File: sparse_tensor.cweb

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (274 lines) | stat: -rw-r--r-- 8,036 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
@q $Id: sparse_tensor.cweb 1258 2007-05-11 13:59:10Z kamenik $ @>
@q Copyright 2004, Ondra Kamenik @>

@ Start of {\tt sparse\_tensor.cpp} file.

@c
#include "sparse_tensor.h"
#include "fs_tensor.h"
#include "tl_exception.h"

#include <cmath>

@<|SparseTensor::insert| code@>;
@<|SparseTensor::isFinite| code@>;
@<|SparseTensor::getFoldIndexFillFactor| code@>;
@<|SparseTensor::getUnfoldIndexFillFactor| code@>;
@<|SparseTensor::print| code@>;
@<|FSSparseTensor| constructor code@>;
@<|FSSparseTensor| copy constructor code@>;
@<|FSSparseTensor::insert| code@>;
@<|FSSparseTensor::multColumnAndAdd| code@>;
@<|FSSparseTensor::print| code@>;
@<|GSSparseTensor| slicing constructor@>;
@<|GSSparseTensor::insert| code@>;
@<|GSSparseTensor::print| code@>;

@ This is straightforward. Before we insert anything, we do a few
checks. Then we reset |first_nz_row| and |last_nz_row| if necessary.

@<|SparseTensor::insert| code@>=
void SparseTensor::insert(const IntSequence& key, int r, double c)
{
	TL_RAISE_IF(r < 0 || r >= nr,
				"Row number out of dimension of tensor in SparseTensor::insert");
	TL_RAISE_IF(key.size() != dimen(),
				"Wrong length of key in SparseTensor::insert");
	TL_RAISE_IF(! std::isfinite(c),
				"Insertion of non-finite value in SparseTensor::insert");

	iterator first_pos = m.lower_bound(key);
	@<check that pair |key| and |r| is unique@>;
	m.insert(first_pos, Map::value_type(key, Item(r,c)));
	if (first_nz_row > r)
		first_nz_row = r;
	if (last_nz_row < r)
		last_nz_row = r;
}

@ 
@<check that pair |key| and |r| is unique@>=
	iterator last_pos = m.upper_bound(key);
	for (iterator it = first_pos; it != last_pos; ++it)
		if ((*it).second.first == r) {
			TL_RAISE("Duplicate <key, r> insertion in SparseTensor::insert");
			return;
		}

@ This returns true if all items are finite (not Nan nor Inf).
@<|SparseTensor::isFinite| code@>=
bool SparseTensor::isFinite() const
{
	bool res = true;
	const_iterator run = m.begin();
	while (res && run != m.end()) {
		if (! std::isfinite((*run).second.second))
			res = false;
		++run;
	}
	return res;
}

@ This returns a ratio of a number of non-zero columns in folded
tensor to the total number of columns.

@<|SparseTensor::getFoldIndexFillFactor| code@>=
double SparseTensor::getFoldIndexFillFactor() const
{
	int cnt = 0;
	const_iterator start_col = m.begin();
	while (start_col != m.end()) {
		cnt++;
		const IntSequence& key = (*start_col).first;
		start_col = m.upper_bound(key);
	}

	return ((double)cnt)/ncols();
}

@ This returns a ratio of a number of non-zero columns in unfolded
tensor to the total number of columns.

@<|SparseTensor::getUnfoldIndexFillFactor| code@>=
double SparseTensor::getUnfoldIndexFillFactor() const
{
	int cnt = 0;
	const_iterator start_col = m.begin();
	while (start_col != m.end()) {
		const IntSequence& key = (*start_col).first;
		Symmetry s(key);
		cnt += Tensor::noverseq(s);
		start_col = m.upper_bound(key);
	}

	return ((double)cnt)/ncols();
}



@ This prints the fill factor and all items.
@<|SparseTensor::print| code@>=
void SparseTensor::print() const
{
	printf("Fill: %3.2f %%\n", 100*getFillFactor());
	const_iterator start_col = m.begin();
	while (start_col != m.end()) {
		const IntSequence& key = (*start_col).first;
		printf("Column: ");key.print();
		const_iterator end_col = m.upper_bound(key);
		int cnt = 1;
		for (const_iterator run = start_col; run != end_col; ++run, cnt++) {
			if ((cnt/7)*7 == cnt)
				printf("\n");
			printf("%d(%6.2g)  ", (*run).second.first, (*run).second.second);
		}
		printf("\n");
		start_col = end_col;
	}
}



@ 
@<|FSSparseTensor| constructor code@>=
FSSparseTensor::FSSparseTensor(int d, int nvar, int r)
	: SparseTensor(d, r, FFSTensor::calcMaxOffset(nvar, d)),
	  nv(nvar), sym(d)
{}

@ 
@<|FSSparseTensor| copy constructor code@>=
FSSparseTensor::FSSparseTensor(const FSSparseTensor& t)
	: SparseTensor(t),
	  nv(t.nvar()), sym(t.sym)
{}

@ 
@<|FSSparseTensor::insert| code@>=
void FSSparseTensor::insert(const IntSequence& key, int r, double c)
{
	TL_RAISE_IF(!key.isSorted(),
				"Key is not sorted in FSSparseTensor::insert");
	TL_RAISE_IF(key[key.size()-1] >= nv || key[0] < 0,
				"Wrong value of the key in FSSparseTensor::insert"); 
	SparseTensor::insert(key, r, c);
}

@ We go through the tensor |t| which is supposed to have single
column. If the item of |t| is nonzero, we make a key by sorting the
index, and then we go through all items having the same key (it is its
column), obtain the row number and the element, and do the
multiplication.

The test for non-zero is |a != 0.0|, since there will be items which
are exact zeros.

I have also tried to make the loop through the sparse tensor outer, and
find index of tensor |t| within the loop. Surprisingly, it is little
slower (for monomial tests with probability of zeros equal 0.3). But
everything depends how filled is the sparse tensor.

@<|FSSparseTensor::multColumnAndAdd| code@>=
void FSSparseTensor::multColumnAndAdd(const Tensor& t, Vector& v) const
{
	@<check compatibility of input parameters@>;
	for (Tensor::index it = t.begin(); it != t.end(); ++it) {
		int ind = *it;
		double a = t.get(ind, 0); 
		if (a != 0.0) {
			IntSequence key(it.getCoor());
			key.sort();
			@<check that |key| is within the range@>;
			const_iterator first_pos = m.lower_bound(key);
			const_iterator last_pos = m.upper_bound(key);
			for (const_iterator cit = first_pos; cit != last_pos; ++cit) {
				int r = (*cit).second.first;
				double c = (*cit).second.second;
				v[r] += c * a;
			}
		}
	}
}


@ 
@<check compatibility of input parameters@>=
	TL_RAISE_IF(v.length() != nrows(),
				"Wrong size of output vector in FSSparseTensor::multColumnAndAdd");
	TL_RAISE_IF(t.dimen() != dimen(),
				"Wrong dimension of tensor in FSSparseTensor::multColumnAndAdd");
	TL_RAISE_IF(t.ncols() != 1,
				"The input tensor is not single-column in FSSparseTensor::multColumnAndAdd");


@ 
@<check that |key| is within the range@>=
	TL_RAISE_IF(key[0] < 0 || key[key.size()-1] >= nv,
				"Wrong coordinates of index in FSSparseTensor::multColumnAndAdd");

@ 
@<|FSSparseTensor::print| code@>=
void FSSparseTensor::print() const
{
	printf("FS Sparse tensor: dim=%d, nv=%d, (%dx%d)\n", dim, nv, nr, nc);
	SparseTensor::print();
}

@ This is the same as |@<|FGSTensor| slicing from |FSSparseTensor|@>|. 
@<|GSSparseTensor| slicing constructor@>=
GSSparseTensor::GSSparseTensor(const FSSparseTensor& t, const IntSequence& ss,
							   const IntSequence& coor, const TensorDimens& td)
	: SparseTensor(td.dimen(), t.nrows(), td.calcFoldMaxOffset()),
	  tdims(td)
{
	@<set |lb| and |ub| to lower and upper bounds of slice indices@>;

	FSSparseTensor::const_iterator lbi = t.getMap().lower_bound(lb);
	FSSparseTensor::const_iterator ubi = t.getMap().upper_bound(ub);
	for (FSSparseTensor::const_iterator run = lbi; run != ubi; ++run) {
		if (lb.lessEq((*run).first) && (*run).first.lessEq(ub)) {
			IntSequence c((*run).first);
			c.add(-1, lb);
			insert(c, (*run).second.first, (*run).second.second);
		}
	}

}

@ This is the same as |@<set |lb| and |ub| to lower and upper bounds
of indices@>| in {\tt gs\_tensor.cpp}, see that file for details.

@<set |lb| and |ub| to lower and upper bounds of slice indices@>=
	IntSequence s_offsets(ss.size(), 0);
	for (int i = 1; i < ss.size(); i++)
		s_offsets[i] = s_offsets[i-1] + ss[i-1];

	IntSequence lb(coor.size());
	IntSequence ub(coor.size());
	for (int i = 0; i < coor.size(); i++) {
		lb[i] = s_offsets[coor[i]];
		ub[i] = s_offsets[coor[i]] + ss[coor[i]] - 1;
	}


@ 
@<|GSSparseTensor::insert| code@>=
void GSSparseTensor::insert(const IntSequence& s, int r, double c)
{
	TL_RAISE_IF(! s.less(tdims.getNVX()),
				"Wrong coordinates of index in GSSparseTensor::insert");
	SparseTensor::insert(s, r, c);
}

@ 
@<|GSSparseTensor::print| code@>=
void GSSparseTensor::print() const
{
	printf("GS Sparse tensor: (%dx%d)\nSymmetry: ", nr, nc);
	tdims.getSym().print();
	printf("NVS: ");
	tdims.getNVS().print();
	SparseTensor::print();
}

@ End of {\tt sparse\_tensor.cpp} file.