File: stack_container.hweb

package info (click to toggle)
dynare 4.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,408 kB
  • sloc: cpp: 84,998; ansic: 29,058; pascal: 13,843; sh: 4,833; objc: 4,236; yacc: 3,622; makefile: 2,278; lex: 1,541; python: 236; lisp: 69; xml: 8
file content (771 lines) | stat: -rw-r--r-- 24,338 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
@q $Id: stack_container.hweb 745 2006-05-09 13:20:00Z kamenik $ @>
@q Copyright 2004, Ondra Kamenik @>

@*2 Stack of containers. Start of {\tt stack\_container.h} file.

Here we develop abstractions for stacked containers of tensors. For
instance, in perturbation methods for SDGE we need function
$$z(y,u,u',\sigma)=\left[\matrix{G(y,u,u',\sigma)\cr g(y,u,\sigma)\cr y\cr u}\right]$$
and we need to calculate one step of Faa Di Bruno formula
$$\left[B_{s^k}\right]_{\alpha_1\ldots\alpha_l}=\left[f_{z^l}\right]_{\beta_1\ldots\beta_l}
\sum_{c\in M_{l,k}}\prod_{m=1}^l\left[z_{s^k(c_m)}\right]^{\beta_m}_{c_m(\alpha)}$$
where we have containers for derivatives of $G$ and $g$.

The main purpose of this file is to define abstractions for stack of
containers and possibly raw variables, and code |multAndAdd| method
calculating (one step of) the Faa Di Bruno formula for folded and
unfolded tensors. Note also, that tensors $\left[f_{z^l}\right]$ are
sparse.

The abstractions are built as follows. At the top, there is an
interface describing stack of columns. It contains pure virtual
methods needed for manipulating the container stack. For technical
reasons it is a template. Both versions (folded, and unfolded) provide
all interface necessary for implementation of |multAndAdd|. The second
way of inheritance is first general implementation of the interface
|StackContainer|, and then specific (|ZContainer| for our specific
$z$). The only method which is virtual also after |StackContainer| is
|getType|, which is implemented in the specialization and determines
behaviour of the stack. The complete classes are obtained by
inheriting from the both branches, as it is drawn below:

\def\drawpenta#1#2#3#4#5{%
\hbox{$
\hgrid=40pt\vgrid=20pt%
\sarrowlength=25pt%
\gridcommdiag{%
&&\hbox{#1}&&\cr
&\llap{virtual}\arrow(-1,-1)&&\arrow(1,-1)\rlap{virtual}&\cr
\hbox{#2}&&&&\hbox{#3}\cr
\arrow(0,-1)&&&&\cr
\hbox{#4}&&&
{\multiply\sarrowlength by 63\divide\sarrowlength by 50\arrow(-1,-2)}&\cr
&\arrow(1,-1)&&&\cr
&&\hbox{#5}&&\cr
}$}}

\centerline{
\drawpenta{|StackContainerInterface<FGSTensor>|}{|StackContainer<FGSTensor>|}%
	      {|FoldedStackContainer|}{|ZContainer<FGSTensor>|}{|FoldedZContainer|}
}

\centerline{
\drawpenta{|StackContainerInterface<UGSTensor>|}{|StackContainer<UGSTensor>|}%
	      {|UnfoldedStackContainer|}{|ZContainer<UGSTensor>|}{|UnfoldedZContainer|}
}

We have also two supporting classes |StackProduct| and |KronProdStack|
and a number of worker classes used as threads.

@s StackContainerInterface int
@s StackContainer int
@s ZContainer int
@s FoldedStackContainer int
@s UnfoldedStackContainer int
@s FoldedZContainer int
@s UnfoldedZContainer int
@s WorkerFoldMAADense int
@s WorkerFoldMAASparse1 int
@s WorkerFoldMAASparse2 int
@s WorkerFoldMAASparse4 int
@s WorkerUnfoldMAADense int
@s WorkerUnfoldMAASparse1 int
@s WorkerUnfoldMAASparse2 int
@s GContainer int
@s FoldedGContainer int
@s UnfoldedGContainer int
@s StackProduct int
@s KronProdStack int

@c
#ifndef STACK_CONTAINER_H
#define STACK_CONTAINER_H

#include "int_sequence.h"
#include "equivalence.h"
#include "tl_static.h"
#include "t_container.h"
#include "kron_prod.h"
#include "permutation.h"
#include "sthread.h"

@<|StackContainerInterface| class declaration@>;
@<|StackContainer| class declaration@>;
@<|FoldedStackContainer| class declaration@>;
@<|UnfoldedStackContainer| class declaration@>;
@<|ZContainer| class declaration@>;
@<|FoldedZContainer| class declaration@>;
@<|UnfoldedZContainer| class declaration@>;
@<|GContainer| class declaration@>;
@<|FoldedGContainer| class declaration@>;
@<|UnfoldedGContainer| class declaration@>;
@<|StackProduct| class declaration@>;
@<|KronProdStack| class declaration@>;
@<|WorkerFoldMAADense| class declaration@>;
@<|WorkerFoldMAASparse1| class declaration@>;
@<|WorkerFoldMAASparse2| class declaration@>;
@<|WorkerFoldMAASparse4| class declaration@>;
@<|WorkerUnfoldMAADense| class declaration@>;
@<|WorkerUnfoldMAASparse1| class declaration@>;
@<|WorkerUnfoldMAASparse2| class declaration@>;

#endif

@ Here is the general interface to stack container. The subclasses
maintain |IntSequence| of stack sizes, i.e. size of $G$, $g$, $y$, and
$u$. Then a convenience |IntSequence| of stack offsets. Then vector of
pointers to containers, in our example $G$, and $g$.

A non-virtual subclass must implement |getType| which determines
dependency of stack items on symmetries. There are three possible types
for a symmetry. Either the stack item derivative wrt. the symmetry is
a matrix, or a unit matrix, or zero.

Method |isZero| returns true if the derivative of a given stack item
wrt. to given symmetry is zero as defined by |getType| or the
derivative is not present in the container. In this way, we can
implement the formula conditional some of the tensors are zero, which
is not true (they are only missing).

Method |createPackedColumn| returns a vector of stack derivatives with
respect to the given symmetry and of the given column, where all zeros
from zero types, or unit matrices are deleted. See {\tt
kron\_prod2.hweb} for explanation.

@<|StackContainerInterface| class declaration@>=
template <class _Ttype>@;
class StackContainerInterface {
public:@;
	typedef TensorContainer<_Ttype> _Ctype;
	typedef enum {@+ matrix, unit, zero@+} itype;
protected:@;
	const EquivalenceBundle& ebundle;
public:@;
	StackContainerInterface()
		: ebundle(*(tls.ebundle))@+ {}
	virtual ~StackContainerInterface()@+ {}
	virtual const IntSequence& getStackSizes() const =0;
	virtual IntSequence& getStackSizes() =0;
	virtual const IntSequence& getStackOffsets() const =0;
	virtual IntSequence& getStackOffsets() =0;
	virtual int numConts() const =0;
	virtual const _Ctype* getCont(int i) const =0;
	virtual itype getType(int i, const Symmetry& s) const =0;
	virtual int numStacks() const =0;
	virtual bool isZero(int i, const Symmetry& s) const =0;
	virtual const _Ttype* getMatrix(int i, const Symmetry& s) const =0;
	virtual int getLengthOfMatrixStacks(const Symmetry& s) const =0;
	virtual int getUnitPos(const Symmetry& s) const =0;
	virtual Vector* createPackedColumn(const Symmetry& s,
									   const IntSequence& coor,
									   int& iu) const =0;
	int getAllSize() const
		{@+ return getStackOffsets()[numStacks()-1]
			 + getStackSizes()[numStacks()-1];@+}
};

@ Here is |StackContainer|, which implements almost all interface
|StackContainerInterface| but one method |getType| which is left for
implementation to specializations.

@<|StackContainer| class declaration@>=
template <class _Ttype>@;
class StackContainer : virtual public StackContainerInterface<_Ttype> {
public:@;
	typedef StackContainerInterface<_Ttype> _Stype;
	typedef typename StackContainerInterface<_Ttype>::_Ctype _Ctype;
	typedef typename StackContainerInterface<_Ttype>::itype itype;
protected:@;
	int num_conts;
	IntSequence stack_sizes;
	IntSequence stack_offsets;
	const _Ctype** const conts;
public:@;
	StackContainer(int ns, int nc)
		: num_conts(nc), stack_sizes(ns, 0), stack_offsets(ns, 0),
		  conts(new const _Ctype*[nc])@+ {}
	virtual ~StackContainer() @+{delete [] conts;}
	const IntSequence& getStackSizes() const
		{@+ return stack_sizes;@+}
	IntSequence& getStackSizes()
		{@+ return stack_sizes;@+}
	const IntSequence& getStackOffsets() const
		{@+ return stack_offsets;@+}
	IntSequence& getStackOffsets()
		{@+ return stack_offsets;@+}
	int numConts() const
		{@+ return num_conts;}
	const _Ctype* getCont(int i) const
		{@+ return conts[i];@+}
	virtual itype getType(int i, const Symmetry& s) const =0;
	int numStacks() const
		{@+ return stack_sizes.size();@+}
	@<|StackContainer::isZero| code@>;
	@<|StackContainer::getMatrix| code@>;
	@<|StackContainer::getLengthOfMatrixStacks| code@>;
	@<|StackContainer::getUnitPos| code@>;
	@<|StackContainer::createPackedColumn| code@>;
protected:@;
	@<|StackContainer::calculateOffsets| code@>;
};

@ 
@<|StackContainer::isZero| code@>=
bool isZero(int i, const Symmetry& s) const
{
	TL_RAISE_IF(i < 0 || i >= numStacks(),
				"Wrong index to stack in StackContainer::isZero.");
	return (getType(i, s) == _Stype::zero ||
			(getType(i, s) == _Stype::matrix && !conts[i]->check(s)));
}

@ 
@<|StackContainer::getMatrix| code@>=
const _Ttype* getMatrix(int i, const Symmetry& s) const
{
	TL_RAISE_IF(isZero(i, s) || getType(i, s) == _Stype::unit,
				"Matrix is not returned in StackContainer::getMatrix");
	return conts[i]->get(s);
}

@ 
@<|StackContainer::getLengthOfMatrixStacks| code@>=
int getLengthOfMatrixStacks(const Symmetry& s) const
{
	int res = 0;
	int i = 0;
	while (i < numStacks() && getType(i, s) == _Stype::matrix)
		res += stack_sizes[i++];
	return res;
}


@ 
@<|StackContainer::getUnitPos| code@>=
int getUnitPos(const Symmetry& s) const
{
	if (s.dimen() != 1)
		return -1;
	int i = numStacks()-1; 
	while (i >= 0 && getType(i, s) != _Stype::unit)
		i--;
	return i;
}


@ 
@<|StackContainer::createPackedColumn| code@>=
Vector* createPackedColumn(const Symmetry& s,
						   const IntSequence& coor, int& iu) const
{
	TL_RAISE_IF(s.dimen() != coor.size(),
				"Incompatible coordinates for symmetry in StackContainer::createPackedColumn");

	int len = getLengthOfMatrixStacks(s);
	iu = -1;
	int i = 0;
	if (-1 != (i = getUnitPos(s))) {
		iu = stack_offsets[i] + coor[0];
		len++;
	}

	Vector* res = new Vector(len);
	i = 0;
	while (i < numStacks() && getType(i, s) == _Stype::matrix) {
		const _Ttype* t = getMatrix(i, s);
		Tensor::index ind(t, coor);
		Vector subres(*res, stack_offsets[i], stack_sizes[i]);
		subres = ConstVector(ConstGeneralMatrix(*t), *ind);
		i++;
	}
	if (iu != -1)
		(*res)[len-1] = 1;

	return res;
}

@ 
@<|StackContainer::calculateOffsets| code@>=
void calculateOffsets()
{
	stack_offsets[0] = 0;
	for (int i = 1; i < stack_offsets.size(); i++)
		stack_offsets[i] = stack_offsets[i-1] + stack_sizes[i-1];
}

@ 
@<|FoldedStackContainer| class declaration@>=
class WorkerFoldMAADense;
class WorkerFoldMAASparse1;
class WorkerFoldMAASparse2;
class WorkerFoldMAASparse4;
class FoldedStackContainer : virtual public StackContainerInterface<FGSTensor> {
	friend class WorkerFoldMAADense;
	friend class WorkerFoldMAASparse1;
	friend class WorkerFoldMAASparse2;
	friend class WorkerFoldMAASparse4;
public:@;
	static double fill_threshold;
	void multAndAdd(int dim, const TensorContainer<FSSparseTensor>& c ,
					FGSTensor& out) const
		{@+ if (c.check(Symmetry(dim))) multAndAdd(*(c.get(Symmetry(dim))), out);@+}
	void multAndAdd(const FSSparseTensor& t, FGSTensor& out) const;
	void multAndAdd(int dim, const FGSContainer& c, FGSTensor& out) const;
protected:@;
	void multAndAddSparse1(const FSSparseTensor& t, FGSTensor& out) const;
	void multAndAddSparse2(const FSSparseTensor& t, FGSTensor& out) const;
	void multAndAddSparse3(const FSSparseTensor& t, FGSTensor& out) const;
	void multAndAddSparse4(const FSSparseTensor& t, FGSTensor& out) const;
	void multAndAddStacks(const IntSequence& fi, const FGSTensor& g,
						  FGSTensor& out, const void* ad) const;
	void multAndAddStacks(const IntSequence& fi, const GSSparseTensor& g,
						  FGSTensor& out, const void* ad) const;
};


@ 
@<|UnfoldedStackContainer| class declaration@>=
class WorkerUnfoldMAADense;
class WorkerUnfoldMAASparse1;
class WorkerUnfoldMAASparse2;
class UnfoldedStackContainer : virtual public StackContainerInterface<UGSTensor> {
	friend class WorkerUnfoldMAADense;
	friend class WorkerUnfoldMAASparse1;
	friend class WorkerUnfoldMAASparse2;
public:@;
	static double fill_threshold;
	void multAndAdd(int dim, const TensorContainer<FSSparseTensor>& c ,
					UGSTensor& out) const
		{@+ if (c.check(Symmetry(dim))) multAndAdd(*(c.get(Symmetry(dim))), out);@+}
	void multAndAdd(const FSSparseTensor& t, UGSTensor& out) const;
	void multAndAdd(int dim, const UGSContainer& c, UGSTensor& out) const;
protected:@;
	void multAndAddSparse1(const FSSparseTensor& t, UGSTensor& out) const;
	void multAndAddSparse2(const FSSparseTensor& t, UGSTensor& out) const;
	void multAndAddStacks(const IntSequence& fi, const UGSTensor& g,
						  UGSTensor& out, const void* ad) const;
};

@ Here is the specialization of the |StackContainer|. We implement
here the $z$ needed in SDGE context. We implement |getType| and define
a constructor feeding the data and sizes.

Note that it has two containers, the first is dependent on four
variables $G(y^*,u,u',\sigma)$, and the second dependent on three
variables $g(y^*,u,\sigma)$. So that we would be able to stack them,
we make the second container $g$ be dependent on four variables, the
third being $u'$ a dummy and always returning zero if dimension of
$u'$ is positive.

@<|ZContainer| class declaration@>=
template <class _Ttype>@;
class ZContainer : public StackContainer<_Ttype> {
public:@;
	typedef StackContainer<_Ttype> _Tparent;
	typedef StackContainerInterface<_Ttype> _Stype;
	typedef typename _Tparent::_Ctype _Ctype;
	typedef typename _Tparent::itype itype;
	ZContainer(const _Ctype* gss, int ngss, const _Ctype* g, int ng,
			   int ny, int nu)
		: _Tparent(4, 2)
		{
			_Tparent::stack_sizes[0] = ngss; _Tparent::stack_sizes[1] = ng;
			_Tparent::stack_sizes[2] = ny; _Tparent::stack_sizes[3] = nu;
			_Tparent::conts[0] = gss;
			_Tparent::conts[1] = g;
			_Tparent::calculateOffsets();
		}

	@<|ZContainer::getType| code@>;
};

@ Here we say, what happens if we derive $z$. recall the top of the
file, how $z$ looks, and code is clear.

@<|ZContainer::getType| code@>=
itype getType(int i, const Symmetry& s) const
{
	if (i == 0)
		return _Stype::matrix;
	if (i == 1)
		if (s[2] > 0)
			return _Stype::zero;
		else
			return _Stype::matrix;
	if (i == 2)
		if (s == Symmetry(1,0,0,0))
			return _Stype::unit;
		else
			return _Stype::zero;
	if (i == 3)
		if (s == Symmetry(0,1,0,0))
			return _Stype::unit;
		else
			return _Stype::zero;

	TL_RAISE("Wrong stack index in ZContainer::getType");
	return _Stype::zero;
}

@ 
@<|FoldedZContainer| class declaration@>=
class FoldedZContainer : public ZContainer<FGSTensor>,
						 public FoldedStackContainer {
public:@;
	typedef TensorContainer<FGSTensor> _Ctype;
	FoldedZContainer(const _Ctype* gss, int ngss, const _Ctype* g, int ng,
					 int ny, int nu)
		: ZContainer<FGSTensor>(gss, ngss, g, ng, ny, nu)@+ {}
};

@ 
@<|UnfoldedZContainer| class declaration@>=
class UnfoldedZContainer : public ZContainer<UGSTensor>,
						   public UnfoldedStackContainer {
public:@;
	typedef TensorContainer<UGSTensor> _Ctype;
	UnfoldedZContainer(const _Ctype* gss, int ngss, const _Ctype* g, int ng,
					   int ny, int nu)
		: ZContainer<UGSTensor>(gss, ngss, g, ng, ny, nu)@+ {}
};

@ Here we have another specialization of container used in context of
SDGE. We define a container for
$$G(y,u,u',\sigma)=g^{**}(g^*(y,u,\sigma),u',\sigma)$$

For some reason, the symmetry of $g^{**}$ has length $4$ although it
is really dependent on three variables. (To now the reason, consult
|@<|ZContainer| class declaration@>|.) So, it has four stack, the
third one is dummy, and always returns zero. The first stack
corresponds to a container of $g^*$.

@<|GContainer| class declaration@>=
template <class _Ttype>@;
class GContainer : public StackContainer<_Ttype> {
public:@;
	typedef StackContainer<_Ttype> _Tparent;
	typedef StackContainerInterface<_Ttype> _Stype;
	typedef typename StackContainer<_Ttype>::_Ctype _Ctype;
	typedef typename StackContainer<_Ttype>::itype itype;
	GContainer(const _Ctype* gs, int ngs, int nu)
		: StackContainer<_Ttype>(4, 1)
		{
			_Tparent::stack_sizes[0] = ngs; _Tparent::stack_sizes[1] = nu;
			_Tparent::stack_sizes[2] = nu; _Tparent::stack_sizes[3] = 1;
			_Tparent::conts[0] = gs;
			_Tparent::calculateOffsets();
		}

	@<|GContainer::getType| code@>;
};

@ Here we define the dependencies in
$g^{**}(g^*(y,u,\sigma),u',\sigma)$. Also note, that first derivative
of $g^*$ wrt $\sigma$ is always zero, so we also add this
information.

@<|GContainer::getType| code@>=
itype getType(int i, const Symmetry& s) const
{
	if (i == 0)
		if (s[2] > 0 || s == Symmetry(0,0,0,1))
			return _Stype::zero;
		else
			return _Stype::matrix;
	if (i == 1)
		if (s == Symmetry(0,0,1,0))
			return _Stype::unit;
		else
			return _Stype::zero;
	if (i == 2)
		return _Stype::zero;
	if (i == 3)
		if (s == Symmetry(0,0,0,1))
			return _Stype::unit;
		else
			return _Stype::zero;

	TL_RAISE("Wrong stack index in GContainer::getType");
	return _Stype::zero;
}


@ 
@<|FoldedGContainer| class declaration@>=
class FoldedGContainer : public GContainer<FGSTensor>,
						 public FoldedStackContainer {
public:@;
	typedef TensorContainer<FGSTensor> _Ctype;
	FoldedGContainer(const _Ctype* gs, int ngs, int nu)
		: GContainer<FGSTensor>(gs, ngs, nu)@+ {}
};

@ 
@<|UnfoldedGContainer| class declaration@>=
class UnfoldedGContainer : public GContainer<UGSTensor>,
						   public UnfoldedStackContainer {
public:@;
	typedef TensorContainer<UGSTensor> _Ctype;
	UnfoldedGContainer(const _Ctype* gs, int ngs, int nu)
		: GContainer<UGSTensor>(gs, ngs, nu)@+ {}
};


@ Here we have a support class for product of |StackContainer|s. It
only adds a dimension to |StackContainer|. It selects the symmetries
according to equivalence classes passed to the constructor. The
equivalence can have permuted classes by some given
permutation. Nothing else is interesting.

@<|StackProduct| class declaration@>=
template <class _Ttype>@;
class StackProduct {
public:@;
	typedef StackContainerInterface<_Ttype> _Stype;
	typedef typename _Stype::_Ctype _Ctype;
	typedef typename _Stype::itype itype;
protected:@;
	const _Stype& stack_cont;
	InducedSymmetries syms;
	Permutation per;
public:@;
	StackProduct(const _Stype& sc, const Equivalence& e,
				 const Symmetry& os)
		: stack_cont(sc), syms(e, os), per(e)@+ {}
	StackProduct(const _Stype& sc, const Equivalence& e,
				 const Permutation& p, const Symmetry& os)
		: stack_cont(sc), syms(e, p, os), per(e, p)@+ {}
	int dimen() const
		{@+ return syms.size();@+}
	int getAllSize() const
		{@+ return stack_cont.getAllSize();@+}
	const Symmetry& getProdSym(int ip) const
		{@+ return syms[ip];@+}
	@<|StackProduct::isZero| code@>;
	@<|StackProduct::getType| code@>;
	@<|StackProduct::getMatrix| code@>;
	@<|StackProduct::createPackedColumns| code@>;
	@<|StackProduct::getSize| code@>;
	@<|StackProduct::numMatrices| code@>;
};

@ 
@<|StackProduct::isZero| code@>=
bool isZero(const IntSequence& istacks) const
{
	TL_RAISE_IF(istacks.size() != dimen(),
				"Wrong istacks coordinates for StackProduct::isZero");

	bool res = false;
	int i = 0;
	while (i < dimen() && !(res = stack_cont.isZero(istacks[i], syms[i])))
		i++;
	return res;
}

@ 
@<|StackProduct::getType| code@>=
itype getType(int is, int ip) const
{
	TL_RAISE_IF(is < 0 || is >= stack_cont.numStacks(),
				"Wrong index to stack in StackProduct::getType");
	TL_RAISE_IF(ip < 0 || ip >= dimen(),
				"Wrong index to stack container in StackProduct::getType");
	return stack_cont.getType(is, syms[ip]);
}

@ 
@<|StackProduct::getMatrix| code@>=
const _Ttype* getMatrix(int is, int ip) const
{
	return stack_cont.getMatrix(is, syms[ip]);
}

@ 
@<|StackProduct::createPackedColumns| code@>=
void createPackedColumns(const IntSequence& coor,
						 Vector** vs, IntSequence& iu) const
{
	TL_RAISE_IF(iu.size() != dimen(),
				"Wrong storage length for unit flags in StackProduct::createPackedColumn");
	TL_RAISE_IF(coor.size() != per.size(),
				"Wrong size of index coor in StackProduct::createPackedColumn");
	IntSequence perindex(coor.size());
	per.apply(coor, perindex);
	int off = 0;
	for (int i = 0; i < dimen(); i++) {
		IntSequence percoor(perindex, off, syms[i].dimen() + off);
		vs[i] = stack_cont.createPackedColumn(syms[i], percoor, iu[i]);
		off += syms[i].dimen();
	}
}

@ 
@<|StackProduct::getSize| code@>=
int getSize(int is) const
{
	return stack_cont.getStackSizes()[is];
}


@ 
@<|StackProduct::numMatrices| code@>=
int numMatrices(const IntSequence& istacks) const
{
	TL_RAISE_IF(istacks.size() != dimen(),
				"Wrong size of stack coordinates in StackContainer::numMatrices");
	int ret = 0;
	int ip = 0;
	while (ip < dimen() && getType(istacks[ip], ip) == _Stype::matrix) {
		ret++;
		ip++;
	}
	return ret;
}

@ Here we only inherit from Kronecker product |KronProdAllOptim|, only to
allow for a constructor constructing from |StackProduct|.

@<|KronProdStack| class declaration@>=
template <class _Ttype>
class KronProdStack : public KronProdAllOptim {
public:@;
	typedef StackProduct<_Ttype> _Ptype;
	typedef StackContainerInterface<_Ttype> _Stype;
	@<|KronProdStack| constructor code@>;
};

@ Here we construct |KronProdAllOptim| from |StackContainer| and given
selections of stack items from stack containers in the product. We
only decide whether to insert matrix, or unit matrix.

At this point, we do not call |KronProdAllOptim::optimizeOrder|, so
the |KronProdStack| behaves like |KronProdAll| (i.e. no optimization
is done).

@<|KronProdStack| constructor code@>=
KronProdStack(const _Ptype& sp, const IntSequence& istack)
	: KronProdAllOptim(sp.dimen())
{
	TL_RAISE_IF(sp.dimen() != istack.size(),
				"Wrong stack product dimension for KronProdStack constructor");
	
	for (int i = 0; i < sp.dimen(); i++) {
		TL_RAISE_IF(sp.getType(istack[i], i) == _Stype::zero,
					"Attempt to construct KronProdStack from zero matrix");
		if (sp.getType(istack[i], i) == _Stype::unit)
			setUnit(i, sp.getSize(istack[i]));
		if (sp.getType(istack[i], i) == _Stype::matrix) {
			const TwoDMatrix* m = sp.getMatrix(istack[i], i);
			TL_RAISE_IF(m->nrows() != sp.getSize(istack[i]),
						"Wrong size of returned matrix in KronProdStack constructor");
			setMat(i, *m);
		}
	}
}


@ 
@<|WorkerFoldMAADense| class declaration@>=
class WorkerFoldMAADense : public THREAD {
	const FoldedStackContainer& cont;
	Symmetry sym;
	const FGSContainer& dense_cont;
	FGSTensor& out;
public:@;
	WorkerFoldMAADense(const FoldedStackContainer& container, 
					   const Symmetry& s,
					   const FGSContainer& dcontainer,
					   FGSTensor& outten);
	void operator()();
};

@ 
@<|WorkerFoldMAASparse1| class declaration@>=
class WorkerFoldMAASparse1 : public THREAD {
	const FoldedStackContainer& cont;
	const FSSparseTensor& t;
	FGSTensor& out;
	IntSequence coor;
	const EquivalenceBundle& ebundle;
public:@;
	WorkerFoldMAASparse1(const FoldedStackContainer& container,
						 const FSSparseTensor& ten,
						 FGSTensor& outten, const IntSequence& c);
	void operator()();
};

@ 
@<|WorkerFoldMAASparse2| class declaration@>=
class WorkerFoldMAASparse2 : public THREAD {
	const FoldedStackContainer& cont;
	const FSSparseTensor& t;
	FGSTensor& out;
	IntSequence coor;
public:@;
	WorkerFoldMAASparse2(const FoldedStackContainer& container,
						 const FSSparseTensor& ten,
						 FGSTensor& outten, const IntSequence& c);
	void operator()();
};

@ 
@<|WorkerFoldMAASparse4| class declaration@>=
class WorkerFoldMAASparse4 : public THREAD {
	const FoldedStackContainer& cont;
	const FSSparseTensor& t;
	FGSTensor& out;
	IntSequence coor;
public:@;
	WorkerFoldMAASparse4(const FoldedStackContainer& container,
						 const FSSparseTensor& ten,
						 FGSTensor& outten, const IntSequence& c);
	void operator()();
};

@ 
@<|WorkerUnfoldMAADense| class declaration@>=
class WorkerUnfoldMAADense : public THREAD {
	const UnfoldedStackContainer& cont;
	Symmetry sym;
	const UGSContainer& dense_cont;
	UGSTensor& out;
public:@;
	WorkerUnfoldMAADense(const UnfoldedStackContainer& container, 
						 const Symmetry& s,
						 const UGSContainer& dcontainer,
						 UGSTensor& outten);
	void operator()();
};

@ 
@<|WorkerUnfoldMAASparse1| class declaration@>=
class WorkerUnfoldMAASparse1 : public THREAD {
	const UnfoldedStackContainer& cont;
	const FSSparseTensor& t;
	UGSTensor& out;
	IntSequence coor;
	const EquivalenceBundle& ebundle;
public:@;
	WorkerUnfoldMAASparse1(const UnfoldedStackContainer& container,
						   const FSSparseTensor& ten,
						   UGSTensor& outten, const IntSequence& c);
	void operator()();
};

@ 
@<|WorkerUnfoldMAASparse2| class declaration@>=
class WorkerUnfoldMAASparse2 : public THREAD {
	const UnfoldedStackContainer& cont;
	const FSSparseTensor& t;
	UGSTensor& out;
	IntSequence coor;
public:@;
	WorkerUnfoldMAASparse2(const UnfoldedStackContainer& container,
						   const FSSparseTensor& ten,
						   UGSTensor& outten, const IntSequence& c);
	void operator()();
};


@ End of {\tt stack\_container.h} file.