File: int_sequence.cweb

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (351 lines) | stat: -rw-r--r-- 8,568 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
@q $Id: int_sequence.cweb 148 2005-04-19 15:12:26Z kamenik $ @>
@q Copyright 2004, Ondra Kamenik @>

@ Start of {\tt int\_sequence.cpp} file.

@c
#include "int_sequence.h"
#include "symmetry.h"
#include "tl_exception.h"

#include <cstdio>
#include <climits>

@<|IntSequence| constructor code 1@>;
@<|IntSequence| constructor code 2@>;
@<|IntSequence| constructor code 3@>;
@<|IntSequence| constructor code 4@>;
@<|IntSequence::operator=| code@>;
@<|IntSequence::operator==| code@>;
@<|IntSequence::operator<| code@>;
@<|IntSequence::lessEq| code@>;
@<|IntSequence::less| code@>;
@<|IntSequence::sort| code@>;
@<|IntSequence::monotone| code@>;
@<|IntSequence::pmonotone| code@>;
@<|IntSequence::sum| code@>;
@<|IntSequence::mult| code@>;
@<|IntSequence::getPrefixLength| code@>;
@<|IntSequence::getNumDistinct| code@>;
@<|IntSequence::getMax| code@>;
@<|IntSequence::add| code 1@>;
@<|IntSequence::add| code 2@>;
@<|IntSequence::isPositive| code@>;
@<|IntSequence::isConstant| code@>;
@<|IntSequence::isSorted| code@>;
@<|IntSequence::print| code@>;

@ This unfolds a given integer sequence with respect to the given
symmetry. If for example the symmetry is $(2,3)$, and the sequence is
$(a,b)$, then the result is $(a,a,b,b,b)$.

@<|IntSequence| constructor code 1@>=
IntSequence::IntSequence(const Symmetry& sy, const IntSequence& se)
	: data(new int[sy.dimen()]), length(sy.dimen()), destroy(true)
{
	int k = 0;
	for (int i = 0; i < sy.num(); i++)
		for (int j = 0;	 j < sy[i]; j++, k++)
			operator[](k) = se[i];
}


@ This constructs an implied symmetry (implemented as |IntSequence|
from a more general symmetry and equivalence class (implemented as
|vector<int>|). For example, let the general symmetry be $y^3u^2$ and
the equivalence class is $\{0,4\}$ picking up first and fifth
variable, we calculate symmetry (at this point only |IntSequence|)
corresponding to the picked variables. These are $yu$. Thus the
constructed sequence must be $(1,1)$, meaning that we picked one $y$
and one $u$.


@<|IntSequence| constructor code 2@>=
IntSequence::IntSequence(const Symmetry& sy, const vector<int>& se)
	: data(new int[sy.num()]), length(sy.num()), destroy(true)
{
	TL_RAISE_IF(sy.dimen() <= se[se.size()-1],
				"Sequence is not reachable by symmetry in IntSequence()");
	for (int i = 0; i < length; i++) @/
		operator[](i) = 0;

    for (unsigned int i = 0; i < se.size(); i++) @/
		operator[](sy.findClass(se[i]))++;
}

@ This constructs an ordered integer sequence from the given ordered
sequence inserting the given number to the sequence.

@<|IntSequence| constructor code 3@>=
IntSequence::IntSequence(int i, const IntSequence& s)
	: data(new int[s.size()+1]), length(s.size()+1), destroy(true)
{
	int j = 0;
	while (j < s.size() && s[j] < i)
		j++;
	for (int jj = 0; jj < j; jj++)
		operator[](jj) = s[jj];
	operator[](j) = i;
	for (int jj = j; jj < s.size(); jj++)
		operator[](jj+1) = s[jj];
}

@ 
@<|IntSequence| constructor code 4@>=
IntSequence::IntSequence(int i, const IntSequence& s, int pos)
	: data(new int[s.size()+1]), length(s.size()+1), destroy(true)
{
	TL_RAISE_IF(pos < 0 || pos > s.size(),
				"Wrong position for insertion IntSequence constructor");
	for (int jj = 0; jj < pos; jj++)
		operator[](jj) = s[jj];
	operator[](pos) = i;
	for (int jj = pos; jj < s.size(); jj++)
		operator[](jj+1) = s[jj];
}

@ 
@<|IntSequence::operator=| code@>=
const IntSequence& IntSequence::operator=(const IntSequence& s)
 {
	 TL_RAISE_IF(!destroy && length != s.length,
				 "Wrong length for in-place IntSequence::operator=");
	 if (destroy && length != s.length) {
		 delete [] data;
		 data = new int[s.length];
		 destroy = true;
		 length = s.length;
	 }
	 memcpy(data, s.data, sizeof(int)*length);
	 return *this;
 }


@ 
@<|IntSequence::operator==| code@>=
bool IntSequence::operator==(const IntSequence& s) const
{
	if (size() != s.size())
		return false;

	int i = 0;
	while (i < size() && operator[](i) == s[i])
		i++;
	return i == size();
}

@ We need some linear irreflexive ordering, we implement it as
lexicographic ordering without identity.
@<|IntSequence::operator<| code@>=
bool IntSequence::operator<(const IntSequence& s) const
{
	int len = min(size(), s.size());

	int i = 0;
	while (i < len && operator[](i) == s[i])
		i++;
	return (i < s.size() && (i == size() || operator[](i) < s[i]));
}

@ 
@<|IntSequence::lessEq| code@>=
bool IntSequence::lessEq(const IntSequence& s) const
{
	TL_RAISE_IF(size() != s.size(),
				"Sequence with different lengths in IntSequence::lessEq");

	int i = 0;
	while (i < size() && operator[](i) <= s[i])
		i++;
	return (i == size());
}

@ 
@<|IntSequence::less| code@>=
bool IntSequence::less(const IntSequence& s) const
{
	TL_RAISE_IF(size() != s.size(),
				"Sequence with different lengths in IntSequence::less");

	int i = 0;
	while (i < size() && operator[](i) < s[i])
		i++;
	return (i == size());
}

@ This is a bubble sort, all sequences are usually very short, so this
sin might be forgiven.

@<|IntSequence::sort| code@>=
void IntSequence::sort()
{
	for (int i = 0; i < length; i++) {
		int swaps = 0;
		for (int j = 0; j < length-1; j++) {
			if (data[j] > data[j+1]) {
				int s = data[j+1];
				data[j+1] = data[j];
				data[j] = s;
				swaps++;
			}
		}
		if (swaps == 0)
			return;
	}
}

@ Here we monotonize the sequence. If an item is less then its
predecessor, it is equalized.

@<|IntSequence::monotone| code@>=
void IntSequence::monotone()
{
	for (int i = 1; i < length; i++)
		if (data[i-1] > data[i])@/
			data[i] = data[i-1];
}

@ This partially monotones the sequence. The partitioning is done by a
symmetry. So the subsequence given by the symmetry classes are
monotonized. For example, if the symmetry is $y^2u^3$, and the
|IntSequence| is $(5,3,1,6,4)$, the result is $(5,5,1,6,6)$.

@<|IntSequence::pmonotone| code@>=
void IntSequence::pmonotone(const Symmetry& s)
{
	int cum = 0;
	for (int i = 0; i < s.num(); i++) {
		for (int j = cum + 1; j < cum + s[i]; j++)
			if (data[j-1] > data[j])@/
				data[j] = data[j-1];
		cum += s[i];
	}
}

@ This returns sum of all elements. Useful for symmetries.
@<|IntSequence::sum| code@>=
int IntSequence::sum() const
{
	int res = 0;
	for (int i = 0; i < length; i++) @/
		res += operator[](i);
	return res;
}

@ This returns product of subsequent items. Useful for Kronecker product
dimensions.

@<|IntSequence::mult| code@>=
int IntSequence::mult(int i1, int i2) const
{
	int res = 1;
	for (int i = i1; i < i2; i++)@/
		res *= operator[](i);
	return res;
}

@ Return a number of the same items in the beginning of the sequence.
@<|IntSequence::getPrefixLength| code@>=
int IntSequence::getPrefixLength() const
{
	int i = 0;
	while (i+1 < size() && operator[](i+1) == operator[](0))
		i++;
	return i+1;
}

@ This returns a number of distinct items in the sequence. It supposes
that the sequence is ordered. For the empty sequence it returns zero.

@<|IntSequence::getNumDistinct| code@>=
int IntSequence::getNumDistinct() const
{
	int res = 0;
	if (size() > 0)
		res++;
	for (int i = 1; i < size(); i++)
		if (operator[](i) != operator[](i-1))
			res++;
	return res;
}

@ This returns a maximum of the sequence. If the sequence is empty, it
returns the least possible |int| value.

@<|IntSequence::getMax| code@>=
int IntSequence::getMax() const
{
	int res = INT_MIN;
	for (int i = 0; i < size(); i++)
		if (operator[](i) > res)
			res = operator[](i);
	return res;
}

@ 
@<|IntSequence::add| code 1@>=
void IntSequence::add(int i)
{
	for (int j = 0; j < size(); j++)
		operator[](j) += i;
}

@ 
@<|IntSequence::add| code 2@>=
void IntSequence::add(int f, const IntSequence& s)
{
	TL_RAISE_IF(size() != s.size(),
				"Wrong sequence length in IntSequence::add");
	for (int j = 0; j < size(); j++)
		operator[](j) += f*s[j];
}

@ 
@<|IntSequence::isPositive| code@>=
bool IntSequence::isPositive() const
{
	int i = 0;
	while (i < size() && operator[](i) >= 0)
		i++;
	return (i == size());
}

@ 
@<|IntSequence::isConstant| code@>=
bool IntSequence::isConstant() const
{
	bool res = true;
	int i = 1;
	while (res && i < size()) {
		res = res && operator[](0) == operator[](i);
		i++;
	}
	return res;
}

@ 
@<|IntSequence::isSorted| code@>=
bool IntSequence::isSorted() const
{
	bool res = true;
	int i = 1;
	while (res && i < size()) {
		res = res && operator[](i-1) <= operator[](i);
		i++;
	}
	return res;
}



@ Debug print.
@<|IntSequence::print| code@>=
void IntSequence::print() const
{
	printf("[");
	for (int i = 0; i < size(); i++)@/
		printf("%2d ",operator[](i));
	printf("]\n");
}

@ End of {\tt int\_sequence.cpp} file.