File: TriangularSylvester.cpp

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (392 lines) | stat: -rw-r--r-- 11,084 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
/* $Header: /var/lib/cvs/dynare_cpp/sylv/cc/TriangularSylvester.cpp,v 1.1.1.1 2004/06/04 13:00:59 kamenik Exp $ */

/* Tag $Name:  $ */

#include "TriangularSylvester.h"
#include "QuasiTriangularZero.h"
#include "KronUtils.h"
#include "BlockDiagonal.h"

#include <cstdio>
#include <cmath>

double TriangularSylvester::diag_zero = 1.e-15;
double TriangularSylvester::diag_zero_sq = 1.e-30;

TriangularSylvester::TriangularSylvester(const QuasiTriangular& k,
										 const QuasiTriangular& f)
	: SylvesterSolver(k, f),
	  matrixKK(matrixK->clone(2, *matrixK)),
	  matrixFF(new QuasiTriangular(2, *matrixF))
{
}

TriangularSylvester::TriangularSylvester(const SchurDecompZero& kdecomp,
										 const SchurDecomp& fdecomp)
	: SylvesterSolver(kdecomp, fdecomp),
	  matrixKK(matrixK->clone(2, *matrixK)),
	  matrixFF(new QuasiTriangular(2, *matrixF))
{
}

TriangularSylvester::TriangularSylvester(const SchurDecompZero& kdecomp,
										 const SimilarityDecomp& fdecomp)
	: SylvesterSolver(kdecomp, fdecomp),
	  matrixKK(matrixK->clone(2, *matrixK)),
	  matrixFF(new BlockDiagonal(2, *matrixF))
{
}

TriangularSylvester::~TriangularSylvester()
{
	delete matrixKK;
	delete matrixFF;
}

void TriangularSylvester::print() const
{
	printf("matrix K (%d):\n",matrixK->getDiagonal().getSize());
	matrixK->print();
	printf("matrix F (%d):\n",matrixF->getDiagonal().getSize());
	matrixF->print();
}

void TriangularSylvester::solve(SylvParams& pars, KronVector& d) const
{
	double eig_min = 1e30;
	solvi(1., d, eig_min);
	pars.eig_min = sqrt(eig_min);
}

void TriangularSylvester::solvi(double r, KronVector& d, double& eig_min) const
{
	if (d.getDepth() == 0) {
		QuasiTriangular* t = matrixK->clone(r);
		t->solvePre(d, eig_min);
		delete t;
	} else {
		for (const_diag_iter di = matrixF->diag_begin();
			 di != matrixF->diag_end();
			 ++di) {
			if ((*di).isReal()) {
				solviRealAndEliminate(r, di, d, eig_min);
			} else {
				solviComplexAndEliminate(r, di, d, eig_min);
			}
		}
	}
}


void TriangularSylvester::solvii(double alpha, double beta1, double beta2,
								 KronVector& d1, KronVector& d2,
								 double& eig_min) const
{
	KronVector d1tmp(d1);
	KronVector d2tmp(d2);
	linEval(alpha, beta1, beta2, d1, d2, d1tmp, d2tmp);
	solviip(alpha, beta1*beta2, d1, eig_min);
	solviip(alpha, beta1*beta2, d2, eig_min);
}


void TriangularSylvester::solviip(double alpha, double betas,
								  KronVector& d, double& eig_min) const
{
	// quick exit to solvi if betas is small
	if (betas < diag_zero_sq) {
		solvi(alpha, d, eig_min);
		solvi(alpha, d, eig_min);
		return;
	}

	if (d.getDepth() == 0) {
		double aspbs = alpha*alpha+betas;
		QuasiTriangular* t= matrixK->clone(2*alpha, aspbs, *matrixKK);
		t->solvePre(d, eig_min);
		delete t;
	} else {
		const_diag_iter di = matrixF->diag_begin();
		const_diag_iter dsi = matrixFF->diag_begin();
		for (; di != matrixF->diag_end(); ++di, ++dsi) {
			if ((*di).isReal()) {
				solviipRealAndEliminate(alpha, betas, di, dsi, d, eig_min);
			} else {
				solviipComplexAndEliminate(alpha, betas, di, dsi, d, eig_min);
			}
		}
	}
}


void TriangularSylvester::solviRealAndEliminate(double r, const_diag_iter di,
												KronVector& d, double& eig_min) const
{
	// di is real
	int jbar = (*di).getIndex();
	double f = *((*di).getAlpha());
	KronVector dj(d, jbar);
	// solve system
	if (abs(r*f) > diag_zero) { 
		solvi(r*f, dj, eig_min);
	}
	// calculate y
	KronVector y((const KronVector&)dj);
	KronUtils::multKron(*matrixF, *matrixK, y);
	y.mult(r);
	double divisor = 1.0;
	solviEliminateReal(di, d, y, divisor);
}

void TriangularSylvester::solviEliminateReal(const_diag_iter di, KronVector& d,
											 const KronVector& y, double divisor) const
{
	for (const_row_iter ri = matrixF->row_begin(*di);
		 ri != matrixF->row_end(*di);
		 ++ri) {
		KronVector dk(d, ri.getCol());
		dk.add(-(*ri)/divisor, y);
	}
}

void TriangularSylvester::solviComplexAndEliminate(double r, const_diag_iter di,
												   KronVector& d, double& eig_min) const
{
	// di is complex
	int jbar = (*di).getIndex();
	// pick data
	double alpha = *(*di).getAlpha();
	double beta1 = (*di).getBeta2();
	double beta2 = -(*di).getBeta1();
	double aspbs = (*di).getDeterminant();
	KronVector dj(d, jbar);
	KronVector djj(d, jbar+1);
	// solve
	if (r*r*aspbs > diag_zero_sq) { 
		solvii(r*alpha, r*beta1, r*beta2, dj, djj, eig_min);
	}
	KronVector y1(dj);
	KronVector y2(djj);
	KronUtils::multKron(*matrixF, *matrixK, y1);
	KronUtils::multKron(*matrixF, *matrixK, y2);
	y1.mult(r);
	y2.mult(r);
	double divisor = 1.0;
	solviEliminateComplex(di, d, y1, y2, divisor);
}

void TriangularSylvester::solviEliminateComplex(const_diag_iter di, KronVector& d,
												const KronVector& y1, const KronVector& y2,
												double divisor) const
{
	for (const_row_iter ri = matrixF->row_begin(*di);
		 ri != matrixF->row_end(*di);
		 ++ri) {
		KronVector dk(d, ri.getCol());
		dk.add(-ri.a()/divisor, y1);
		dk.add(-ri.b()/divisor, y2);
	}
}

void TriangularSylvester::solviipRealAndEliminate(double alpha, double betas,
												  const_diag_iter di, const_diag_iter dsi,
												  KronVector& d, double& eig_min) const
{
	// di, and dsi are real		
	int jbar = (*di).getIndex();
	double aspbs = alpha*alpha+betas;
	// pick data
	double f = *((*di).getAlpha());
	double fs = f*f;
	KronVector dj(d, jbar);
	// solve
	if (fs*aspbs > diag_zero_sq) {
		solviip(f*alpha, fs*betas, dj, eig_min);
	}
	KronVector y1((const KronVector&)dj);
	KronVector y2((const KronVector&)dj);
	KronUtils::multKron(*matrixF, *matrixK, y1);
	y1.mult(2*alpha);
	KronUtils::multKron(*matrixFF, *matrixKK, y2);
	y2.mult(aspbs);
	double divisor = 1.0;
	double divisor2 = 1.0;
	solviipEliminateReal(di, dsi, d, y1, y2, divisor, divisor2);
}

void TriangularSylvester::solviipEliminateReal(const_diag_iter di, const_diag_iter dsi,
											   KronVector& d,
											   const KronVector& y1, const KronVector& y2,
											   double divisor, double divisor2) const
{
	const_row_iter ri = matrixF->row_begin(*di);
	const_row_iter rsi = matrixFF->row_begin(*dsi);
	for (; ri != matrixF->row_end(*di); ++ri, ++rsi) {
		KronVector dk(d, ri.getCol());
		dk.add(-(*ri)/divisor, y1);
		dk.add(-(*rsi)/divisor2, y2);
	}
} 

void TriangularSylvester::solviipComplexAndEliminate(double alpha, double betas,
													 const_diag_iter di, const_diag_iter dsi,
													 KronVector& d, double& eig_min) const
{
	// di, and dsi are complex
	int jbar = (*di).getIndex();
	double aspbs = alpha*alpha+betas;
	// pick data
	double gamma = *((*di).getAlpha());
	double delta1 = (*di).getBeta2(); // swap because of transpose
	double delta2 = -(*di).getBeta1();
	double gspds = (*di).getDeterminant();
	KronVector dj(d, jbar);
	KronVector djj(d, jbar+1);
	if (gspds*aspbs > diag_zero_sq) {
		solviipComplex(alpha, betas, gamma, delta1, delta2, dj, djj, eig_min);
	}
	// here dj, djj is solution, set y1, y2, y11, y22
	// y1
	KronVector y1((const KronVector&) dj);
	KronUtils::multKron(*matrixF, *matrixK, y1);
	y1.mult(2*alpha);
	// y11
	KronVector y11((const KronVector&) djj);
	KronUtils::multKron(*matrixF, *matrixK, y11);
	y11.mult(2*alpha);
	// y2
	KronVector y2((const KronVector&) dj);
	KronUtils::multKron(*matrixFF, *matrixKK, y2);
	y2.mult(aspbs);
	// y22
	KronVector y22((const KronVector&) djj);
	KronUtils::multKron(*matrixFF, *matrixKK, y22);
	y22.mult(aspbs);

	double divisor = 1.0;
	solviipEliminateComplex(di, dsi, d, y1, y11, y2, y22, divisor);
}


void TriangularSylvester::solviipComplex(double alpha, double betas, double gamma,
										 double delta1, double delta2,
										 KronVector& d1, KronVector& d2,
										 double& eig_min) const
{
	KronVector d1tmp(d1);
	KronVector d2tmp(d2);
	quaEval(alpha, betas, gamma, delta1, delta2,
			d1, d2, d1tmp, d2tmp);
	double delta = sqrt(delta1*delta2);
	double beta = sqrt(betas);
	double a1 = alpha*gamma - beta*delta;
	double b1 = alpha*delta + gamma*beta;
	double a2 = alpha*gamma + beta*delta;
	double b2 = alpha*delta - gamma*beta;
	solviip(a2, b2*b2, d1, eig_min);
	solviip(a1, b1*b1, d1, eig_min);
	solviip(a2, b2*b2, d2, eig_min);
	solviip(a1, b1*b1, d2, eig_min);
}

void TriangularSylvester::solviipEliminateComplex(const_diag_iter di, const_diag_iter dsi,
												  KronVector& d,
												  const KronVector& y1, const KronVector& y11,
												  const KronVector& y2, const KronVector& y22,
												  double divisor) const
{
	const_row_iter ri = matrixF->row_begin(*di);
	const_row_iter rsi = matrixFF->row_begin(*dsi);
	for (; ri != matrixF->row_end(*di); ++ri, ++rsi) {
		KronVector dk(d, ri.getCol());
		dk.add(-ri.a()/divisor, y1);
		dk.add(-ri.b()/divisor, y11);
		dk.add(-rsi.a()/divisor, y2);
		dk.add(-rsi.b()/divisor, y22);
	}
}

void TriangularSylvester::linEval(double alpha, double beta1, double beta2,
								  KronVector& x1, KronVector& x2,
								  const ConstKronVector& d1, const ConstKronVector& d2) const
{
	KronVector d1tmp(d1); // make copy
	KronVector d2tmp(d2); // make copy
	KronUtils::multKron(*matrixF, *matrixK, d1tmp);
	KronUtils::multKron(*matrixF, *matrixK, d2tmp);
	x1 = d1;
	x2 = d2;
	Vector::mult2a(alpha, beta1, -beta2, x1, x2, d1tmp, d2tmp);
}

void TriangularSylvester::quaEval(double alpha, double betas,
								  double gamma, double delta1, double delta2,
								  KronVector& x1, KronVector& x2,
								  const ConstKronVector& d1, const ConstKronVector& d2) const
{
	KronVector d1tmp(d1); // make copy
	KronVector d2tmp(d2); // make copy
	KronUtils::multKron(*matrixF, *matrixK, d1tmp);
	KronUtils::multKron(*matrixF, *matrixK, d2tmp);
	x1 = d1;
	x2 = d2;
	Vector::mult2a(2*alpha*gamma, 2*alpha*delta1, -2*alpha*delta2,
				   x1, x2, d1tmp, d2tmp);
	d1tmp = d1; // restore to d1
	d2tmp = d2; // restore to d2
	KronUtils::multKron(*matrixFF, *matrixKK, d1tmp);
	KronUtils::multKron(*matrixFF, *matrixKK, d2tmp);
	double aspbs = alpha*alpha + betas;
	double gspds = gamma*gamma - delta1*delta2;
	Vector::mult2a(aspbs*gspds, 2*aspbs*gamma*delta1, -2*aspbs*gamma*delta2,
				   x1, x2, d1tmp, d2tmp);
}


double TriangularSylvester::getEigSep(int depth) const
{
	int f_size = matrixF->getDiagonal().getSize();
	Vector feig(2*f_size);
	matrixF->getDiagonal().getEigenValues(feig);
	int k_size = matrixK->getDiagonal().getSize();
	Vector keig(2*k_size);
	matrixK->getDiagonal().getEigenValues(keig);
	
	KronVector eig(f_size, 2*k_size, depth);
	multEigVector(eig, feig, keig);

	double min = 1.0e20;
	for (int i = 0; i < eig.length()/2; i++) {
		double alpha = eig[2*i];
		double beta = eig[2*i+1];
		double ss = (alpha+1)*(alpha+1)+beta*beta;
		if (min > ss)
			min = ss;
	}

	return min;
}

void TriangularSylvester::multEigVector(KronVector& eig, const Vector& feig,
										const Vector& keig)
{
	int depth = eig.getDepth();
	int m = eig.getM();
	int n = eig.getN();

	if (depth == 0) {
		eig = keig;
	} else {
		KronVector aux(m, n, depth-1);
		multEigVector(aux, feig, keig);
		for (int i = 0; i < m; i++) {
			KronVector eigi(eig, i);
			eigi.zeros();
			eigi.add(&feig[2*i], aux);
		}
	}
}

// Local Variables:
// mode:C++
// End: