpha + betas;
double gspds = gamma*gamma - delta1*delta2;
Vector::mult2a(aspbs*gspds, 2*aspbs*gamma*delta1, -2*aspbs*gamma*delta2,
x1, x2, d1tmp, d2tmp);
}
double TriangularSylvester::getEigSep(int depth) const
{
int f_size = matrixF->getDiagonal().getSize();
Vector feig(2*f_size);
matrixF->getDiagonal().getEigenValues(feig);
int k_size = matrixK->getDiagonal().getSize();
Vector keig(2*k_size);
matrixK->getDiagonal().getEigenValues(keig);
KronVector eig(f_size, 2*k_size, depth);
multEigVector(eig, feig, keig);
double min = 1.0e20;
for (int i = 0; i < eig.length()/2; i++) {
double alpha = eig[2*i];
double beta = eig[2*i+1];
double ss = (alpha+1)*(alpha+1)+beta*beta;
if (min > ss)
min = ss;
}
return min;
}
void TriangularSylvester::multEigVector(KronVector& eig, const Vector& feig,
const Vector& keig)
{
int depth = eig.getDepth();
int m = eig.getM();
int n = eig.getN();
if (depth == 0) {
eig = keig;
} else {
KronVector aux(m, n, depth-1);
multEigVector(aux, feig, keig);
for (int i = 0; i < m; i++) {
KronVector eigi(eig, i);
eigi.zeros();
eigi.add(&feig[2*i], aux);
}
}
}
// Local Variables:
// mode:C++
// End:
|